BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bell-Temin H, Culver-Cochran AE, Chaput D, Carlson CM, Kuehl M, Burkhardt BR, Bickford PC, Liu B, Stevens SM Jr. Novel Molecular Insights into Classical and Alternative Activation States of Microglia as Revealed by Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)-based Proteomics. Mol Cell Proteomics 2015;14:3173-84. [PMID: 26424600 DOI: 10.1074/mcp.M115.053926] [Cited by in Crossref: 32] [Cited by in F6Publishing: 20] [Article Influence: 4.6] [Reference Citation Analysis]
Number Citing Articles
1 Madathil SK, Wilfred BS, Urankar SE, Yang W, Leung LY, Gilsdorf JS, Shear DA. Early Microglial Activation Following Closed-Head Concussive Injury Is Dominated by Pro-Inflammatory M-1 Type. Front Neurol 2018;9:964. [PMID: 30498469 DOI: 10.3389/fneur.2018.00964] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 4.8] [Reference Citation Analysis]
2 Casella G, Garzetti L, Gatta AT, Finardi A, Maiorino C, Ruffini F, Martino G, Muzio L, Furlan R. IL4 induces IL6-producing M2 macrophages associated to inhibition of neuroinflammation in vitro and in vivo. J Neuroinflammation 2016;13:139. [PMID: 27266518 DOI: 10.1186/s12974-016-0596-5] [Cited by in Crossref: 70] [Cited by in F6Publishing: 65] [Article Influence: 11.7] [Reference Citation Analysis]
3 Mira RG, Lira M, Cerpa W. Traumatic Brain Injury: Mechanisms of Glial Response. Front Physiol 2021;12:740939. [PMID: 34744783 DOI: 10.3389/fphys.2021.740939] [Reference Citation Analysis]
4 Rangaraju S, Raza SA, Li NX, Betarbet R, Dammer EB, Duong D, Lah JJ, Seyfried NT, Levey AI. Differential Phagocytic Properties of CD45low Microglia and CD45high Brain Mononuclear Phagocytes-Activation and Age-Related Effects. Front Immunol 2018;9:405. [PMID: 29552013 DOI: 10.3389/fimmu.2018.00405] [Cited by in Crossref: 32] [Cited by in F6Publishing: 35] [Article Influence: 8.0] [Reference Citation Analysis]
5 Clayton KA, Van Enoo AA, Ikezu T. Alzheimer's Disease: The Role of Microglia in Brain Homeostasis and Proteopathy. Front Neurosci 2017;11:680. [PMID: 29311768 DOI: 10.3389/fnins.2017.00680] [Cited by in Crossref: 68] [Cited by in F6Publishing: 58] [Article Influence: 13.6] [Reference Citation Analysis]
6 Piekarz KM, Bhaskaran S, Sataranatarajan K, Street K, Premkumar P, Saunders D, Zalles M, Gulej R, Khademi S, Laurin J, Peelor R, Miller BF, Towner R, Van Remmen H. Molecular changes associated with spinal cord aging. Geroscience 2020;42:765-84. [PMID: 32144690 DOI: 10.1007/s11357-020-00172-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
7 Vergara D, Nigro A, Romano A, De Domenico S, Damato M, Franck J, Coricciati C, Wistorski M, Cardon T, Fournier I, Quattrini A, Salzet M, Furlan R, Maffia M. Distinct Protein Expression Networks are Activated in Microglia Cells after Stimulation with IFN-γ and IL-4. Cells 2019;8:E580. [PMID: 31212874 DOI: 10.3390/cells8060580] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
8 Chunchai T, Chattipakorn N, Chattipakorn SC. The possible factors affecting microglial activation in cases of obesity with cognitive dysfunction. Metab Brain Dis 2018;33:615-35. [PMID: 29164373 DOI: 10.1007/s11011-017-0151-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
9 Timaru-Kast R, Gotthardt P, Luh C, Huang C, Hummel R, Schäfer MKE, Thal SC. Angiotensin II Receptor 1 Blockage Limits Brain Damage and Improves Functional Outcome After Brain Injury in Aged Animals Despite Age-Dependent Reduction in AT1 Expression. Front Aging Neurosci 2019;11:63. [PMID: 31105549 DOI: 10.3389/fnagi.2019.00063] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
10 Mele C, Pingue V, Caputo M, Zavattaro M, Pagano L, Prodam F, Nardone A, Aimaretti G, Marzullo P. Neuroinflammation and Hypothalamo-Pituitary Dysfunction: Focus of Traumatic Brain Injury. Int J Mol Sci 2021;22:2686. [PMID: 33799967 DOI: 10.3390/ijms22052686] [Reference Citation Analysis]
11 Robinson AR, Yousefzadeh MJ, Rozgaja TA, Wang J, Li X, Tilstra JS, Feldman CH, Gregg SQ, Johnson CH, Skoda EM, Frantz MC, Bell-Temin H, Pope-Varsalona H, Gurkar AU, Nasto LA, Robinson RAS, Fuhrmann-Stroissnigg H, Czerwinska J, McGowan SJ, Cantu-Medellin N, Harris JB, Maniar S, Ross MA, Trussoni CE, LaRusso NF, Cifuentes-Pagano E, Pagano PJ, Tudek B, Vo NV, Rigatti LH, Opresko PL, Stolz DB, Watkins SC, Burd CE, Croix CMS, Siuzdak G, Yates NA, Robbins PD, Wang Y, Wipf P, Kelley EE, Niedernhofer LJ. Spontaneous DNA damage to the nuclear genome promotes senescence, redox imbalance and aging. Redox Biol 2018;17:259-73. [PMID: 29747066 DOI: 10.1016/j.redox.2018.04.007] [Cited by in Crossref: 52] [Cited by in F6Publishing: 51] [Article Influence: 13.0] [Reference Citation Analysis]
12 Zhao L, Xu DG, Hu YH. The Regulation of Microglial Cell Polarization in the Tumor Microenvironment: A New Potential Strategy for Auxiliary Treatment of Glioma-A Review. Cell Mol Neurobiol 2022. [PMID: 35137327 DOI: 10.1007/s10571-022-01195-7] [Reference Citation Analysis]
13 Taroni JN, Greene CS, Martyanov V, Wood TA, Christmann RB, Farber HW, Lafyatis RA, Denton CP, Hinchcliff ME, Pioli PA, Mahoney JM, Whitfield ML. A novel multi-network approach reveals tissue-specific cellular modulators of fibrosis in systemic sclerosis. Genome Med 2017;9:27. [PMID: 28330499 DOI: 10.1186/s13073-017-0417-1] [Cited by in Crossref: 54] [Cited by in F6Publishing: 48] [Article Influence: 10.8] [Reference Citation Analysis]
14 Athanason MG, Stevens SM Jr, Burkhardt BR. Hepatic SILAC proteomic data from PANDER transgenic model. Data Brief 2016;9:159-62. [PMID: 27642623 DOI: 10.1016/j.dib.2016.08.017] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
15 Athanason MG, Ratliff WA, Chaput D, MarElia CB, Kuehl MN, Stevens SM Jr, Burkhardt BR. Quantitative proteomic profiling reveals hepatic lipogenesis and liver X receptor activation in the PANDER transgenic model. Mol Cell Endocrinol 2016;436:41-9. [PMID: 27394190 DOI: 10.1016/j.mce.2016.07.009] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
16 Rangaraju S, Raza SA, Pennati A, Deng Q, Dammer EB, Duong D, Pennington MW, Tansey MG, Lah JJ, Betarbet R, Seyfried NT, Levey AI. A systems pharmacology-based approach to identify novel Kv1.3 channel-dependent mechanisms in microglial activation. J Neuroinflammation 2017;14:128. [PMID: 28651603 DOI: 10.1186/s12974-017-0906-6] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 6.2] [Reference Citation Analysis]
17 Hardeland R. Melatonin and Microglia. Int J Mol Sci 2021;22:8296. [PMID: 34361062 DOI: 10.3390/ijms22158296] [Reference Citation Analysis]
18 Xu H, Wang Z, Li J, Wu H, Peng Y, Fan L, Chen J, Gu C, Yan F, Wang L, Chen G. The Polarization States of Microglia in TBI: A New Paradigm for Pharmacological Intervention. Neural Plast 2017;2017:5405104. [PMID: 28255460 DOI: 10.1155/2017/5405104] [Cited by in Crossref: 41] [Cited by in F6Publishing: 55] [Article Influence: 8.2] [Reference Citation Analysis]
19 Guergues J, Wohlfahrt J, Zhang P, Liu B, Stevens SM Jr. Deep proteome profiling reveals novel pathways associated with pro-inflammatory and alcohol-induced microglial activation phenotypes. J Proteomics 2020;220:103753. [PMID: 32200115 DOI: 10.1016/j.jprot.2020.103753] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
20 Liu LR, Liu JC, Bao JS, Bai QQ, Wang GQ. Interaction of Microglia and Astrocytes in the Neurovascular Unit. Front Immunol 2020;11:1024. [PMID: 32733433 DOI: 10.3389/fimmu.2020.01024] [Cited by in Crossref: 40] [Cited by in F6Publishing: 45] [Article Influence: 20.0] [Reference Citation Analysis]
21 Park MJ, Park HS, You MJ, Yoo J, Kim SH, Kwon MS. Dexamethasone Induces a Specific Form of Ramified Dysfunctional Microglia. Mol Neurobiol 2019;56:1421-36. [PMID: 29948944 DOI: 10.1007/s12035-018-1156-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
22 Yang B, Li R, Liu PN, Geng X, Mooney BP, Chen C, Cheng J, Fritsche KL, Beversdorf DQ, Lee JC, Sun GY, Greenlief CM. Quantitative Proteomics Reveals Docosahexaenoic Acid-Mediated Neuroprotective Effects in Lipopolysaccharide-Stimulated Microglial Cells. J Proteome Res 2020;19:2236-46. [PMID: 32302149 DOI: 10.1021/acs.jproteome.9b00792] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]