BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sun F, Zheng Z, Lan J, Li X, Li M, Song K, Wu X. New micelle myricetin formulation for ocular delivery: improved stability, solubility, and ocular anti-inflammatory treatment. Drug Deliv 2019;26:575-85. [PMID: 31172843 DOI: 10.1080/10717544.2019.1622608] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 6.7] [Reference Citation Analysis]
Number Citing Articles
1 Wang C, Yang Y, Cui X, Ding S, Chen Z. Three different types of solubilization of thymol in Tween 80: Micelles, solutions, and emulsions- a mechanism study of micellar solubilization. Journal of Molecular Liquids 2020;306:112901. [DOI: 10.1016/j.molliq.2020.112901] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
2 Allyn MM, Luo RH, Hellwarth EB, Swindle-reilly KE. Considerations for Polymers Used in Ocular Drug Delivery. Front Med 2022;8:787644. [DOI: 10.3389/fmed.2021.787644] [Reference Citation Analysis]
3 Xu J, Chen P, Zhao G, Wei S, Li Q, Guo C, Cao Q, Wu X, Di G. Copolymer micelle-administered melatonin ameliorates hyperosmolarity-induced ocular surface damage through regulating PINK1 mediated mitophagy. Curr Eye Res 2022;:1-38. [PMID: 35179400 DOI: 10.1080/02713683.2021.2022163] [Reference Citation Analysis]
4 Li X, Fang J, Xin M, Li Q, Wang J, Yang H, Wu X. Rebaudioside A/TPGS mixed nanomicelles as promising nanocarriers for nimodipine ocular delivery. Drug Deliv Transl Res 2021;11:1119-32. [PMID: 32783152 DOI: 10.1007/s13346-020-00834-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
5 Aryal B, Adhikari B, Aryal N, Bhattarai BR, Khadayat K, Parajuli N. LC-HRMS Profiling and Antidiabetic, Antioxidant, and Antibacterial Activities of Acacia catechu (L.f.) Willd. Biomed Res Int 2021;2021:7588711. [PMID: 34435049 DOI: 10.1155/2021/7588711] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Song K, Xin M, Zhang F, Xie W, Sun M, Wu X. Novel ultrasmall nanomicelles based on rebaudioside A: A potential nanoplatform for the ocular delivery of pterostilbene. International Journal of Pharmaceutics 2020;577:119035. [DOI: 10.1016/j.ijpharm.2020.119035] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
7 Krstić L, González-García MJ, Diebold Y. Ocular Delivery of Polyphenols: Meeting the Unmet Needs. Molecules 2021;26:E370. [PMID: 33445725 DOI: 10.3390/molecules26020370] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Li Z, Liu M, Ke L, Wang L, Wu C, Li C, Li Z, Wu Y. Flexible polymeric nanosized micelles for ophthalmic drug delivery: research progress in the last three years. Nanoscale Adv 2021;3:5240-54. [DOI: 10.1039/d1na00596k] [Reference Citation Analysis]
9 Zhang F, Chen H, Lan J, Song K, Wu X. Preparation and in vitro/in vivo evaluations of novel ocular micelle formulations of hesperetin with glycyrrhizin as a nanocarrier. Exp Eye Res 2021;202:108313. [PMID: 33080302 DOI: 10.1016/j.exer.2020.108313] [Reference Citation Analysis]
10 Koutsoviti M, Siamidi A, Pavlou P, Vlachou M. Recent Advances in the Excipients Used for Modified Ocular Drug Delivery. Materials (Basel) 2021;14:4290. [PMID: 34361483 DOI: 10.3390/ma14154290] [Reference Citation Analysis]
11 Pescina S, Lucca LG, Govoni P, Padula C, Favero ED, Cantù L, Santi P, Nicoli S. Ex Vivo Conjunctival Retention and Transconjunctival Transport of Poorly Soluble Drugs Using Polymeric Micelles. Pharmaceutics 2019;11:E476. [PMID: 31540066 DOI: 10.3390/pharmaceutics11090476] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
12 Zhang F, Li R, Yan M, Li Q, Li Y, Wu X. Ultra-small nanocomplexes based on polyvinylpyrrolidone K-17PF: A potential nanoplatform for the ocular delivery of kaempferol. European Journal of Pharmaceutical Sciences 2020;147:105289. [DOI: 10.1016/j.ejps.2020.105289] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
13 Durgun ME, Güngör S, Özsoy Y. Micelles: Promising Ocular Drug Carriers for Anterior and Posterior Segment Diseases. J Ocul Pharmacol Ther 2020;36:323-41. [PMID: 32310723 DOI: 10.1089/jop.2019.0109] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
14 Halder T, Patel B, Acharya N. Design and optimization of myricetin encapsulated nanostructured lipid carriers: In-vivo assessment against cognitive impairment in amyloid beta (1–42) intoxicated rats. Life Sciences 2022. [DOI: 10.1016/j.lfs.2022.120479] [Reference Citation Analysis]
15 Pandey M, Choudhury H, Abdul-Aziz A, Bhattamisra SK, Gorain B, Su JST, Tan CL, Chin WY, Yip KY. Advancement on Sustained Antiviral Ocular Drug Delivery for Herpes Simplex Virus Keratitis: Recent Update on Potential Investigation. Pharmaceutics 2020;13:E1. [PMID: 33374925 DOI: 10.3390/pharmaceutics13010001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
16 Li M, Zhang L, Li R, Yan M. New resveratrol micelle formulation for ocular delivery: characterization and in vitro/in vivo evaluation. Drug Dev Ind Pharm 2020;46:1960-70. [PMID: 32985941 DOI: 10.1080/03639045.2020.1828909] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
17 Patel KD, Silva LB, Park Y, Shakouri T, Keskin-erdogan Z, Sawadkar P, Cho KJ, Knowles JC, Chau DY, Kim H. Recent advances in drug delivery systems for glaucoma treatment. Materials Today Nano 2022. [DOI: 10.1016/j.mtnano.2022.100178] [Reference Citation Analysis]
18 Vaneev A, Tikhomirova V, Chesnokova N, Popova E, Beznos O, Kost O, Klyachko N. Nanotechnology for Topical Drug Delivery to the Anterior Segment of the Eye. Int J Mol Sci 2021;22:12368. [PMID: 34830247 DOI: 10.3390/ijms222212368] [Reference Citation Analysis]
19 Arredondo-ochoa T, Silva-martínez GA. Microemulsion Based Nanostructures for Drug Delivery. Front Nanotechnol 2022;3:753947. [DOI: 10.3389/fnano.2021.753947] [Reference Citation Analysis]
20 Wang H, Li X, Yang H, Wang J, Li Q, Qu R, Wu X. Nanocomplexes based polyvinylpyrrolidone K-17PF for ocular drug delivery of naringenin. International Journal of Pharmaceutics 2020;578:119133. [DOI: 10.1016/j.ijpharm.2020.119133] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
21 Ma X, Gong H, Ogino K, Yan X, Xing R. Coordination-assembled myricetin nanoarchitectonics for sustainably scavenging free radicals. Beilstein J Nanotechnol 2022;13:284-91. [DOI: 10.3762/bjnano.13.23] [Reference Citation Analysis]
22 Li Y, Zhou L, Zhang M, Li R, Di G, Liu H, Wu X. Micelles based on polyvinylpyrrolidone VA64: A potential nanoplatform for the ocular delivery of apocynin. Int J Pharm 2022;:121451. [PMID: 35051535 DOI: 10.1016/j.ijpharm.2022.121451] [Reference Citation Analysis]
23 Wang H, He Y, Hou Y, Geng Y, Wu X. Novel self-nanomicellizing formulation based on Rebaudioside A: A potential nanoplatform for oral delivery of naringenin. Mater Sci Eng C Mater Biol Appl 2020;112:110926. [PMID: 32409076 DOI: 10.1016/j.msec.2020.110926] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
24 Jannat K, Paul AK, Bondhon TA, Hasan A, Nawaz M, Jahan R, Mahboob T, Nissapatorn V, Wilairatana P, Pereira ML, Rahmatullah M. Nanotechnology Applications of Flavonoids for Viral Diseases. Pharmaceutics 2021;13:1895. [PMID: 34834309 DOI: 10.3390/pharmaceutics13111895] [Reference Citation Analysis]
25 Durgun ME, Kahraman E, Güngör S, Özsoy Y. Optimization and Characterization of Aqueous Micellar Formulations for Ocular Delivery of an Antifungal Drug, Posaconazole. CPD 2020;26:1543-55. [DOI: 10.2174/1381612826666200313172207] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
26 Lv Q, Lv Y, Dou X, Wassy SL, Jia G, Wei L, Yu Q, Deng X, Zhang C, Wang J. Myricetin inhibits the type III secretion system of Salmonella enterica serovar typhimurium by downregulating the Salmonella pathogenic island I gene regulatory pathway. Microb Pathog 2021;150:104695. [PMID: 33418000 DOI: 10.1016/j.micpath.2020.104695] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
27 Song K, Yan M, Li M, Geng Y, Wu X. Preparation and in vitro–in vivo evaluation of novel ocular nanomicelle formulation of thymol based on glycyrrhizin. Colloids and Surfaces B: Biointerfaces 2020;194:111157. [DOI: 10.1016/j.colsurfb.2020.111157] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
28 Agraharam G, Girigoswami A, Girigoswami K. Nanoencapsulated Myricetin to Improve Antioxidant Activity and Bioavailability: A Study on Zebrafish Embryos. Chemistry 2022;4:1-17. [DOI: 10.3390/chemistry4010001] [Reference Citation Analysis]
29 Wang L, Sun X. Mesoporous Silica Hybridized With Gadolinium(III) Nanoplatform for Targeted Magnetic Imaging-Guided Photothermal Breast Cancer Therapy. Dose Response 2020;18:1559325820902314. [PMID: 32284692 DOI: 10.1177/1559325820902314] [Reference Citation Analysis]