1 |
Park S, Trujillo-Hernandez JA, Levine RL. Ndufaf2, a protein in mitochondrial complex I, interacts in vivo with methionine sulfoxide reductases. Redox Rep 2023;28:2168635. [PMID: 36738241 DOI: 10.1080/13510002.2023.2168635] [Reference Citation Analysis]
|
2 |
Gibbs ET, Lerner CA, Watson MA, Wong HS, Gerencser AA, Brand MD. Site IQ in mitochondrial complex I generates S1QEL-sensitive superoxide/hydrogen peroxide in both the reverse and forward reactions. Biochem J 2023;480:363-84. [PMID: 36862427 DOI: 10.1042/BCJ20220611] [Reference Citation Analysis]
|
3 |
Dabbaghi KG, Mashatan N, Faraz O, Bashkandi AH, Shomoossi N, Tabnak P. A review on the roles and molecular mechanisms of MAFG-AS1 in oncogenesis. Pathol Res Pract 2023;243:154348. [PMID: 36736142 DOI: 10.1016/j.prp.2023.154348] [Reference Citation Analysis]
|
4 |
Zhang X, Sun J, Zhou M, Li C, Zhu Z, Gan X. The role of mitochondria in the peri-implant microenvironment. Exp Physiol 2023;108:398-411. [PMID: 36648334 DOI: 10.1113/EP090988] [Reference Citation Analysis]
|
5 |
Jiménez-Gómez B, Ortega-Sáenz P, Gao L, González-Rodríguez P, García-Flores P, Chandel N, López-Barneo J. Transgenic NADH dehydrogenase restores oxygen regulation of breathing in mitochondrial complex I-deficient mice. Nat Commun 2023;14:1172. [PMID: 36859533 DOI: 10.1038/s41467-023-36894-2] [Reference Citation Analysis]
|
6 |
Jezek P, Jaburek M, Holendova B, Engstová H, Dlasková A. Mitochondrial cristae morphology reflecting metabolism, superoxide formation, redox homeostasis, and pathology. Antioxid Redox Signal 2023. [PMID: 36793196 DOI: 10.1089/ars.2022.0173] [Reference Citation Analysis]
|
7 |
Marques-carvalho A, Kim H, Almeida M. The role of reactive oxygen species in bone cell physiology and pathophysiology. Bone Reports 2023. [DOI: 10.1016/j.bonr.2023.101664] [Reference Citation Analysis]
|
8 |
Li H, Wang Z, Xie X, Luo M, Shen H, Li X, Li H, Wang Z, Li X, Chen G. Peroxiredoxin-3 plays a neuroprotective role in early brain injury after experimental subarachnoid hemorrhage in rats. Brain Res Bull 2023;193:95-105. [PMID: 36566946 DOI: 10.1016/j.brainresbull.2022.12.010] [Reference Citation Analysis]
|
9 |
Koufos O, Mailloux RJ. Protein S-glutathionylation and sex dimorphic effects on hydrogen peroxide production by dihydroorotate dehydrogenase in liver mitochondria. Free Radic Biol Med 2023;194:123-30. [PMID: 36462627 DOI: 10.1016/j.freeradbiomed.2022.11.043] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
10 |
Napolitano G, Fasciolo G, Tomajoli MTM, Carlucci A, Ascione E, Salvatore A. Effects of superoxide anion attack on the lipoprotein HDL. Mol Cell Biochem 2022. [PMID: 36219354 DOI: 10.1007/s11010-022-04563-5] [Reference Citation Analysis]
|
11 |
Cabello-Rivera D, Ortega-Sáenz P, Gao L, Muñoz-Cabello AM, Bonilla-Henao V, Schumacker PT, López-Barneo J. Oxygen regulation of breathing is abolished in mitochondrial complex III-deficient arterial chemoreceptors. Proc Natl Acad Sci U S A 2022;119:e2202178119. [PMID: 36122208 DOI: 10.1073/pnas.2202178119] [Reference Citation Analysis]
|
12 |
Hamann A, Osiewacz HD. To die or not to die - How mitochondrial processes affect lifespan of Podospora anserina. Biochim Biophys Acta Bioenerg 2022;1863:148568. [PMID: 35533726 DOI: 10.1016/j.bbabio.2022.148568] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
13 |
Zhao C, Tang J, Li X, Yan Z, Zhao L, Lang W, Yuan C, Zhou C. Beneficial effects of procyanidin B2 on adriamycin-induced nephrotic syndrome mice: the multi-action mechanism for ameliorating glomerular permselectivity injury. Food Funct 2022. [PMID: 35861207 DOI: 10.1039/d1fo03616e] [Reference Citation Analysis]
|
14 |
Liu B, Cao Y, Wang D, Zhou Y, Zhang P, Wu J, Chen J, Qiu J, Zhou J. Zhen-Wu-Tang Induced Mitophagy to Protect Mitochondrial Function in Chronic Glomerulonephritis via PI3K/AKT/mTOR and AMPK Pathways. Front Pharmacol 2021;12:777670. [PMID: 35757387 DOI: 10.3389/fphar.2021.777670] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
|
15 |
Kalyanaraman B, Cheng G, Hardy M. Therapeutic Targeting of Tumor Cells and Tumor Immune Microenvironment Vulnerabilities. Front Oncol 2022;12:816504. [PMID: 35756631 DOI: 10.3389/fonc.2022.816504] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
16 |
Fang J, Zhang Y, Gerencser AA, Brand MD. Effects of sugars, fatty acids and amino acids on cytosolic and mitochondrial hydrogen peroxide release from liver cells. Free Radic Biol Med 2022;188:92-102. [PMID: 35716827 DOI: 10.1016/j.freeradbiomed.2022.06.225] [Reference Citation Analysis]
|
17 |
Okoye CN, Chinnappareddy N, Stevens D, Kamunde C. Factors affecting liver mitochondrial hydrogen peroxide emission. Comp Biochem Physiol B Biochem Mol Biol 2022;259:110713. [PMID: 35026417 DOI: 10.1016/j.cbpb.2022.110713] [Reference Citation Analysis]
|
18 |
Rattanopas S, Schulte A, Teanphonkrang S. Prussian Blue/Carbon Nanotube Sensor Spread with Gelatin/Zein Glaze: A User-Friendly Modification for Stable Interference-Free H2O2 Amperometry. Anal Chem 2022. [PMID: 35306807 DOI: 10.1021/acs.analchem.1c05202] [Reference Citation Analysis]
|
19 |
Koenig A, Buskiewicz-Koenig IA. Redox Activation of Mitochondrial DAMPs and the Metabolic Consequences for Development of Autoimmunity. Antioxid Redox Signal 2022;36:441-61. [PMID: 35352943 DOI: 10.1089/ars.2021.0073] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
20 |
Zang L, Huang H, Li X, Ju Y, Feng B, Lu J. PEGylated near-infrared fluorescence probe for mitochondria-targetable hydrogen peroxide detection. Talanta 2022. [DOI: 10.1016/j.talanta.2022.123370] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
|
21 |
Sies H, Belousov VV, Chandel NS, Davies MJ, Jones DP, Mann GE, Murphy MP, Yamamoto M, Winterbourn C. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat Rev Mol Cell Biol. [DOI: 10.1038/s41580-022-00456-z] [Cited by in Crossref: 47] [Cited by in F6Publishing: 59] [Article Influence: 47.0] [Reference Citation Analysis]
|
22 |
Hoehne MN, Jacobs LJHC, Lapacz KJ, Calabrese G, Murschall LM, Marker T, Kaul H, Trifunovic A, Morgan B, Fricker M, Belousov VV, Riemer J. Spatial and temporal control of mitochondrial H2 O2 release in intact human cells. EMBO J 2022;:e109169. [PMID: 35146782 DOI: 10.15252/embj.2021109169] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
|
23 |
Gomes F, Turano H, Ramos A, de Barros MH, Haddad LA, Netto LES. Dissecting the molecular mechanisms of mitochondrial import and maturation of peroxiredoxins from yeast and mammalian cells. Biophys Rev 2021;13:983-94. [PMID: 35059022 DOI: 10.1007/s12551-021-00899-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
|
24 |
Salyers ZR, Mariani V, Balestrieri N, Kumar RA, Vugman NA, Thome T, Villani KR, Berceli SA, Scali ST, Vasilakos G, Ryan TE. S100A8 and S100A9 are elevated in chronically threatened ischemic limb muscle and induce ischemic mitochondrial pathology in mice. JVS-Vascular Science 2022;3:232-245. [DOI: 10.1016/j.jvssci.2022.03.003] [Reference Citation Analysis]
|
25 |
Mookerjee SA, Gerencser AA, Watson MA, Brand MD. Controlled power: how biology manages succinate-driven energy release. Biochem Soc Trans 2021;49:2929-39. [PMID: 34882231 DOI: 10.1042/BST20211032] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
26 |
López-Barneo J, Ortega-Sáenz P. Mitochondrial acute oxygen sensing and signaling. Crit Rev Biochem Mol Biol 2021;:1-21. [PMID: 34852688 DOI: 10.1080/10409238.2021.2004575] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
|
27 |
Zeb A, Choubey V, Gupta R, Kuum M, Safiulina D, Vaarmann A, Gogichaishvili N, Liiv M, Ilves I, Tämm K, Veksler V, Kaasik A. A novel role of KEAP1/PGAM5 complex: ROS sensor for inducing mitophagy. Redox Biol 2021;48:102186. [PMID: 34801863 DOI: 10.1016/j.redox.2021.102186] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
|
28 |
Yan LJ, Allen DC. Cadmium-Induced Kidney Injury: Oxidative Damage as a Unifying Mechanism. Biomolecules 2021;11:1575. [PMID: 34827573 DOI: 10.3390/biom11111575] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
|
29 |
Watson MA, Pattavina B, Hilsabeck TAU, Lopez-Dominguez J, Kapahi P, Brand MD. S3QELs protect against diet-induced intestinal barrier dysfunction. Aging Cell 2021;20:e13476. [PMID: 34521156 DOI: 10.1111/acel.13476] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
|
30 |
Tracy EP, Hughes W, Beare J, Rowe G, Beyer AM, LeBlanc AJ. Aging Induced Impairment of Vascular Function - Mitochondrial Redox Contributions and Physiological/Clinical Implications. Antioxid Redox Signal 2021. [PMID: 34314229 DOI: 10.1089/ars.2021.0031] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
31 |
Hoehne MN, Jacobs LJ, Lapacz KJ, Murschall LM, Marker T, Morgan B, Fricker M, Belousov VV, Riemer J. Thioredoxin reductase controls the capacity of peroxiredoxins to limit mitochondrial H2O2 release.. [DOI: 10.1101/2021.07.08.451718] [Reference Citation Analysis]
|
32 |
Yan LJ. NADH/NAD+ Redox Imbalance and Diabetic Kidney Disease. Biomolecules 2021;11:730. [PMID: 34068842 DOI: 10.3390/biom11050730] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
|
33 |
Tsai YT, Yeh HY, Chao CT, Chiang CK. Superoxide Dismutase 2 (SOD2) in Vascular Calcification: A Focus on Vascular Smooth Muscle Cells, Calcification Pathogenesis, and Therapeutic Strategies. Oxid Med Cell Longev 2021;2021:6675548. [PMID: 33728027 DOI: 10.1155/2021/6675548] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
|
34 |
Wong HS, Mezera V, Dighe P, Melov S, Gerencser AA, Sweis RF, Pliushchev M, Wang Z, Esbenshade T, McKibben B, Riedmaier S, Brand MD. Superoxide produced by mitochondrial site IQ inactivates cardiac succinate dehydrogenase and induces hepatic steatosis in Sod2 knockout mice. Free Radic Biol Med 2021;164:223-32. [PMID: 33421588 DOI: 10.1016/j.freeradbiomed.2020.12.447] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
|
35 |
Okoye CN, Stevens D, Kamunde C. Modulation of mitochondrial site-specific hydrogen peroxide efflux by exogenous stressors. Free Radic Biol Med 2021;164:439-56. [PMID: 33383085 DOI: 10.1016/j.freeradbiomed.2020.12.234] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|