BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lee B, Shim I, Lee H, Hahm DH. Gypenosides attenuate lipopolysaccharide-induced neuroinflammation and anxiety-like behaviors in rats. Anim Cells Syst (Seoul) 2018;22:305-16. [PMID: 30460112 DOI: 10.1080/19768354.2018.1517825] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
Number Citing Articles
1 Li Y, Zhu S, Xie K, Feng X, Chen L, Wu X, Sun Z, Shu G, Wang S, Zhu C, Gao P, Jiang Q, Wang L. TLR4 in Tph2 neurons modulates anxiety-related behaviors in a sex-dependent manner. Neuropharmacology 2022;:109175. [PMID: 35787402 DOI: 10.1016/j.neuropharm.2022.109175] [Reference Citation Analysis]
2 Zhang MM, Huo GM, Cheng J, Zhang QP, Li NZ, Guo MX, Liu Q, Xu GH, Zhu JX, Li CF, Zhou F, Yi LT. Gypenoside XVII, an Active Ingredient from Gynostemma Pentaphyllum, Inhibits C3aR-Associated Synaptic Pruning in Stressed Mice. Nutrients 2022;14:2418. [PMID: 35745148 DOI: 10.3390/nu14122418] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Geng YN, Zhao M, Yang JL, Cheng X, Han Y, Wang CB, Jiang XF, Fan M, Zhu LL. GP-14 protects against severe hypoxia-induced neuronal injury through the AKT and ERK pathways and its induced transcriptome profiling alteration. Toxicol Appl Pharmacol 2022;448:116092. [PMID: 35654276 DOI: 10.1016/j.taap.2022.116092] [Reference Citation Analysis]
4 Geng Y, Yang J, Cheng X, Han Y, Yan F, Wang C, Jiang X, Meng X, Fan M, Zhao M, Zhu L. A bioactive gypenoside (GP-14) alleviates neuroinflammation and blood brain barrier (BBB) disruption by inhibiting the NF-κB signaling pathway in a mouse high-altitude cerebral edema (HACE) model. Int Immunopharmacol 2022;107:108675. [PMID: 35299003 DOI: 10.1016/j.intimp.2022.108675] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
5 Qi Y, Ni S, Heng X, Qu S, Ge P, Zhao X, Yao Z, Guo R, Yang N, Zhang Q, Zhu H. Uncovering the Potential Mechanisms of Coptis chinensis Franch. for Serious Mental Illness by Network Pharmacology and Pharmacology-Based Analysis. DDDT 2022;Volume 16:325-342. [DOI: 10.2147/dddt.s342028] [Reference Citation Analysis]
6 Zhang Q, Guo X, Xie C, Cao Z, Wang X, Liu L, Yang P. Unraveling the metabolic pathway of choline-TMA-TMAO: Effects of gypenosides and implications for the therapy of TMAO related diseases. Pharmacol Res 2021;173:105884. [PMID: 34530121 DOI: 10.1016/j.phrs.2021.105884] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
7 Qi YS, Xie JB, Xie P, Duan Y, Ling YQ, Gu YL, Piao XL. Uncovering the anti-NSCLC effects and mechanisms of gypenosides by metabolomics and network pharmacology analysis. J Ethnopharmacol 2021;281:114506. [PMID: 34371113 DOI: 10.1016/j.jep.2021.114506] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
8 Keymoradzadeh A, Hedayati Ch M, Abedinzade M, Khakpour Taleghani B; Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran, Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran, Medical Biotechnology Research Center, School of Nursing, Midwifery and Paramedicine, Guilan University of Medical Sciences, Rasht, Iran, Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran. Enriched environment restores passive avoidance memory impairment in a rat model of neuroinflammation. Physiol Pharmacol 2021;0:0-0. [DOI: 10.52547/phypha.26.3.4] [Reference Citation Analysis]
9 Shen S, Wang K, Zhi Y, Shen W, Huang L. Gypenosides improves nonalcoholic fatty liver disease induced by high-fat diet induced through regulating LPS/TLR4 signaling pathway. Cell Cycle 2020;19:3042-53. [PMID: 33121337 DOI: 10.1080/15384101.2020.1829800] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
10 Iqubal A, Syed MA, Najmi AK, Azam F, Barreto GE, Iqubal MK, Ali J, Haque SE. Nano-engineered nerolidol loaded lipid carrier delivery system attenuates cyclophosphamide neurotoxicity - Probable role of NLRP3 inflammasome and caspase-1. Exp Neurol 2020;334:113464. [PMID: 32941795 DOI: 10.1016/j.expneurol.2020.113464] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
11 Keymoradzadeh A, Hedayati Ch M, Abedinzade M, Gazor R, Rostampour M, Taleghani BK. Enriched environment effect on lipopolysaccharide-induced spatial learning, memory impairment and hippocampal inflammatory cytokine levels in male rats. Behav Brain Res 2020;394:112814. [PMID: 32707137 DOI: 10.1016/j.bbr.2020.112814] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
12 Lee B, Yeom M, Shim I, Lee H, Hahm DH. Protective Effects of Quercetin on Anxiety-Like Symptoms and Neuroinflammation Induced by Lipopolysaccharide in Rats. Evid Based Complement Alternat Med 2020;2020:4892415. [PMID: 32419805 DOI: 10.1155/2020/4892415] [Cited by in Crossref: 18] [Cited by in F6Publishing: 23] [Article Influence: 6.0] [Reference Citation Analysis]
13 Hao E, Qin J, Wei W, Miao J, Xie Y, Pan X, Wu H, Xie J, Fan X, Du Z, Hou X, Deng J. Identification and Analysis of Components in Yizhi Granule and Cynomolgus Monkey Plasma after Oral Administration by UPLC/ESI-Q-TOF MS and Their Protective Effects on PC12 Cells. J Anal Methods Chem 2020;2020:5165631. [PMID: 32351755 DOI: 10.1155/2020/5165631] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]