BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wu B, Jiang M, Liu X, Huang C, Gu Z, Cao Y. Evaluation of toxicity of halloysite nanotubes and multi-walled carbon nanotubes to endothelial cells in vitro and blood vessels in vivo. Nanotoxicology 2020;14:1017-38. [PMID: 32574508 DOI: 10.1080/17435390.2020.1780642] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
Number Citing Articles
1 Zhang M, Liu Y, Zhou Y, Wang Y, Mickymaray S, othaim AA, Kannaiyan M, Li X. In vitro investigation of cartilage regeneration properties of polymeric ceramic hybrid composite. Journal of Saudi Chemical Society 2022. [DOI: 10.1016/j.jscs.2022.101470] [Reference Citation Analysis]
2 Li S, Zheng X, Huang C, Cao Y. Titanate nanofibers reduce Kruppel-like factor 2 (KLF2)-eNOS pathway in endothelial monolayer: A transcriptomic study. Chinese Chemical Letters 2021;32:1567-70. [DOI: 10.1016/j.cclet.2020.10.044] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
3 Cao Y. Potential roles of Kruppel-like factors in mediating adverse vascular effects of nanomaterials: A review. J Appl Toxicol 2021. [PMID: 33837572 DOI: 10.1002/jat.4172] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
4 Luo Y, Wang X, Cao Y. Transcriptomic-based toxicological investigations of graphene oxide with modest cytotoxicity to human umbilical vein endothelial cells: changes of Toll-like receptor signaling pathways. Toxicol Res (Camb) 2021;10:1104-15. [PMID: 34956614 DOI: 10.1093/toxres/tfab091] [Reference Citation Analysis]
5 Jiang Y, Gong H, Jiang S, She C, Cao Y. Multi-walled carbon nanotubes decrease neuronal NO synthase in 3D brain organoids. Sci Total Environ 2020;748:141384. [PMID: 32823226 DOI: 10.1016/j.scitotenv.2020.141384] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
6 Zhu P, Zhang T, Li J, Ma J, Ouyang X, Zhao X, Xu M, Wang D, Xu Q. Near-infrared emission Cu, N-doped carbon dots for human umbilical vein endothelial cell labeling and their biocompatibility in vitro. J Appl Toxicol 2021;41:789-98. [PMID: 33269515 DOI: 10.1002/jat.4119] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
7 Feng Y, Luo X, Wu F, Liu H, Liang E, He R, Liu M. Systematic studies on blood coagulation mechanisms of halloysite nanotubes-coated PET dressing as superior topical hemostatic agent. Chemical Engineering Journal 2022;428:132049. [DOI: 10.1016/j.cej.2021.132049] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 9.0] [Reference Citation Analysis]
8 Li S, Yan D, Huang C, Yang F, Cao Y. TiO2 nanosheets promote the transformation of vascular smooth muscle cells into foam cells in vitro and in vivo through the up-regulation of nuclear factor kappa B subunit 2. J Hazard Mater 2022;424:127704. [PMID: 34799167 DOI: 10.1016/j.jhazmat.2021.127704] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
9 Teng W, Yang Z, Wang S, Xiong D, Chen Y, Wu Z. Toxicity evaluation of mesoporous silica particles Santa Barbara No. 15 amorphous in human umbilical vein endothelial cells: influence of particle morphology. J Appl Toxicol 2021;41:1467-78. [DOI: 10.1002/jat.4137] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Liu Y, Hu Q, Huang C, Cao Y. Comparison of multi-walled carbon nanotubes and halloysite nanotubes on lipid profiles in human umbilical vein endothelial cells. NanoImpact 2021;23:100333. [DOI: 10.1016/j.impact.2021.100333] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
11 Gu M, Wang S, Cao W, Yan D, Cao Y. Comparison of P25 and nanobelts on Kruppel-like factor-mediated nitric oxide pathways in human umbilical vein endothelial cells. J Appl Toxicol 2021. [PMID: 34633093 DOI: 10.1002/jat.4247] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Domingues C, Santos A, Alvarez-Lorenzo C, Concheiro A, Jarak I, Veiga F, Barbosa I, Dourado M, Figueiras A. Where Is Nano Today and Where Is It Headed? A Review of Nanomedicine and the Dilemma of Nanotoxicology. ACS Nano 2022. [PMID: 35729778 DOI: 10.1021/acsnano.2c00128] [Reference Citation Analysis]
13 Rozhina E, Batasheva S, Miftakhova R, Yan X, Vikulina A, Volodkin D, Fakhrullin R. Comparative cytotoxicity of kaolinite, halloysite, multiwalled carbon nanotubes and graphene oxide. Applied Clay Science 2021;205:106041. [DOI: 10.1016/j.clay.2021.106041] [Cited by in Crossref: 15] [Cited by in F6Publishing: 4] [Article Influence: 15.0] [Reference Citation Analysis]
14 Leyva-porras C, Román-aguirre M, Cruz-alcantar P, Pérez-urizar JT, Saavedra-leos MZ. Application of Antioxidants as an Alternative Improving of Shelf Life in Foods. Polysaccharides 2021;2:594-607. [DOI: 10.3390/polysaccharides2030036] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Pereira I, Saleh M, Nunes C, Reis S, Veiga F, Paiva-Santos AC. Preclinical developments of natural-occurring halloysite clay nanotubes in cancer therapeutics. Adv Colloid Interface Sci 2021;291:102406. [PMID: 33819725 DOI: 10.1016/j.cis.2021.102406] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]