BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hinds TD Jr, Burns KA, Hosick PA, McBeth L, Nestor-Kalinoski A, Drummond HA, AlAmodi AA, Hankins MW, Vanden Heuvel JP, Stec DE. Biliverdin Reductase A Attenuates Hepatic Steatosis by Inhibition of Glycogen Synthase Kinase (GSK) 3β Phosphorylation of Serine 73 of Peroxisome Proliferator-activated Receptor (PPAR) α. J Biol Chem 2016;291:25179-91. [PMID: 27738106 DOI: 10.1074/jbc.M116.731703] [Cited by in Crossref: 60] [Cited by in F6Publishing: 41] [Article Influence: 10.0] [Reference Citation Analysis]
Number Citing Articles
1 Seo HA, Moeng S, Sim S, Kuh HJ, Choi SY, Park JK. MicroRNA-Based Combinatorial Cancer Therapy: Effects of MicroRNAs on the Efficacy of Anti-Cancer Therapies. Cells 2019;9:E29. [PMID: 31861937 DOI: 10.3390/cells9010029] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 6.3] [Reference Citation Analysis]
2 Hinds TD Jr, Stec DE. Bilirubin, a Cardiometabolic Signaling Molecule. Hypertension 2018;72:788-95. [PMID: 30354722 DOI: 10.1161/HYPERTENSIONAHA.118.11130] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 10.0] [Reference Citation Analysis]
3 Creeden JF, Gordon DM, Stec DE, Hinds TD Jr. Bilirubin as a metabolic hormone: the physiological relevance of low levels. Am J Physiol Endocrinol Metab 2021;320:E191-207. [PMID: 33284088 DOI: 10.1152/ajpendo.00405.2020] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 9.0] [Reference Citation Analysis]
4 Tsai MT, Tarng DC. Beyond a Measure of Liver Function-Bilirubin Acts as a Potential Cardiovascular Protector in Chronic Kidney Disease Patients. Int J Mol Sci 2018;20:E117. [PMID: 30597982 DOI: 10.3390/ijms20010117] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
5 Cimini FA, Barchetta I, Zuliani I, Pagnotta S, Bertoccini L, Dule S, Zampieri M, Reale A, Baroni MG, Cavallo MG, Barone E. Biliverdin reductase-A protein levels are reduced in type 2 diabetes and are associated with poor glycometabolic control. Life Sci 2021;284:119913. [PMID: 34453944 DOI: 10.1016/j.lfs.2021.119913] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Lanzillotta C, Zuliani I, Vasavda C, Snyder SH, Paul BD, Perluigi M, Di Domenico F, Barone E. BVR-A Deficiency Leads to Autophagy Impairment through the Dysregulation of AMPK/mTOR Axis in the Brain-Implications for Neurodegeneration. Antioxidants (Basel) 2020;9:E671. [PMID: 32727065 DOI: 10.3390/antiox9080671] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
7 Muzio G, Barrera G, Pizzimenti S. Peroxisome Proliferator-Activated Receptors (PPARs) and Oxidative Stress in Physiological Conditions and in Cancer. Antioxidants (Basel) 2021;10:1734. [PMID: 34829605 DOI: 10.3390/antiox10111734] [Reference Citation Analysis]
8 Sundararaghavan VL, Binepal S, Stec DE, Sindhwani P, Hinds TD Jr. Bilirubin, a new therapeutic for kidney transplant? Transplant Rev (Orlando) 2018;32:234-40. [PMID: 29983261 DOI: 10.1016/j.trre.2018.06.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
9 Vitale SG, Laganà AS, Nigro A, La Rosa VL, Rossetti P, Rapisarda AM, La Vignera S, Condorelli RA, Corrado F, Buscema M, D'Anna R. Peroxisome Proliferator-Activated Receptor Modulation during Metabolic Diseases and Cancers: Master and Minions. PPAR Res 2016;2016:6517313. [PMID: 28115924 DOI: 10.1155/2016/6517313] [Cited by in Crossref: 53] [Cited by in F6Publishing: 51] [Article Influence: 8.8] [Reference Citation Analysis]
10 Bortolussi G, Shi X, Ten Bloemendaal L, Banerjee B, De Waart DR, Baj G, Chen W, Oude Elferink RP, Beuers U, Paulusma CC, Stocker R, Muro AF, Bosma PJ. Long-Term Effects of Biliverdin Reductase a Deficiency in Ugt1-/- Mice: Impact on Redox Status and Metabolism. Antioxidants (Basel) 2021;10:2029. [PMID: 34943131 DOI: 10.3390/antiox10122029] [Reference Citation Analysis]
11 Zhao F, Zhang L, Zhang M, Huang J, Zhang J, Chang Y. FGF9 Alleviates the Fatty Liver Phenotype by Regulating Hepatic Lipid Metabolism. Front Pharmacol 2022;13:850128. [PMID: 35517790 DOI: 10.3389/fphar.2022.850128] [Reference Citation Analysis]
12 Hinds TD Jr, Hosick PA, Chen S, Tukey RH, Hankins MW, Nestor-Kalinoski A, Stec DE. Mice with hyperbilirubinemia due to Gilbert's syndrome polymorphism are resistant to hepatic steatosis by decreased serine 73 phosphorylation of PPARα. Am J Physiol Endocrinol Metab 2017;312:E244-52. [PMID: 28096081 DOI: 10.1152/ajpendo.00396.2016] [Cited by in Crossref: 46] [Cited by in F6Publishing: 42] [Article Influence: 9.2] [Reference Citation Analysis]
13 Stec DE, Abraham NG. Pharmacological and Clinical Significance of Heme Oxygenase-1. Antioxidants (Basel) 2021;10:854. [PMID: 34071751 DOI: 10.3390/antiox10060854] [Reference Citation Analysis]
14 Ceccarelli V, Barchetta I, Cimini FA, Bertoccini L, Chiappetta C, Capoccia D, Carletti R, Di Cristofano C, Silecchia G, Fontana M, Leonetti F, Lenzi A, Baroni MG, Barone E, Cavallo MG. Reduced Biliverdin Reductase-A Expression in Visceral Adipose Tissue is Associated with Adipocyte Dysfunction and NAFLD in Human Obesity. Int J Mol Sci 2020;21:E9091. [PMID: 33260451 DOI: 10.3390/ijms21239091] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
15 Hamoud AR, Weaver L, Stec DE, Hinds TD Jr. Bilirubin in the Liver-Gut Signaling Axis. Trends Endocrinol Metab 2018;29:140-50. [PMID: 29409713 DOI: 10.1016/j.tem.2018.01.002] [Cited by in Crossref: 59] [Cited by in F6Publishing: 55] [Article Influence: 14.8] [Reference Citation Analysis]
16 Li Y, Lin Y, Han X, Li W, Yan W, Ma Y, Lu X, Huang X, Bai R, Zhang H. GSK3 inhibitor ameliorates steatosis through the modulation of mitochondrial dysfunction in hepatocytes of obese patients. iScience 2021;24:102149. [PMID: 33665568 DOI: 10.1016/j.isci.2021.102149] [Reference Citation Analysis]
17 Adeosun SO, Moore KH, Lang DM, Nwaneri AC, Hinds TD Jr, Stec DE. A Novel Fluorescence-Based Assay for the Measurement of Biliverdin Reductase Activity. React Oxyg Species (Apex) 2018;5:35-45. [PMID: 29379885 DOI: 10.20455/ros.2018.809] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
18 Cimini FA, Perluigi M, Barchetta I, Cavallo MG, Barone E. Role of Biliverdin Reductase A in the Regulation of Insulin Signaling in Metabolic and Neurodegenerative Diseases: An Update. Int J Mol Sci 2022;23:5574. [PMID: 35628384 DOI: 10.3390/ijms23105574] [Reference Citation Analysis]
19 Hinds TD Jr, Creeden JF, Gordon DM, Spegele AC, Britton SL, Koch LG, Stec DE. Rats Genetically Selected for High Aerobic Exercise Capacity Have Elevated Plasma Bilirubin by Upregulation of Hepatic Biliverdin Reductase-A (BVRA) and Suppression of UGT1A1. Antioxidants (Basel) 2020;9:E889. [PMID: 32961782 DOI: 10.3390/antiox9090889] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
20 Stec DE, Hinds TD Jr. Natural Product Heme Oxygenase Inducers as Treatment for Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2020;21:E9493. [PMID: 33327438 DOI: 10.3390/ijms21249493] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
21 Hinds TD Jr, Creeden JF, Gordon DM, Stec DF, Donald MC, Stec DE. Bilirubin Nanoparticles Reduce Diet-Induced Hepatic Steatosis, Improve Fat Utilization, and Increase Plasma β-Hydroxybutyrate. Front Pharmacol 2020;11:594574. [PMID: 33390979 DOI: 10.3389/fphar.2020.594574] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
22 Bisht K, Canesin G, Cheytan T, Li M, Nemeth Z, Csizmadia E, Woodruff TM, Stec DE, Bulmer AC, Otterbein LE, Wegiel B. Deletion of Biliverdin Reductase A in Myeloid Cells Promotes Chemokine Expression and Chemotaxis in Part via a Complement C5a--C5aR1 Pathway. J Immunol 2019;202:2982-90. [PMID: 30952817 DOI: 10.4049/jimmunol.1701443] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
23 Gao SS, Sun JJ, Wang X, Hu YY, Feng Q, Gou XJ. Research on the Mechanism of Qushi Huayu Decoction in the Intervention of Nonalcoholic Fatty Liver Disease Based on Network Pharmacology and Molecular Docking Technology. Biomed Res Int 2020;2020:1704960. [PMID: 33204683 DOI: 10.1155/2020/1704960] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
24 Bakrania B, Du Toit EF, Ashton KJ, Wagner KH, Headrick JP, Bulmer AC. Chronically elevated bilirubin protects from cardiac reperfusion injury in the male Gunn rat. Acta Physiol (Oxf) 2017;220:461-70. [PMID: 28207997 DOI: 10.1111/apha.12858] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.6] [Reference Citation Analysis]
25 Duvigneau JC, Esterbauer H, Kozlov AV. Role of Heme Oxygenase as a Modulator of Heme-Mediated Pathways. Antioxidants (Basel) 2019;8:E475. [PMID: 31614577 DOI: 10.3390/antiox8100475] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
26 Chen W, Tumanov S, Fazakerley DJ, Cantley J, James DE, Dunn LL, Shaik T, Suarna C, Stocker R. Bilirubin deficiency renders mice susceptible to hepatic steatosis in the absence of insulin resistance. Redox Biol 2021;47:102152. [PMID: 34610553 DOI: 10.1016/j.redox.2021.102152] [Reference Citation Analysis]
27 Weaver L, Hamoud AR, Stec DE, Hinds TD Jr. Biliverdin reductase and bilirubin in hepatic disease. Am J Physiol Gastrointest Liver Physiol 2018;314:G668-76. [PMID: 29494209 DOI: 10.1152/ajpgi.00026.2018] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 8.8] [Reference Citation Analysis]
28 Smedlund KB, Sanchez ER, Hinds TD Jr. FKBP51 and the molecular chaperoning of metabolism. Trends Endocrinol Metab 2021;32:862-74. [PMID: 34481731 DOI: 10.1016/j.tem.2021.08.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Žiberna L, Jenko-Pražnikar Z, Petelin A. Serum Bilirubin Levels in Overweight and Obese Individuals: The Importance of Anti-Inflammatory and Antioxidant Responses. Antioxidants (Basel) 2021;10:1352. [PMID: 34572984 DOI: 10.3390/antiox10091352] [Reference Citation Analysis]
30 Uda Y, Miura H, Goto Y, Yamamoto K, Mii Y, Kondo Y, Takada S, Aoki K. Improvement of Phycocyanobilin Synthesis for Genetically Encoded Phytochrome-Based Optogenetics. ACS Chem Biol 2020;15:2896-906. [PMID: 33164485 DOI: 10.1021/acschembio.0c00477] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
31 Canesin G, Hejazi SM, Swanson KD, Wegiel B. Heme-Derived Metabolic Signals Dictate Immune Responses. Front Immunol 2020;11:66. [PMID: 32082323 DOI: 10.3389/fimmu.2020.00066] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 10.0] [Reference Citation Analysis]
32 Gordon DM, Hong SH, Kipp ZA, Hinds TD Jr. Identification of Binding Regions of Bilirubin in the Ligand-Binding Pocket of the Peroxisome Proliferator-Activated Receptor-A (PPARalpha). Molecules 2021;26:2975. [PMID: 34067839 DOI: 10.3390/molecules26102975] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Adeosun SO, Gordon DM, Weeks MF, Moore KH, Hall JE, Hinds TD, Stec DE. Loss of biliverdin reductase-A promotes lipid accumulation and lipotoxicity in mouse proximal tubule cells. Am J Physiol Renal Physiol. 2018;315:F323-F331. [PMID: 29631357 DOI: 10.1152/ajprenal.00495.2017] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 5.3] [Reference Citation Analysis]
34 Brunmeir R, Xu F. Functional Regulation of PPARs through Post-Translational Modifications. Int J Mol Sci 2018;19:E1738. [PMID: 29895749 DOI: 10.3390/ijms19061738] [Cited by in Crossref: 70] [Cited by in F6Publishing: 68] [Article Influence: 17.5] [Reference Citation Analysis]
35 Vasavda C, Kothari R, Malla AP, Tokhunts R, Lin A, Ji M, Ricco C, Xu R, Saavedra HG, Sbodio JI, Snowman AM, Albacarys L, Hester L, Sedlak TW, Paul BD, Snyder SH. Bilirubin Links Heme Metabolism to Neuroprotection by Scavenging Superoxide. Cell Chem Biol 2019;26:1450-1460.e7. [PMID: 31353321 DOI: 10.1016/j.chembiol.2019.07.006] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 10.7] [Reference Citation Analysis]
36 Do MH, Lee HB, Lee E, Park HY. The Effects of Gelatinized Wheat Starch and High Salt Diet on Gut Microbiota and Metabolic Disorder. Nutrients 2020;12:E301. [PMID: 31979147 DOI: 10.3390/nu12020301] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
37 Thomas DT, Delcimmuto NR, Flack KD, Stec DE, Hinds TD. Reactive Oxygen Species (ROS) and Antioxidants as Immunomodulators in Exercise: Implications for Heme Oxygenase and Bilirubin. Antioxidants 2022;11:179. [DOI: 10.3390/antiox11020179] [Reference Citation Analysis]
38 Yang Z, Kusumanchi P, Ross RA, Heathers L, Chandler K, Oshodi A, Thoudam T, Li F, Wang L, Liangpunsakul S. Serum Metabolomic Profiling Identifies Key Metabolic Signatures Associated With Pathogenesis of Alcoholic Liver Disease in Humans. Hepatol Commun 2019;3:542-57. [PMID: 30976744 DOI: 10.1002/hep4.1322] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 5.7] [Reference Citation Analysis]
39 Warren JS, Oka SI, Zablocki D, Sadoshima J. Metabolic reprogramming via PPARα signaling in cardiac hypertrophy and failure: From metabolomics to epigenetics. Am J Physiol Heart Circ Physiol 2017;313:H584-96. [PMID: 28646024 DOI: 10.1152/ajpheart.00103.2017] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 5.6] [Reference Citation Analysis]
40 Souder DC, Anderson RM. An expanding GSK3 network: implications for aging research. Geroscience 2019;41:369-82. [PMID: 31313216 DOI: 10.1007/s11357-019-00085-z] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
41 Yang Z, Roth K, Agarwal M, Liu W, Petriello MC. The transcription factors CREBH, PPARa, and FOXO1 as critical hepatic mediators of diet-induced metabolic dysregulation. J Nutr Biochem 2021;95:108633. [PMID: 33789150 DOI: 10.1016/j.jnutbio.2021.108633] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
42 Uda Y, Goto Y, Oda S, Kohchi T, Matsuda M, Aoki K. Efficient synthesis of phycocyanobilin in mammalian cells for optogenetic control of cell signaling. Proc Natl Acad Sci U S A 2017;114:11962-7. [PMID: 29078307 DOI: 10.1073/pnas.1707190114] [Cited by in Crossref: 47] [Cited by in F6Publishing: 40] [Article Influence: 9.4] [Reference Citation Analysis]
43 Baba AB, Rah B, Bhat GR, Mushtaq I, Parveen S, Hassan R, Hameed Zargar M, Afroze D. Transforming Growth Factor-Beta (TGF-β) Signaling in Cancer-A Betrayal Within. Front Pharmacol 2022;13:791272. [DOI: 10.3389/fphar.2022.791272] [Reference Citation Analysis]
44 Stec DE, Gordon DM, Hipp JA, Hong S, Mitchell ZL, Franco NR, Robison JW, Anderson CD, Stec DF, Hinds TD Jr. Loss of hepatic PPARα promotes inflammation and serum hyperlipidemia in diet-induced obesity. Am J Physiol Regul Integr Comp Physiol 2019;317:R733-45. [PMID: 31483154 DOI: 10.1152/ajpregu.00153.2019] [Cited by in F6Publishing: 26] [Reference Citation Analysis]
45 Ojala JO, Sutinen EM. The Role of Interleukin-18, Oxidative Stress and Metabolic Syndrome in Alzheimer's Disease. J Clin Med 2017;6:E55. [PMID: 28531131 DOI: 10.3390/jcm6050055] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
46 Ryter SW. Heme Oxygenase-1: An Anti-Inflammatory Effector in Cardiovascular, Lung, and Related Metabolic Disorders. Antioxidants 2022;11:555. [DOI: 10.3390/antiox11030555] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
47 Stec DE, Gordon DM, Nestor-Kalinoski AL, Donald MC, Mitchell ZL, Creeden JF, Hinds TD Jr. Biliverdin Reductase A (BVRA) Knockout in Adipocytes Induces Hypertrophy and Reduces Mitochondria in White Fat of Obese Mice. Biomolecules 2020;10:E387. [PMID: 32131495 DOI: 10.3390/biom10030387] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 8.5] [Reference Citation Analysis]
48 Creeden JF, Kipp ZA, Xu M, Flight RM, Moseley HNB, Martinez GJ, Lee WH, Alganem K, Imami AS, McMullen MR, Roychowdhury S, Nawabi AM, Hipp JA, Softic S, Weinman SA, McCullumsmith R, Nagy LE, Hinds TD Jr. Hepatic kinome atlas: An in-depth identification of kinase pathways in liver fibrosis of humans and rodents. Hepatology 2022. [PMID: 35313030 DOI: 10.1002/hep.32467] [Reference Citation Analysis]
49 Gordon DM, Adeosun SO, Ngwudike SI, Anderson CD, Hall JE, Hinds TD Jr, Stec DE. CRISPR Cas9-mediated deletion of biliverdin reductase A (BVRA) in mouse liver cells induces oxidative stress and lipid accumulation. Arch Biochem Biophys 2019;672:108072. [PMID: 31422074 DOI: 10.1016/j.abb.2019.108072] [Cited by in F6Publishing: 11] [Reference Citation Analysis]
50 Takei R, Inoue T, Sonoda N, Kohjima M, Okamoto M, Sakamoto R, Inoguchi T, Ogawa Y. Bilirubin reduces visceral obesity and insulin resistance by suppression of inflammatory cytokines. PLoS One 2019;14:e0223302. [PMID: 31577826 DOI: 10.1371/journal.pone.0223302] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
51 Vasavda C, Semenza ER, Liew J, Kothari R, Dhindsa RS, Shanmukha S, Lin A, Tokhunts R, Ricco C, Snowman AM, Albacarys L, Pastore F, Ripoli C, Grassi C, Barone E, Kornberg MD, Dong X, Paul BD, Snyder SH. Biliverdin reductase bridges focal adhesion kinase to Src to modulate synaptic signaling. Sci Signal 2022;15:eabh3066. [PMID: 35536885 DOI: 10.1126/scisignal.abh3066] [Reference Citation Analysis]
52 Barone E, Di Domenico F, Perluigi M, Butterfield DA. The interplay among oxidative stress, brain insulin resistance and AMPK dysfunction contribute to neurodegeneration in type 2 diabetes and Alzheimer disease. Free Radic Biol Med 2021;176:16-33. [PMID: 34530075 DOI: 10.1016/j.freeradbiomed.2021.09.006] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
53 She QY, Bao JF, Wang HZ, Liang H, Huang W, Wu J, Zhong Y, Ling H, Li A, Qin SL. Fibroblast growth factor 21: A "rheostat" for metabolic regulation? Metabolism 2022;:155166. [PMID: 35183545 DOI: 10.1016/j.metabol.2022.155166] [Reference Citation Analysis]
54 Gordon DM, Blomquist TM, Miruzzi SA, McCullumsmith R, Stec DE, Hinds TD Jr. RNA sequencing in human HepG2 hepatocytes reveals PPAR-α mediates transcriptome responsiveness of bilirubin. Physiol Genomics 2019;51:234-40. [PMID: 31074682 DOI: 10.1152/physiolgenomics.00028.2019] [Cited by in F6Publishing: 23] [Reference Citation Analysis]
55 Hinds TD Jr, Stec DE. Bilirubin Safeguards Cardiorenal and Metabolic Diseases: a Protective Role in Health. Curr Hypertens Rep 2019;21:87. [PMID: 31599366 DOI: 10.1007/s11906-019-0994-z] [Cited by in F6Publishing: 14] [Reference Citation Analysis]
56 Gordon DM, Neifer KL, Hamoud AA, Hawk CF, Nestor-Kalinoski AL, Miruzzi SA, Morran MP, Adeosun SO, Sarver JG, Erhardt PW, McCullumsmith RE, Stec DE, Hinds TD Jr. Bilirubin remodels murine white adipose tissue by reshaping mitochondrial activity and the coregulator profile of peroxisome proliferator-activated receptor α. J Biol Chem 2020;295:9804-22. [PMID: 32404366 DOI: 10.1074/jbc.RA120.013700] [Cited by in F6Publishing: 13] [Reference Citation Analysis]