BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tóth AD, Prokop S, Gyombolai P, Várnai P, Balla A, Gurevich VV, Hunyady L, Turu G. Heterologous phosphorylation-induced formation of a stability lock permits regulation of inactive receptors by β-arrestins. J Biol Chem 2018;293:876-92. [PMID: 29146594 DOI: 10.1074/jbc.M117.813139] [Cited by in Crossref: 27] [Cited by in F6Publishing: 11] [Article Influence: 5.4] [Reference Citation Analysis]
Number Citing Articles
1 Gurevich VV, Gurevich EV. GPCRs and Signal Transducers: Interaction Stoichiometry. Trends Pharmacol Sci 2018;39:672-84. [PMID: 29739625 DOI: 10.1016/j.tips.2018.04.002] [Cited by in Crossref: 40] [Cited by in F6Publishing: 35] [Article Influence: 10.0] [Reference Citation Analysis]
2 Lino CA, Barreto-chaves ML. Beta-arrestins in the context of cardiovascular diseases: Focusing on type 1 angiotensin II receptor (AT1R). Cellular Signalling 2022. [DOI: 10.1016/j.cellsig.2022.110253] [Reference Citation Analysis]
3 Mogi M. Aldosterone breakthrough from a pharmacological perspective. Hypertens Res 2022. [PMID: 35422512 DOI: 10.1038/s41440-022-00913-4] [Reference Citation Analysis]
4 Turu G, Balla A, Hunyady L. The Role of β-Arrestin Proteins in Organization of Signaling and Regulation of the AT1 Angiotensin Receptor. Front Endocrinol (Lausanne) 2019;10:519. [PMID: 31447777 DOI: 10.3389/fendo.2019.00519] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
5 Chen L, Kong L, Wei X, Wang Y, Wang B, Zhang X, Sun J, Liu H. β-arrestin 2 negatively regulates NOD2 signalling pathway through association with TRAF6 in microglia after cerebral ischaemia/reperfusion injury. J Cell Mol Med 2019;23:3325-35. [PMID: 30793522 DOI: 10.1111/jcmm.14223] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
6 Gurevich VV, Gurevich EV. Biased GPCR signaling: Possible mechanisms and inherent limitations. Pharmacol Ther 2020;211:107540. [PMID: 32201315 DOI: 10.1016/j.pharmthera.2020.107540] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
7 Lymperopoulos A, Wertz SL, Pollard CM, Desimine VL, Maning J, McCrink KA. Not all arrestins are created equal: Therapeutic implications of the functional diversity of the β-arrestins in the heart. World J Cardiol 2019; 11(2): 47-56 [PMID: 30820275 DOI: 10.4330/wjc.v11.i2.47] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
8 Kawakami K, Yanagawa M, Hiratsuka S, Yoshida M, Ono Y, Hiroshima M, Ueda M, Aoki J, Sako Y, Inoue A. Heterotrimeric Gq proteins act as a switch for GRK5/6 selectivity underlying β-arrestin transducer bias. Nat Commun 2022;13. [DOI: 10.1038/s41467-022-28056-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
9 Thomsen ARB, Jensen DD, Hicks GA, Bunnett NW. Therapeutic Targeting of Endosomal G-Protein-Coupled Receptors. Trends Pharmacol Sci 2018;39:879-91. [PMID: 30180973 DOI: 10.1016/j.tips.2018.08.003] [Cited by in Crossref: 49] [Cited by in F6Publishing: 40] [Article Influence: 12.3] [Reference Citation Analysis]
10 Gurevich VV, Chen Q, Gurevich EV. Arrestins: Introducing Signaling Bias Into Multifunctional Proteins. Prog Mol Biol Transl Sci 2018;160:47-61. [PMID: 30470292 DOI: 10.1016/bs.pmbts.2018.07.007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
11 Seyedabadi M, Gharghabi M, Gurevich EV, Gurevich VV. Receptor-Arrestin Interactions: The GPCR Perspective. Biomolecules 2021;11:218. [PMID: 33557162 DOI: 10.3390/biom11020218] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
12 Rukavina Mikusic NL, Silva MG, Pineda AM, Gironacci MM. Angiotensin Receptors Heterodimerization and Trafficking: How Much Do They Influence Their Biological Function? Front Pharmacol 2020;11:1179. [PMID: 32848782 DOI: 10.3389/fphar.2020.01179] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
13 Man KNM, Navedo MF, Horne MC, Hell JW. β2 Adrenergic Receptor Complexes with the L-Type Ca2+ Channel CaV1.2 and AMPA-Type Glutamate Receptors: Paradigms for Pharmacological Targeting of Protein Interactions. Annu Rev Pharmacol Toxicol 2020;60:155-74. [PMID: 31561738 DOI: 10.1146/annurev-pharmtox-010919-023404] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
14 Drube J, Haider RS, Matthees ESF, Reichel M, Zeiner J, Fritzwanker S, Ziegler C, Barz S, Klement L, Filor J, Weitzel V, Kliewer A, Miess-Tanneberg E, Kostenis E, Schulz S, Hoffmann C. GPCR kinase knockout cells reveal the impact of individual GRKs on arrestin binding and GPCR regulation. Nat Commun 2022;13:540. [PMID: 35087057 DOI: 10.1038/s41467-022-28152-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
15 Turu G, Soltész-Katona E, Tóth AD, Juhász C, Cserző M, Misák Á, Balla A, Caron MG, Hunyady L. Biased Coupling to β-Arrestin of Two Common Variants of the CB2 Cannabinoid Receptor. Front Endocrinol (Lausanne) 2021;12:714561. [PMID: 34484125 DOI: 10.3389/fendo.2021.714561] [Reference Citation Analysis]