BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li G, Liu H, Zhang X, Liu X, Zhang G, Liu Q. The protective effects of microRNA-26a in steroid-induced osteonecrosis of the femoral head by repressing EZH2. Cell Cycle 2020;19:551-66. [PMID: 32054404 DOI: 10.1080/15384101.2020.1717043] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Wu L, Su C, Yang C, Liu J, Ye Y. TBX3 regulates the transcription of VEGFA to promote osteoblasts proliferation and microvascular regeneration. PeerJ 2022;10:e13722. [PMID: 35846885 DOI: 10.7717/peerj.13722] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Ji L, Li X, He S, Chen S. Regulation of osteoclast-mediated bone resorption by microRNA. Cell Mol Life Sci 2022;79:287. [PMID: 35536437 DOI: 10.1007/s00018-022-04298-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Fang S, Liu Z, Wu S, Chen X, You M, Li Y, Yang F, Zhang S, Lai Y, Liu P, Jiang W, Chen P. Pro-angiognetic and pro-osteogenic effects of human umbilical cord mesenchymal stem cell-derived exosomal miR-21-5p in osteonecrosis of the femoral head. Cell Death Discov 2022;8:226. [PMID: 35468879 DOI: 10.1038/s41420-022-00971-0] [Reference Citation Analysis]
4 Lu Z, Han K. SMAD4 transcriptionally activates GCN5 to inhibit apoptosis and promote osteogenic differentiation in dexamethasone-induced human bone marrow mesenchymal stem cells. Steroids 2022;:108969. [PMID: 35122789 DOI: 10.1016/j.steroids.2022.108969] [Reference Citation Analysis]
5 Zhao J, Zhang X, Guan J, Su Y, Jiang J. Identification of key biomarkers in steroid-induced osteonecrosis of the femoral head and their correlation with immune infiltration by bioinformatics analysis. BMC Musculoskelet Disord 2022;23. [DOI: 10.1186/s12891-022-04994-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Shi W, Zhang X, Xu C, Pang R, Fan Z, Wan X, Jiang Z, Li H, Li Z, Zhang H. Identification of Hub Genes and Pathways Associated with Oxidative Stress of Cartilage in Osteonecrosis of Femoral Head Using Bioinformatics Analysis. Cartilage 2022;13:19476035221074000. [PMID: 35118903 DOI: 10.1177/19476035221074000] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Yu L, Yao T, Jiang Z, Xu T. Integrated Analysis of miRNA-mRNA Regulatory Networks Associated with Osteonecrosis of the Femoral Head. Evid Based Complement Alternat Med 2021;2021:8076598. [PMID: 34422080 DOI: 10.1155/2021/8076598] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
8 Li G, Li B, Li B, Zhao J, Wang X, Luo R, Li Y, Liu J, Hu R. The role of biomechanical forces and MALAT1/miR-329-5p/PRIP signalling on glucocorticoid-induced osteonecrosis of the femoral head. J Cell Mol Med 2021;25:5164-76. [PMID: 33939272 DOI: 10.1111/jcmm.16510] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
9 Wang Z, Ge X, Wang Y, Liang Y, Shi H, Zhao T. Mechanism of dexmedetomidine regulating osteogenesis-angiogenesis coupling through the miR-361-5p/VEGFA axis in postmenopausal osteoporosis. Life Sci 2021;275:119273. [PMID: 33631172 DOI: 10.1016/j.lfs.2021.119273] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Emami Nejad A, Najafgholian S, Rostami A, Sistani A, Shojaeifar S, Esparvarinha M, Nedaeinia R, Haghjooy Javanmard S, Taherian M, Ahmadlou M, Salehi R, Sadeghi B, Manian M. The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment. Cancer Cell Int 2021;21:62. [PMID: 33472628 DOI: 10.1186/s12935-020-01719-5] [Cited by in Crossref: 80] [Cited by in F6Publishing: 95] [Article Influence: 40.0] [Reference Citation Analysis]
11 Li R, Ruan Q, Yin F, Zhao K. MiR-23b-3p promotes postmenopausal osteoporosis by targeting MRC2 and regulating the Wnt/β-catenin signaling pathway. J Pharmacol Sci 2021;145:69-78. [PMID: 33357782 DOI: 10.1016/j.jphs.2020.11.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
12 Potter ML, Hill WD, Isales CM, Hamrick MW, Fulzele S. MicroRNAs are critical regulators of senescence and aging in mesenchymal stem cells. Bone 2021;142:115679. [PMID: 33022453 DOI: 10.1016/j.bone.2020.115679] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
13 Liu Y, Zong Y, Shan H, Lin Y, Xia W, Wang N, Zhou L, Gao Y, Ma X, Jiang C. MicroRNA-23b-3p participates in steroid-induced osteonecrosis of the femoral head by suppressing ZNF667 expression. Steroids 2020;163:108709. [PMID: 32730776 DOI: 10.1016/j.steroids.2020.108709] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
14 Chang C, Greenspan A, Gershwin ME. The pathogenesis, diagnosis and clinical manifestations of steroid-induced osteonecrosis. J Autoimmun 2020;110:102460. [PMID: 32307211 DOI: 10.1016/j.jaut.2020.102460] [Cited by in Crossref: 46] [Cited by in F6Publishing: 50] [Article Influence: 15.3] [Reference Citation Analysis]