BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ravash N, Peighambardoust SH, Soltanzadeh M, Pateiro M, Lorenzo JM. Impact of high-pressure treatment on casein micelles, whey proteins, fat globules and enzymes activity in dairy products: a review. Crit Rev Food Sci Nutr 2020;:1-21. [PMID: 33345590 DOI: 10.1080/10408398.2020.1860899] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 Xu F, Xue L, Ma Y, Niu T, Zhao P, Wu Z, Wang Y. Effects of Ultra-High-Pressure Jet Processing on Casein Structure and Curdling Properties of Skimmed Bovine Milk. Molecules 2023;28. [PMID: 36903641 DOI: 10.3390/molecules28052396] [Reference Citation Analysis]
2 Akbarmehr A, Peighambardoust SH, Ghanbarzadeh B, Sarabandi K. Physicochemical, antioxidant, antimicrobial, and in vitro cytotoxic activities of corn pollen protein hydrolysates obtained by different peptidases. Food Science & Nutrition 2023. [DOI: 10.1002/fsn3.3252] [Reference Citation Analysis]
3 Agriopoulou S, Severoğlu M, Varzakas T, Özer HB. Recent Advances in High Pressure Processing of Milk and Milk Products - A review. J Agr Sci-Tarim Bili 2023. [DOI: 10.15832/ankutbd.1150112] [Reference Citation Analysis]
4 Magalhães IS, Tribst AAL, Leite Júnior BRDC. Use of high-pressure technologies on enzymes. Effect of High-Pressure Technologies on Enzymes 2023. [DOI: 10.1016/b978-0-323-98386-0.00002-6] [Reference Citation Analysis]
5 Ribeiro LR, Magalhães IS, Tribst AAL, Leite Júnior BRDC. Effects of high-pressure processing on enzyme activity in milk and dairy products. Effect of High-Pressure Technologies on Enzymes 2023. [DOI: 10.1016/b978-0-323-98386-0.00009-9] [Reference Citation Analysis]
6 Peighambardoust SH, Yaghoubi M, Hosseinpour A, Alirezalu K, Soltanzadeh M, Dadpour M. Development and Application of Dual-Sensors Label in Combination with Active Chitosan-Based Coating Incorporating Yarrow Essential Oil for Freshness Monitoring and Shelf-Life Extension of Chicken Fillet. Foods 2022;11. [PMID: 36360146 DOI: 10.3390/foods11213533] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
7 Silva M, Kadam MR, Munasinghe D, Shanmugam A, Chandrapala J. Encapsulation of Nutraceuticals in Yoghurt and Beverage Products Using the Ultrasound and High-Pressure Processing Technologies. Foods 2022;11:2999. [DOI: 10.3390/foods11192999] [Reference Citation Analysis]
8 Gharbi N, Marciniak A, Doyen A. Factors affecting the modification of bovine milk proteins in high hydrostatic pressure processing: An updated review. Compr Rev Food Sci Food Saf 2022;21:4274-93. [PMID: 35904187 DOI: 10.1111/1541-4337.13012] [Reference Citation Analysis]
9 Deng H, Cao J, Wang D, Zhu J, Ma L. Effects of high hydrostatic pressure on inactivation, morphological damage, and enzyme activity of Escherichia coli O157:H7. Journal of Food Safety. [DOI: 10.1111/jfs.12998] [Reference Citation Analysis]
10 Koutsoumanis K, Alvarez‐ordóñez A, Bolton D, Bover‐cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Castle L, Crotta M, Grob K, Milana MR, Petersen A, Roig Sagués AX, Vinagre Silva F, Barthélémy E, Christodoulidou A, Messens W, Allende A; EFSA Panel on Biological Hazards (BIOHAZ Panel). The efficacy and safety of high‐pressure processing of food. EFS2 2022;20. [DOI: 10.2903/j.efsa.2022.7128] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Díaz-bustamante ML, Fernández-niño M, Reyes LH, Alvarez Solano OA. Multiscale Approach to Dairy Products Design. Front Chem Eng 2022;4:830314. [DOI: 10.3389/fceng.2022.830314] [Reference Citation Analysis]
12 Chen R, Luo S, Wang C, Bai H, Lu J, Tian L, Gao M, Wu J, Bai C, Sun H. Effects of ultra-high pressure enzyme extraction on characteristics and functional properties of red pitaya (Hylocereus polyrhizus) peel pectic polysaccharides. Food Hydrocolloids 2021;121:107016. [DOI: 10.1016/j.foodhyd.2021.107016] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
13 Soltanzadeh M, Peighambardoust SH, Ghanbarzadeh B, Mohammadi M, Lorenzo JM. Chitosan nanoparticles encapsulating lemongrass (Cymbopogon commutatus) essential oil: Physicochemical, structural, antimicrobial and in-vitro release properties. Int J Biol Macromol 2021;192:1084-97. [PMID: 34673101 DOI: 10.1016/j.ijbiomac.2021.10.070] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 14.5] [Reference Citation Analysis]
14 Soltanzadeh M, Peighambardoust SH, Ghanbarzadeh B, Mohammadi M, Lorenzo JM. Chitosan Nanoparticles as a Promising Nanomaterial for Encapsulation of Pomegranate (Punica granatum L.) Peel Extract as a Natural Source of Antioxidants. Nanomaterials (Basel) 2021;11:1439. [PMID: 34072520 DOI: 10.3390/nano11061439] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
15 Peighambardoust SH, Jafarzadeh-Moghaddam M, Pateiro M, Lorenzo JM, Domínguez R. Physicochemical, Thermal and Rheological Properties of Pectin Extracted from Sugar Beet Pulp Using Subcritical Water Extraction Process. Molecules 2021;26:1413. [PMID: 33807800 DOI: 10.3390/molecules26051413] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]