BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Singh IP, Shah P. Tetrahydroisoquinolines in therapeutics: a patent review (2010-2015). Expert Opin Ther Pat 2017;27:17-36. [PMID: 27623022 DOI: 10.1080/13543776.2017.1236084] [Cited by in Crossref: 49] [Cited by in F6Publishing: 31] [Article Influence: 8.2] [Reference Citation Analysis]
Number Citing Articles
1 Singh P. Synthetic Approaches Towards the Synthesis of C-1 Azole Substituted Tetrahydroisoquinolines. COC 2021;25:519-28. [DOI: 10.2174/1385272824999201228140959] [Reference Citation Analysis]
2 Kouznetsov VV, Ortiz-villamizar MC, Méndez-vargas LY, Galvis CEP. A Review on Metal-Free Oxidative α-Cyanation and Alkynylation of N-Substituted Tetrahydroisoquinolines as a Rapid Route for the Synthesis of Isoquinoline Alkaloids. COC 2020;24:809-16. [DOI: 10.2174/1385272824999200420073539] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
3 Albano G, Morelli M, Lissia M, Aronica LA. Synthesis of Functionalised Indoline and Isoquinoline Derivatives through a Silylcarbocyclisation/Desilylation Sequence. ChemistrySelect 2019;4:2505-11. [DOI: 10.1002/slct.201900524] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
4 Wang Y, Zhu J, Guo R, Lindberg H, Wang YM. Iron-catalyzed α-C-H functionalization of π-bonds: cross-dehydrogenative coupling and mechanistic insights. Chem Sci 2020;11:12316-22. [PMID: 34094439 DOI: 10.1039/d0sc05091a] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
5 Peana AT, Bassareo V, Acquas E. Not Just from Ethanol. Tetrahydroisoquinolinic (TIQ) Derivatives: from Neurotoxicity to Neuroprotection. Neurotox Res 2019;36:653-68. [DOI: 10.1007/s12640-019-00051-9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
6 Ju S, Qian M, Xu G, Yang L, Wu J. Chemoenzymatic Approach to ( S )‐1,2,3,4‐Tetrahydroisoquinoline Carboxylic Acids Employing D‐Amino Acid Oxidase. Adv Synth Catal 2019;361:3191-9. [DOI: 10.1002/adsc.201900178] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
7 Li WS, Kuo TS, Wu PY, Chen CT, Wu HL. Enantioselective Synthesis of 1-Aryl Tetrahydroisoquinolines by the Rhodium-Catalyzed Reaction of 3,4-Dihydroisoquinolinium Tetraarylborates. Org Lett 2021;23:1141-6. [PMID: 33492973 DOI: 10.1021/acs.orglett.1c00198] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
8 Barber JS, Scales S, Tran-Dubé M, Wang F, Sach NW, Bernier L, Collins MR, Zhu J, McAlpine IJ, Patman RL. Rhodium(III)-Catalyzed C-H Activation: Ligand-Controlled Regioselective Synthesis of 4-Methyl-Substituted Dihydroisoquinolones. Org Lett 2019;21:5689-93. [PMID: 31264873 DOI: 10.1021/acs.orglett.9b02029] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 5.3] [Reference Citation Analysis]
9 Krishna Reddy SM, Suresh P, Thamotharan S, Nanubolu JB, Suresh S, Selva Ganesan S. Substrate controlled, regioselective carbopalladation for the one-pot synthesis of C4-substituted tetrahydroisoquinoline analogues. RSC Adv 2020;10:15794-9. [DOI: 10.1039/d0ra01539c] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Cheng Z, Yu Z, Yang S, Shen HC, Zhao W, Zhong S. C–H Bond Functionalization of Tetrahydropyridopyrimidines and Other Related Hetereocycles. J Org Chem 2017;82:13678-85. [DOI: 10.1021/acs.joc.7b02382] [Cited by in Crossref: 4] [Article Influence: 0.8] [Reference Citation Analysis]
11 Subrizi F, Wang Y, Thair B, Méndez-Sánchez D, Roddan R, Cárdenas-Fernández M, Siegrist J, Richter M, Andexer JN, Ward JM, Hailes HC. Multienzyme One-Pot Cascades Incorporating Methyltransferases for the Strategic Diversification of Tetrahydroisoquinoline Alkaloids. Angew Chem Int Ed Engl 2021;60:18673-9. [PMID: 34101966 DOI: 10.1002/anie.202104476] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
12 Ju S, Qian M, Li J, Xu G, Yang L, Wu J. A biocatalytic redox cascade approach for one-pot deracemization of carboxyl-substituted tetrahydroisoquinolines by stereoinversion. Green Chem 2019;21:5579-85. [DOI: 10.1039/c9gc02795e] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
13 Marras V, Caboni P, Secci F, Guillot R, Aitken DJ, Frongia A. A Brønsted acid catalyzed tandem reaction for the diastereoselective synthesis of cyclobuta-fused tetrahydroquinoline carboxylic esters. Org Biomol Chem 2021;19:8912-6. [PMID: 34612296 DOI: 10.1039/d1ob01518d] [Reference Citation Analysis]
14 Jin T, Li S, Jin C, Shan H, Wang R, Zhou M, Li A, Li L, Hu S, Shen T, Xiang L. Catecholic Isoquinolines from Portulaca oleracea and Their Anti-inflammatory and β 2 -Adrenergic Receptor Agonist Activity. J Nat Prod 2018;81:768-77. [DOI: 10.1021/acs.jnatprod.7b00762] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
15 Zhao J, Méndez-sánchez D, Roddan R, Ward JM, Hailes HC. Norcoclaurine Synthase-Mediated Stereoselective Synthesis of 1,1’-Disubstituted, Spiro- and Bis-Tetrahydroisoquinoline Alkaloids. ACS Catal 2021;11:131-8. [DOI: 10.1021/acscatal.0c04704] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
16 Zhou W, Zhang YX, Nie XD, Si CM, Sun X, Wei BG. Approach to Chiral 1-Substituted Isoquinolone and 3-Substituted Isoindolin-1-one by Addition-Cyclization Process. J Org Chem 2018;83:9879-89. [PMID: 29952568 DOI: 10.1021/acs.joc.8b01282] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 3.8] [Reference Citation Analysis]
17 Nie H, Zhu Y, Hu X, Wei Z, Yao L, Zhou G, Wang P, Jiang R, Zhang S. Josiphos-Type Binaphane Ligands for Iridium-Catalyzed Enantioselective Hydrogenation of 1-Aryl-Substituted Dihydroisoquinolines. Org Lett 2019;21:8641-5. [DOI: 10.1021/acs.orglett.9b03251] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 5.7] [Reference Citation Analysis]
18 Chantarawong W, Chamni S, Suwanborirux K, Saito N, Chanvorachote P. 5-O-Acetyl-Renieramycin T from Blue Sponge Xestospongia sp. Induces Lung Cancer Stem Cell Apoptosis. Mar Drugs 2019;17:E109. [PMID: 30754694 DOI: 10.3390/md17020109] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
19 Chen L, Yang Y, Liu L, Gao Q, Xu S. Iridium-Catalyzed Enantioselective α-C(sp 3 )–H Borylation of Azacycles. J Am Chem Soc 2020;142:12062-8. [DOI: 10.1021/jacs.0c06756] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
20 Oss G, de Vos SD, Luc KNH, Harper JB, Nguyen TV. Tropylium-Promoted Oxidative Functionalization of Tetrahydroisoquinolines. J Org Chem 2018;83:1000-10. [DOI: 10.1021/acs.joc.7b02584] [Cited by in Crossref: 33] [Cited by in F6Publishing: 19] [Article Influence: 8.3] [Reference Citation Analysis]
21 Viveros-Ceballos JL, Matías-Valdez LA, Sayago FJ, Cativiela C, Ordóñez M. New approaches towards the synthesis of 1,2,3,4-tetrahydro isoquinoline-3-phosphonic acid (TicP). Amino Acids 2021;53:451-9. [PMID: 33646426 DOI: 10.1007/s00726-021-02962-4] [Reference Citation Analysis]
22 Unkel L, Malcherek S, Schendera E, Hoffmann F, Rehbein J, Brasholz M. Photoorganocatalytic Aerobic Oxidative Amine Dehydrogenation/Super Acid‐Mediated Pictet‐Spengler Cyclization: Synthesis of cis ‐1,3‐Diaryl Tetrahydroisoquinolines. Adv Synth Catal 2019;361:2870-6. [DOI: 10.1002/adsc.201900165] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
23 Subrizi F, Wang Y, Thair B, Méndez‐sánchez D, Roddan R, Cárdenas‐fernández M, Siegrist J, Richter M, Andexer JN, Ward JM, Hailes HC. Multienzyme One‐Pot Cascades Incorporating Methyltransferases for the Strategic Diversification of Tetrahydroisoquinoline Alkaloids. Angew Chem 2021;133:18821-7. [DOI: 10.1002/ange.202104476] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Payne M, Bottomley AL, Och A, Hiscocks HG, Asmara AP, Harry EJ, Ung AT. Synthesis and biological evaluation of tetrahydroisoquinoline-derived antibacterial compounds. Bioorganic & Medicinal Chemistry 2022;57:116648. [DOI: 10.1016/j.bmc.2022.116648] [Reference Citation Analysis]
25 Kimura S, Saito N. Construction of the Pentacyclic Core and Formal Total Synthesis of (rac)-Renieramycin T. ChemistryOpen 2018;7:764-71. [PMID: 30338201 DOI: 10.1002/open.201800112] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
26 Jouha J, Buttard F, Lorion M, Berthonneau C, Khouili M, Hiebel M, Guillaumet G, Brière J, Suzenet F. Domino Aza-Michael- ih -Diels–Alder Reaction to Various 3-Vinyl-1,2,4-triazines: Access to Polysubstituted Tetrahydro-1,6-naphthyridines. Org Lett 2017;19:4770-3. [DOI: 10.1021/acs.orglett.7b02132] [Cited by in Crossref: 17] [Cited by in F6Publishing: 6] [Article Influence: 3.4] [Reference Citation Analysis]
27 Altinoz MA, Topcu G, Hacimuftuoglu A, Ozpinar A, Ozpinar A, Hacker E, Elmaci İ. Noscapine, a Non-addictive Opioid and Microtubule-Inhibitor in Potential Treatment of Glioblastoma. Neurochem Res 2019;44:1796-806. [PMID: 31292803 DOI: 10.1007/s11064-019-02837-x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
28 Reddy nagireddy PK, Kommalapati VK, Manchukonda NK, Sridhar B, Tangutur AD, Kantevari S. Synthesis and Antiproliferative Activity of 9‐Formyl and 9‐Ethynyl Noscapines. ChemistrySelect 2019;4:4092-6. [DOI: 10.1002/slct.201900666] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
29 Yang EL, Sun B, Huang ZY, Lin JG, Jiao B, Xiang L. Synthesis, Purification, and Selective β2-AR Agonist and Bronchodilatory Effects of Catecholic Tetrahydroisoquinolines from Portulaca oleracea. J Nat Prod 2019;82:2986-93. [PMID: 31625751 DOI: 10.1021/acs.jnatprod.9b00418] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
30 Kiss L, Ouchakour L, Ábrahámi RA, Nonn M. Stereocontrolled Synthesis of Functionalized Azaheterocycles from Carbocycles through Oxidative Ring Opening/Reductive Ring Closing Protocols. Chem Rec 2020;20:120-41. [PMID: 31250972 DOI: 10.1002/tcr.201900025] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
31 Xia Y, Wade NW, Palermo PN, Wang Y, Wang YM. Contrasteric coupling of allenes and tetrahydroisoquinolines by iron-catalysed allenic C(sp2)-H functionalisation. Chem Commun (Camb) 2021;57:13329-32. [PMID: 34816837 DOI: 10.1039/d1cc05949a] [Reference Citation Analysis]
32 Zhu J, Tan H, Yang L, Dai Z, Zhu L, Ma H, Deng Z, Tian Z, Qu X. Enantioselective Synthesis of 1-Aryl-Substituted Tetrahydroisoquinolines Employing Imine Reductase. ACS Catal 2017;7:7003-7. [DOI: 10.1021/acscatal.7b02628] [Cited by in Crossref: 36] [Cited by in F6Publishing: 23] [Article Influence: 7.2] [Reference Citation Analysis]
33 Yang L, Zhu J, Sun C, Deng Z, Qu X. Biosynthesis of plant tetrahydroisoquinoline alkaloids through an imine reductase route. Chem Sci 2020;11:364-71. [PMID: 32190259 DOI: 10.1039/c9sc03773j] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
34 Rossetti A, Sacchetti A, Gatti M, Pugliese A, Roda G. Rapid access to reverse-turn peptidomimetics by a three-component Ugi reaction of 3,4-dihydroisoquinoline. Chem Heterocycl Comp 2017;53:1214-9. [DOI: 10.1007/s10593-018-2202-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
35 Puerto Galvis CE, Granados CC, Kouznetsov VV, Macías MA. Synthesis and X-ray crystallographic analysis of free base and hexafluorophosphate salts of 3,4-dihydroisoquinolines from the Bischler–Napieralski reaction. New J Chem 2021;45:1565-72. [DOI: 10.1039/d0nj05235c] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
36 Yang J, Song Y, Tang MC, Li M, Deng J, Wong NK, Ju J. Genome-Directed Discovery of Tetrahydroisoquinolines from Deep-Sea Derived Streptomyces niveus SCSIO 3406. J Org Chem 2021;86:11107-16. [PMID: 33770435 DOI: 10.1021/acs.joc.1c00123] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
37 Yang WL, Liu TT, Ni T, Zhu B, Luo X, Deng WP. Iridium-Catalyzed Asymmetric Cascade Allylation/Pictet-Spengler Cyclization Reaction for the Enantioselective Synthesis of 1,3,4-Trisubstituted Tetrahydroisoquinolines. Org Lett 2021;23:2790-6. [PMID: 33734718 DOI: 10.1021/acs.orglett.1c00709] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Deepthi A, Thomas NV, Sruthi SL. An overview of the reactions involving azomethine imines over half a decade. New J Chem 2021;45:8847-73. [DOI: 10.1039/d1nj01090e] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
39 Marcyk PT, Cook SP. Synthesis of Tetrahydroisoquinolines Through an Iron-Catalyzed Cascade: Tandem Alcohol Substitution and Hydroamination. Org Lett 2019;21:6741-4. [PMID: 31418575 DOI: 10.1021/acs.orglett.9b02353] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
40 Zhao J, Méndez-Sánchez D, Ward JM, Hailes HC. Biomimetic Phosphate-Catalyzed Pictet-Spengler Reaction for the Synthesis of 1,1'-Disubstituted and Spiro-Tetrahydroisoquinoline Alkaloids. J Org Chem 2019;84:7702-10. [PMID: 31095375 DOI: 10.1021/acs.joc.9b00527] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
41 Achary R, Kim S, Choi Y, Mathi GR, Kim HJ, Hwang JY, Kim P. Succinct Syntheses of Methopholine, (±)‐Homolaudanosine, and (±)‐Dysoxyline via Metal‐free One‐Pot Double Alkylation on 1‐Methyl‐3,4‐dihydroisoquinolines. Bull Korean Chem Soc 2019;40:270-8. [DOI: 10.1002/bkcs.11677] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
42 Capilla AS, Soucek R, Grau L, Romero M, Rubio-Martínez J, Caignard DH, Pujol MD. Substituted tetrahydroisoquinolines: synthesis, characterization, antitumor activity and other biological properties. Eur J Med Chem 2018;145:51-63. [PMID: 29324343 DOI: 10.1016/j.ejmech.2017.12.098] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
43 Aranzamendi E, Sotomayor N, Lete E. Phenolic Activation in Chiral Brønsted Acid-Catalyzed Intramolecular α-Amidoalkylation Reactions for the Synthesis of Fused Isoquinolines. ACS Omega 2017;2:2706-18. [PMID: 31457610 DOI: 10.1021/acsomega.7b00170] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
44 Faheem, Karan Kumar B, Chandra Sekhar KVG, Chander S, Kunjiappan S, Murugesan S. Medicinal chemistry perspectives of 1,2,3,4-tetrahydroisoquinoline analogs - biological activities and SAR studies. RSC Adv 2021;11:12254-87. [PMID: 35423735 DOI: 10.1039/d1ra01480c] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 10.0] [Reference Citation Analysis]
45 Ayipo YO, Mordi MN, Mustapha M, Damodaran T. Neuropharmacological potentials of β-carboline alkaloids for neuropsychiatric disorders. Eur J Pharmacol 2021;893:173837. [PMID: 33359647 DOI: 10.1016/j.ejphar.2020.173837] [Reference Citation Analysis]
46 Cheng YY, Li WS, Wu HL. Application of Rh(I)/Bicyclo[2.2.1]heptadiene Catalysts to the Enantioselective Synthesis of Chiral Amines. Chem Rec 2021;21:3954-63. [PMID: 34596958 DOI: 10.1002/tcr.202100209] [Reference Citation Analysis]
47 Huang KB, Wang FY, Tang XM, Feng HW, Chen ZF, Liu YC, Liu YN, Liang H. Organometallic Gold(III) Complexes Similar to Tetrahydroisoquinoline Induce ER-Stress-Mediated Apoptosis and Pro-Death Autophagy in A549 Cancer Cells. J Med Chem 2018;61:3478-90. [PMID: 29606001 DOI: 10.1021/acs.jmedchem.7b01694] [Cited by in Crossref: 43] [Cited by in F6Publishing: 37] [Article Influence: 10.8] [Reference Citation Analysis]
48 Kaur P, Gurjar KK, Kumar V, Gohit S, Gupta V, Kumar R. Metal‐Free Multicomponent Construction of Tetrahydroisoquinoline‐Indole Derivatives via In Situ Generated ortho ‐Quinonoid Intermediate. ChemistrySelect 2020;5:12514-20. [DOI: 10.1002/slct.202002802] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
49 Chiu W, Chen J, Liu S, Barve IJ, Huang W, Sun C. One‐pot Synthesis of Isoquinoline‐Fused Isoquinolines via Intramolecular Hydroamination/Aza‐Claisen Type Rearrangement Cascade. Adv Synth Catal 2021;363:2834-42. [DOI: 10.1002/adsc.202001576] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]