BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sun S, He M, VanPatten S, Al-Abed Y. Mechanistic insights into high mobility group box-1 (HMGb1)-induced Toll-like receptor 4 (TLR4) dimer formation. J Biomol Struct Dyn 2019;37:3721-30. [PMID: 30238832 DOI: 10.1080/07391102.2018.1526712] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 Ain QU, Batool M, Choi S. TLR4-Targeting Therapeutics: Structural Basis and Computer-Aided Drug Discovery Approaches. Molecules 2020;25:E627. [PMID: 32023919 DOI: 10.3390/molecules25030627] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 8.5] [Reference Citation Analysis]
2 Anggayasti WL, Ogino K, Yamamoto E, Helmerhorst E, Yasuoka K, Mancera RL. The acidic tail of HMGB1 regulates its secondary structure and conformational flexibility: A circular dichroism and molecular dynamics simulation study. Comput Struct Biotechnol J 2020;18:1160-72. [PMID: 32514327 DOI: 10.1016/j.csbj.2020.05.012] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
3 Ziegler K, Kunert AT, Reinmuth-Selzle K, Leifke AL, Widera D, Weller MG, Schuppan D, Fröhlich-Nowoisky J, Lucas K, Pöschl U. Chemical modification of pro-inflammatory proteins by peroxynitrite increases activation of TLR4 and NF-κB: Implications for the health effects of air pollution and oxidative stress. Redox Biol 2020;37:101581. [PMID: 32739154 DOI: 10.1016/j.redox.2020.101581] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
4 Zhu CJ, Yang WG, Li DJ, Song YD, Chen SY, Wang QF, Liu YN, Zhang Y, Cheng B, Wu ZW, Cui ZC. Calycosin attenuates severe acute pancreatitis-associated acute lung injury by curtailing high mobility group box 1 - induced inflammation. World J Gastroenterol 2021; 27(44): 7669-7686 [PMID: 34908806 DOI: 10.3748/wjg.v27.i44.7669] [Reference Citation Analysis]
5 Jia WQ, Liu YY, Feng XY, Xu WR, Cheng XC. Discovery of novel and highly selective PI3Kδ inhibitors based on the p110δ crystal structure. J Biomol Struct Dyn 2020;38:2499-508. [PMID: 31232196 DOI: 10.1080/07391102.2019.1635531] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
6 Mou L, Dou W, Meng G, Sun K, Chen X. The structural basis of the autoinhibition mechanism of glycogen synthase kinase 3β (GSK3β): molecular modeling and molecular dynamics simulation studies. J Biomol Struct Dyn 2020;38:1741-50. [PMID: 31057052 DOI: 10.1080/07391102.2019.1615988] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
7 Navyashree V, Kant K, Kumar A. Natural chemical entities from Arisaema genus might be a promising break-through against Japanese encephalitis virus infection: a molecular docking and dynamics approach. Journal of Biomolecular Structure and Dynamics 2021;39:1404-16. [DOI: 10.1080/07391102.2020.1731603] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
8 de Oliveira AA, Faustino J, de Lima ME, Menezes R, Nunes KP. Unveiling the Interplay between the TLR4/MD2 Complex and HSP70 in the Human Cardiovascular System: A Computational Approach. Int J Mol Sci 2019;20:E3121. [PMID: 31247943 DOI: 10.3390/ijms20133121] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
9 de Oliveira AA, Faustino J, Webb RC, Nunes KP. Blockade of the TLR4-MD2 complex lowers blood pressure and improves vascular function in a murine model of type 1 diabetes. Sci Rep 2020;10:12032. [PMID: 32694567 DOI: 10.1038/s41598-020-68919-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
10 Chaiwiang N, Poyomtip T. The association of toll-like receptor 4 gene polymorphisms with primary open angle glaucoma susceptibility: a meta-analysis. Biosci Rep 2019;39:BSR20190029. [PMID: 30877182 DOI: 10.1042/BSR20190029] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
11 Ranathunga DTS, Arteaga A, Biguetti CC, Rodrigues DC, Nielsen SO. Molecular-Level Understanding of the Influence of Ions and Water on HMGB1 Adsorption Induced by Surface Hydroxylation of Titanium Implants. Langmuir 2021;37:10100-14. [PMID: 34370950 DOI: 10.1021/acs.langmuir.1c01444] [Reference Citation Analysis]
12 Tang JZ, Xu WQ, Wei FJ, Jiang YZ, Zheng XX. Role of Nampt overexpression in a rat model of Hashimoto's thyroiditis and its mechanism of action. Exp Ther Med 2020;19:2895-900. [PMID: 32256774 DOI: 10.3892/etm.2020.8539] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
13 Shahbazi R, Sharifzad F, Bagheri R, Alsadi N, Yasavoli-Sharahi H, Matar C. Anti-Inflammatory and Immunomodulatory Properties of Fermented Plant Foods. Nutrients 2021;13:1516. [PMID: 33946303 DOI: 10.3390/nu13051516] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]