BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Juenemann K, Schipper-Krom S, Wiemhoefer A, Kloss A, Sanz Sanz A, Reits EAJ. Expanded polyglutamine-containing N-terminal huntingtin fragments are entirely degraded by mammalian proteasomes. J Biol Chem 2013;288:27068-84. [PMID: 23908352 DOI: 10.1074/jbc.M113.486076] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 4.9] [Reference Citation Analysis]
Number Citing Articles
1 Weng YT, Chen HM, Chien T, Chiu FL, Kuo HC, Chern Y. TRAX Provides Neuroprotection for Huntington's Disease Via Modulating a Novel Subset of MicroRNAs. Mov Disord 2022. [PMID: 35997316 DOI: 10.1002/mds.29174] [Reference Citation Analysis]
2 Kim KR, Cho EJ, Eom JW, Oh SS, Nakamura T, Oh CK, Lipton SA, Kim YH. S-Nitrosylation of cathepsin B affects autophagic flux and accumulation of protein aggregates in neurodegenerative disorders. Cell Death Differ 2022. [PMID: 35462559 DOI: 10.1038/s41418-022-01004-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Yan S, Yuan D, Li Q, Li S, Zhang F. AICAR enhances the cytotoxicity of PFKFB3 inhibitor in an AMPK signaling-independent manner in colorectal cancer cells. Med Oncol 2021;39:10. [PMID: 34761330 DOI: 10.1007/s12032-021-01601-y] [Reference Citation Analysis]
4 Filippone A, Li JG, Praticò D. VPS35 Downregulation Alters Degradation Pathways in Neuronal Cells. J Alzheimers Dis 2021;84:1079-89. [PMID: 34602481 DOI: 10.3233/JAD-210701] [Reference Citation Analysis]
5 Aladdin A, Yao Y, Yang C, Kahlert G, Ghani M, Király N, Boratkó A, Uray K, Dittmar G, Tar K. The Proteasome Activators Blm10/PA200 Enhance the Proteasomal Degradation of N-Terminal Huntingtin. Biomolecules 2020;10:E1581. [PMID: 33233776 DOI: 10.3390/biom10111581] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
6 Le Guerroué F, Youle RJ. Ubiquitin signaling in neurodegenerative diseases: an autophagy and proteasome perspective. Cell Death Differ 2021;28:439-54. [PMID: 33208890 DOI: 10.1038/s41418-020-00667-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
7 Bozzi M, Sciandra F. Molecular Mechanisms Underlying Muscle Wasting in Huntington's Disease. Int J Mol Sci 2020;21:E8314. [PMID: 33167595 DOI: 10.3390/ijms21218314] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
8 Sap KA, Reits EA. Strategies to Investigate Ubiquitination in Huntington's Disease. Front Chem 2020;8:485. [PMID: 32596207 DOI: 10.3389/fchem.2020.00485] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
9 Aladdin A, Király R, Boto P, Regdon Z, Tar K. Juvenile Huntington's Disease Skin Fibroblasts Respond with Elevated Parkin Level and Increased Proteasome Activity as a Potential Mechanism to Counterbalance the Pathological Consequences of Mutant Huntingtin Protein. Int J Mol Sci 2019;20:E5338. [PMID: 31717806 DOI: 10.3390/ijms20215338] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
10 Kevadiya BD, Ottemann BM, Thomas MB, Mukadam I, Nigam S, McMillan J, Gorantla S, Bronich TK, Edagwa B, Gendelman HE. Neurotheranostics as personalized medicines. Adv Drug Deliv Rev 2019;148:252-89. [PMID: 30421721 DOI: 10.1016/j.addr.2018.10.011] [Cited by in Crossref: 35] [Cited by in F6Publishing: 26] [Article Influence: 11.7] [Reference Citation Analysis]
11 Feleciano DR, Juenemann K, Iburg M, Brás IC, Holmberg CI, Kirstein J. Crosstalk Between Chaperone-Mediated Protein Disaggregation and Proteolytic Pathways in Aging and Disease. Front Aging Neurosci 2019;11:9. [PMID: 30760997 DOI: 10.3389/fnagi.2019.00009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
12 Lu M, Banetta L, Young LJ, Smith EJ, Bates GP, Zaccone A, Kaminski Schierle GS, Tunnacliffe A, Kaminski CF. Live-cell super-resolution microscopy reveals a primary role for diffusion in polyglutamine-driven aggresome assembly. J Biol Chem 2019;294:257-68. [PMID: 30401748 DOI: 10.1074/jbc.RA118.003500] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
13 Kocaturk NM, Gozuacik D. Crosstalk Between Mammalian Autophagy and the Ubiquitin-Proteasome System. Front Cell Dev Biol 2018;6:128. [PMID: 30333975 DOI: 10.3389/fcell.2018.00128] [Cited by in Crossref: 103] [Cited by in F6Publishing: 104] [Article Influence: 25.8] [Reference Citation Analysis]
14 Croce KR, Yamamoto A. A role for autophagy in Huntington's disease. Neurobiol Dis 2019;122:16-22. [PMID: 30149183 DOI: 10.1016/j.nbd.2018.08.010] [Cited by in Crossref: 43] [Cited by in F6Publishing: 34] [Article Influence: 10.8] [Reference Citation Analysis]
15 Cascarina SM, Paul KR, Machihara S, Ross ED. Sequence features governing aggregation or degradation of prion-like proteins. PLoS Genet 2018;14:e1007517. [PMID: 30005071 DOI: 10.1371/journal.pgen.1007517] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
16 Harding RJ, Tong YF. Proteostasis in Huntington's disease: disease mechanisms and therapeutic opportunities. Acta Pharmacol Sin 2018;39:754-69. [PMID: 29620053 DOI: 10.1038/aps.2018.11] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 8.8] [Reference Citation Analysis]
17 Luo H, Cao L, Liang X, Du A, Peng T, Li H. Herp Promotes Degradation of Mutant Huntingtin: Involvement of the Proteasome and Molecular Chaperones. Mol Neurobiol 2018;55:7652-68. [PMID: 29430620 DOI: 10.1007/s12035-018-0900-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
18 Juenemann K, Jansen AHP, van Riel L, Merkx R, Mulder MPC, An H, Statsyuk A, Kirstein J, Ovaa H, Reits EA. Dynamic recruitment of ubiquitin to mutant huntingtin inclusion bodies. Sci Rep 2018;8:1405. [PMID: 29362455 DOI: 10.1038/s41598-018-19538-0] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
19 Van Assche R, Borghgraef C, Vaneyck J, Dumoulin M, Schoofs L, Temmerman L. In vitro aggregating β-lactamase-polyQ chimeras do not induce toxic effects in an in vivo Caenorhabditis elegans model. J Negat Results Biomed 2017;16:14. [PMID: 28830560 DOI: 10.1186/s12952-017-0080-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
20 Jimenez-Sanchez M, Licitra F, Underwood BR, Rubinsztein DC. Huntington's Disease: Mechanisms of Pathogenesis and Therapeutic Strategies. Cold Spring Harb Perspect Med 2017;7:a024240. [PMID: 27940602 DOI: 10.1101/cshperspect.a024240] [Cited by in Crossref: 104] [Cited by in F6Publishing: 87] [Article Influence: 20.8] [Reference Citation Analysis]
21 Xu H, An JJ, Xu B. Distinct cellular toxicity of two mutant huntingtin mRNA variants due to translation regulation. PLoS One 2017;12:e0177610. [PMID: 28494017 DOI: 10.1371/journal.pone.0177610] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
22 Huang ZN, Her LS. The Ubiquitin Receptor ADRM1 Modulates HAP40-Induced Proteasome Activity. Mol Neurobiol 2017;54:7382-400. [PMID: 27815841 DOI: 10.1007/s12035-016-0247-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
23 Yu H, Singh Gautam AK, Wilmington SR, Wylie D, Martinez-Fonts K, Kago G, Warburton M, Chavali S, Inobe T, Finkelstein IJ, Babu MM, Matouschek A. Conserved Sequence Preferences Contribute to Substrate Recognition by the Proteasome. J Biol Chem 2016;291:14526-39. [PMID: 27226608 DOI: 10.1074/jbc.M116.727578] [Cited by in Crossref: 36] [Cited by in F6Publishing: 30] [Article Influence: 6.0] [Reference Citation Analysis]
24 Zhao T, Hong Y, Li XJ, Li SH. Subcellular Clearance and Accumulation of Huntington Disease Protein: A Mini-Review. Front Mol Neurosci 2016;9:27. [PMID: 27147961 DOI: 10.3389/fnmol.2016.00027] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 5.0] [Reference Citation Analysis]
25 Eenjes E, Dragich JM, Kampinga HH, Yamamoto A. Distinguishing aggregate formation and aggregate clearance using cell-based assays. J Cell Sci 2016;129:1260-70. [PMID: 26818841 DOI: 10.1242/jcs.179978] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
26 Dasgupta S, Fishman MA, Mahallati H, Castro LM, Tashima AK, Ferro ES, Fricker LD. Reduced Levels of Proteasome Products in a Mouse Striatal Cell Model of Huntington's Disease. PLoS One 2015;10:e0145333. [PMID: 26691307 DOI: 10.1371/journal.pone.0145333] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
27 Nah J, Yuan J, Jung YK. Autophagy in neurodegenerative diseases: from mechanism to therapeutic approach. Mol Cells 2015;38:381-9. [PMID: 25896254 DOI: 10.14348/molcells.2015.0034] [Cited by in Crossref: 118] [Cited by in F6Publishing: 113] [Article Influence: 16.9] [Reference Citation Analysis]
28 Fishbain S, Inobe T, Israeli E, Chavali S, Yu H, Kago G, Babu MM, Matouschek A. Sequence composition of disordered regions fine-tunes protein half-life. Nat Struct Mol Biol 2015;22:214-21. [PMID: 25643324 DOI: 10.1038/nsmb.2958] [Cited by in Crossref: 84] [Cited by in F6Publishing: 70] [Article Influence: 12.0] [Reference Citation Analysis]
29 Juenemann K, Wiemhoefer A, Reits EA. Detection of ubiquitinated huntingtin species in intracellular aggregates. Front Mol Neurosci 2015;8:1. [PMID: 25674046 DOI: 10.3389/fnmol.2015.00001] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 2.7] [Reference Citation Analysis]
30 Ortega Z, Lucas JJ. Ubiquitin-proteasome system involvement in Huntington's disease. Front Mol Neurosci 2014;7:77. [PMID: 25324717 DOI: 10.3389/fnmol.2014.00077] [Cited by in Crossref: 61] [Cited by in F6Publishing: 57] [Article Influence: 7.6] [Reference Citation Analysis]
31 Weber JJ, Sowa AS, Binder T, Hübener J. From pathways to targets: understanding the mechanisms behind polyglutamine disease. Biomed Res Int 2014;2014:701758. [PMID: 25309920 DOI: 10.1155/2014/701758] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 3.6] [Reference Citation Analysis]
32 Jansen AH, Reits EA, Hol EM. The ubiquitin proteasome system in glia and its role in neurodegenerative diseases. Front Mol Neurosci 2014;7:73. [PMID: 25152710 DOI: 10.3389/fnmol.2014.00073] [Cited by in Crossref: 66] [Cited by in F6Publishing: 60] [Article Influence: 8.3] [Reference Citation Analysis]
33 Dantuma NP, Bott LC. The ubiquitin-proteasome system in neurodegenerative diseases: precipitating factor, yet part of the solution. Front Mol Neurosci 2014;7:70. [PMID: 25132814 DOI: 10.3389/fnmol.2014.00070] [Cited by in F6Publishing: 161] [Reference Citation Analysis]
34 Chhangani D, Upadhyay A, Amanullah A, Joshi V, Mishra A. Ubiquitin ligase ITCH recruitment suppresses the aggregation and cellular toxicity of cytoplasmic misfolded proteins. Sci Rep 2014;4:5077. [PMID: 24865853 DOI: 10.1038/srep05077] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 2.1] [Reference Citation Analysis]
35 Kumar A, Singh PK, Parihar R, Dwivedi V, Lakhotia SC, Ganesh S. Decreased O-linked GlcNAcylation protects from cytotoxicity mediated by huntingtin exon1 protein fragment. J Biol Chem 2014;289:13543-53. [PMID: 24648514 DOI: 10.1074/jbc.M114.553321] [Cited by in Crossref: 38] [Cited by in F6Publishing: 42] [Article Influence: 4.8] [Reference Citation Analysis]