1 |
Yang T, Chen Y, Xu Y, Liu X, Yang M, Mao C. Viruses as biomaterials. Materials Science and Engineering: R: Reports 2023;153:100715. [DOI: 10.1016/j.mser.2023.100715] [Reference Citation Analysis]
|
2 |
Ul Haq I, Krukiewicz K, Yahya G, Haq MU, Maryam S, Mosbah RA, Saber S, Alrouji M. The Breadth of Bacteriophages Contributing to the Development of the Phage-Based Vaccines for COVID-19: An Ideal Platform to Design the Multiplex Vaccine. Int J Mol Sci 2023;24. [PMID: 36675046 DOI: 10.3390/ijms24021536] [Reference Citation Analysis]
|
3 |
Jamaledin R, Sartorius R, Di Natale C, Onesto V, Manco R, Mollo V, Vecchione R, De Berardinis P, Netti PA. PLGA microparticle formulations for tunable delivery of a nano-engineered filamentous bacteriophage-based vaccine: in vitro and in silico-supported approach. J Nanostructure Chem 2023;:1-16. [PMID: 36687278 DOI: 10.1007/s40097-022-00519-9] [Reference Citation Analysis]
|
4 |
Luo WR, Wu XM, Wang W, Yu JL, Chen QQ, Zhou X, Huang X, Pan HF, Liu ZR, Gao Y, He J. Novel coronavirus mutations: Vaccine development and challenges. Microb Pathog 2022;173:105828. [PMID: 36243381 DOI: 10.1016/j.micpath.2022.105828] [Reference Citation Analysis]
|
5 |
Yang Lu J, Qi Bu Z, Tao Huang W. Peptide-based sensing of Pb2+, molecular logic computing, information encoding, cryptography, and steganography. Microchemical Journal 2022. [DOI: 10.1016/j.microc.2022.108198] [Reference Citation Analysis]
|
6 |
Xu H, Xu W, Zhang L, Zhang K. Current Status of Phage Therapy against Infectious Diseases and Potential Application beyond Infectious Diseases. International Journal of Clinical Practice 2022;2022:1-22. [DOI: 10.1155/2022/4913146] [Reference Citation Analysis]
|
7 |
Matsubara T. Peptide mimotopes to emulate carbohydrates. Chem Soc Rev 2022. [PMID: 36128765 DOI: 10.1039/d2cs00470d] [Reference Citation Analysis]
|
8 |
Zhu J, Jain S, Sha J, Batra H, Ananthaswamy N, Kilgore PB, Hendrix EK, Hosakote YM, Wu X, Olano JP, Kayode A, Galindo CL, Banga S, Drelich A, Tat V, Tseng CK, Chopra AK, Rao VB. A Bacteriophage-Based, Highly Efficacious, Needle- and Adjuvant-Free, Mucosal COVID-19 Vaccine. mBio 2022;:e0182222. [PMID: 35900097 DOI: 10.1128/mbio.01822-22] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
9 |
Zhang X, Chen X, Zhao Y. Nanosystems for Immune Regulation against Bacterial Infections: A Review. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c01380] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
10 |
Bates M. Leveraging Bacteriophages in Vaccine Development. IEEE Pulse 2022;13:9-13. [DOI: 10.1109/mpuls.2022.3175351] [Reference Citation Analysis]
|
11 |
Mabrouk MT, Huang WC, Martinez-Sobrido L, Lovell JF. Advanced Materials for SARS-CoV-2 Vaccines. Adv Mater 2022;34:e2107781. [PMID: 34894000 DOI: 10.1002/adma.202107781] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
|
12 |
Kim C, Kim JD, Seo SU. Nanoparticle and virus-like particle vaccine approaches against SARS-CoV-2. J Microbiol 2022;60:335-46. [PMID: 35089583 DOI: 10.1007/s12275-022-1608-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
|
13 |
Contessoto VG, de Oliveira VM, Leite VBP. Coarse-Grained Simulations of Protein Folding: Bridging Theory and Experiments. Protein Folding 2022. [DOI: 10.1007/978-1-0716-1716-8_16] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
14 |
Veeranarayanan S, Azam AH, Kiga K, Watanabe S, Cui L. Bacteriophages as Solid Tumor Theragnostic Agents. Int J Mol Sci 2021;23:402. [PMID: 35008840 DOI: 10.3390/ijms23010402] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
15 |
Lubin JH, Markosian C, Balamurugan D, Pasqualini R, Arap W, Burley SK, Khare SD. Structural models of SARS-CoV-2 Omicron variant in complex with ACE2 receptor or antibodies suggest altered binding interfaces. bioRxiv 2021:2021. [PMID: 34931193 DOI: 10.1101/2021.12.12.472313] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
|
16 |
Freeman KG, Wetzel KS, Zhang Y, Zack KM, Jacobs-Sera D, Walters SM, Barbeau DJ, McElroy AK, Williams JV, Hatfull GF. A Mycobacteriophage-Based Vaccine Platform: SARS-CoV-2 Antigen Expression and Display. Microorganisms 2021;9:2414. [PMID: 34946016 DOI: 10.3390/microorganisms9122414] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
17 |
Markosian C, Staquicini DI, Dogra P, Dodero-rojas E, Tang FHF, Smith TL, Contessoto VG, Libutti SK, Wang Z, Cristini V, Whitford PC, Burley SK, Onuchic JN, Pasqualini R, Arap W. Apropos of Universal Epitope Discovery for COVID-19 Vaccines: A Framework for Targeted Phage Display-Based Delivery and Integration of New Evaluation Tools.. [DOI: 10.1101/2021.08.30.458222] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|