BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Rabanal-Ruiz Y, Byron A, Wirth A, Madsen R, Sedlackova L, Hewitt G, Nelson G, Stingele J, Wills JC, Zhang T, Zeug A, Fässler R, Vanhaesebroeck B, Maddocks ODK, Ponimaskin E, Carroll B, Korolchuk VI. mTORC1 activity is supported by spatial association with focal adhesions. J Cell Biol 2021;220:e202004010. [PMID: 33635313 DOI: 10.1083/jcb.202004010] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 22.0] [Reference Citation Analysis]
Number Citing Articles
1 Tinline-goodfellow CT, Lees MJ, Hodson N. The skeletal muscle fiber periphery: A nexus of mTOR-related anabolism. Sports Medicine and Health Science 2022. [DOI: 10.1016/j.smhs.2022.11.004] [Reference Citation Analysis]
2 Shiralipour A, Khorsand B, Jafari L, Salehi M, Kazemi M, Zahiri J, Jajarmi V, Kazemi B. Identifying Key Lysosome-Related Genes Associated with Drug-Resistant Breast Cancer Using Computational and Systems Biology Approach. Iran J Pharm Res 2022;21. [DOI: 10.5812/ijpr-130342] [Reference Citation Analysis]
3 López-Haber C, Netting DJ, Hutchins Z, Ma X, Hamilton KE, Mantegazza AR. The phagosomal solute transporter SLC15A4 promotes inflammasome activity via mTORC1 signaling and autophagy restraint in dendritic cells. EMBO J 2022;:e111161. [PMID: 36031853 DOI: 10.15252/embj.2022111161] [Reference Citation Analysis]
4 Villari G, Gioelli N, Valdembri D, Serini G. Vesicle choreographies keep up cell-to-extracellular matrix adhesion dynamics in polarized epithelial and endothelial cells. Matrix Biol 2022:S0945-053X(22)00097-X. [PMID: 35961423 DOI: 10.1016/j.matbio.2022.08.003] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Posor Y, Kampyli C, Bilanges B, Ganguli S, Koch PA, Wallroth A, Morelli D, Jenkins M, Alliouachene S, Deltcheva E, Baum B, Haucke V, Vanhaesebroeck B. Local synthesis of the phosphatidylinositol-3,4-bisphosphate lipid drives focal adhesion turnover. Dev Cell 2022;57:1694-1711.e7. [PMID: 35809565 DOI: 10.1016/j.devcel.2022.06.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
6 Blazev R, Carl CS, Ng YK, Molendijk J, Voldstedlund CT, Zhao Y, Xiao D, Kueh AJ, Miotto PM, Haynes VR, Hardee JP, Chung JD, McNamara JW, Qian H, Gregorevic P, Oakhill JS, Herold MJ, Jensen TE, Lisowski L, Lynch GS, Dodd GT, Watt MJ, Yang P, Kiens B, Richter EA, Parker BL. Phosphoproteomics of three exercise modalities identifies canonical signaling and C18ORF25 as an AMPK substrate regulating skeletal muscle function. Cell Metab 2022:S1550-4131(22)00302-3. [PMID: 35882232 DOI: 10.1016/j.cmet.2022.07.003] [Reference Citation Analysis]
7 Potolitsyna E, Hazell Pickering S, Germier T, Collas P, Briand N. Long non-coding RNA HOTAIR regulates cytoskeleton remodeling and lipid storage capacity during adipogenesis. Sci Rep 2022;12:10157. [PMID: 35710716 DOI: 10.1038/s41598-022-14296-6] [Reference Citation Analysis]
8 Byron A, Griffith BGC, Herrero A, Loftus AEP, Koeleman ES, Kogerman L, Dawson JC, McGivern N, Culley J, Grimes GR, Serrels B, von Kriegsheim A, Brunton VG, Frame MC. Characterisation of a nucleo-adhesome. Nat Commun 2022;13:3053. [PMID: 35650196 DOI: 10.1038/s41467-022-30556-5] [Reference Citation Analysis]
9 Schmidt O, de Araujo MEG. Establishing spatial control over TORC1 signaling. J Cell Biol 2022;221:e202203136. [PMID: 35404386 DOI: 10.1083/jcb.202203136] [Reference Citation Analysis]
10 Altas B, Romanowski AJ, Bunce GW, Poulopoulos A. Neuronal mTOR Outposts: Implications for Translation, Signaling, and Plasticity. Front Cell Neurosci 2022;16:853634. [DOI: 10.3389/fncel.2022.853634] [Reference Citation Analysis]
11 Kumar G, Chawla P, Dhiman N, Chadha S, Sharma S, Sethi K, Sharma M, Tuli A. RUFY3 links Arl8b and JIP4-Dynein complex to regulate lysosome size and positioning. Nat Commun 2022;13. [DOI: 10.1038/s41467-022-29077-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
12 Fu R, Jiang X, Yang Y, Wang C, Zhang Y, Zhu Y, Zhang H. Bidirectional regulation of structural damage on autophagy in the C. elegans epidermis. Autophagy. [DOI: 10.1080/15548627.2022.2047345] [Reference Citation Analysis]
13 López-haber C, Hutchins Z, Ma X, Hamilton KE, Mantegazza AR. SLC15A4 favors inflammasome function via mTORC1 signaling and autophagy restraint in dendritic cells.. [DOI: 10.1101/2022.03.15.484392] [Reference Citation Analysis]
14 Yanes B, Rainero E. The Interplay between Cell-Extracellular Matrix Interaction and Mitochondria Dynamics in Cancer. Cancers 2022;14:1433. [DOI: 10.3390/cancers14061433] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Yao Y, Inoki K. mTORC1: Upstream and Downstream. Reference Module in Life Sciences 2022. [DOI: 10.1016/b978-0-12-821618-7.00182-6] [Reference Citation Analysis]
16 Kochetkova EY, Pospelov VA, Pospelova TV. Approaches and Protocols to Analyze Autophagy and Its Role in Death of Apoptosis-Resistant Senescent Tumor Cells. Autophagy and Cancer 2022. [DOI: 10.1007/978-1-0716-2071-7_10] [Reference Citation Analysis]
17 Zhao M, Finlay D, Kwong E, Liddington R, Viollet B, Sasaoka N, Vuori K. Cell adhesion suppresses autophagy via Src/FAK-mediated phosphorylation and inhibition of AMPK. Cell Signal 2022;89:110170. [PMID: 34673141 DOI: 10.1016/j.cellsig.2021.110170] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Byron A, Griffith BGC, Herrero A, Loftus AEP, Koeleman ES, Dawson JC, Kogerman L, Mcgivern N, Culley J, Grimes GR, Serrels B, von Kriegsheim A, Brunton VG, Frame MC. Characterisation of a nucleo-adhesome.. [DOI: 10.1101/2021.08.31.458428] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Fernandes SA, Demetriades C. The Multifaceted Role of Nutrient Sensing and mTORC1 Signaling in Physiology and Aging. Front Aging 2021;2:707372. [DOI: 10.3389/fragi.2021.707372] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
20 Hodson N, Mazzulla M, Kumbhare D, Moore DR. Mechanistic target of rapamycin complex 1 (mTORC1) activity occurs predominantly in the periphery of human skeletal muscle fibers, in close proximity to focal adhesion complexes, following anabolic stimuli.. [DOI: 10.1101/2021.06.22.449494] [Reference Citation Analysis]
21 Makhoul C, Gleeson PA. Regulation of mTORC1 activity by the Golgi apparatus. Fac Rev 2021;10:50. [PMID: 34195689 DOI: 10.12703/r/10-50] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
22 Hamidi H, Ivaska J. Food for thought: How cell adhesion coordinates nutrient sensing. J Cell Biol 2021;220:e202103128. [PMID: 33851967 DOI: 10.1083/jcb.202103128] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]