BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Baba T, Alvarez-Prats A, Kim YJ, Abebe D, Wilson S, Aldworth Z, Stopfer MA, Heuser J, Balla T. Myelination of peripheral nerves is controlled by PI4KB through regulation of Schwann cell Golgi function. Proc Natl Acad Sci U S A 2020;117:28102-13. [PMID: 33106410 DOI: 10.1073/pnas.2007432117] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
Number Citing Articles
1 Ciotu CI, Kistner K, Kaindl U, Millesi F, Weiss T, Radtke C, Kremer A, Schmidt K, Fischer MJM. Schwann cell stimulation induces functional and structural changes in peripheral nerves. Glia 2023;71:945-56. [PMID: 36495059 DOI: 10.1002/glia.24316] [Reference Citation Analysis]
2 Yang J, Guo F, Chin HS, Chen GB, Ang CH, Lin Q, Hong W, Fu NY. Sequential genome-wide CRISPR-Cas9 screens identify genes regulating cell-surface expression of tetraspanins. Cell Rep 2023;42:112065. [PMID: 36724073 DOI: 10.1016/j.celrep.2023.112065] [Reference Citation Analysis]
3 Stojilkovic SS, Balla T. PI(4,5)P2-dependent and -independent roles of PI4P in the control of hormone secretion by pituitary cells. Front Endocrinol (Lausanne) 2023;14:1118744. [PMID: 36777340 DOI: 10.3389/fendo.2023.1118744] [Reference Citation Analysis]
4 Burke JE, Triscott J, Emerling BM, Hammond GRV. Beyond PI3Ks: targeting phosphoinositide kinases in disease. Nat Rev Drug Discov 2022;:1-30. [PMID: 36376561 DOI: 10.1038/s41573-022-00582-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
5 Dafsari HS, Pemberton JG, Ferrer EA, Yammine T, Farra C, Mohammadi MH, Ghayoor Karimiani E, Hashemi N, Souaid M, Sabbagh S, Najarzadeh Torbati P, Khan S, Roze E, Moreno-De-Luca A, Bertoli-Avella AM, Houlden H, Balla T, Maroofian R. PI4K2A deficiency causes innate error in intracellular trafficking with developmental and epileptic-dyskinetic encephalopathy. Ann Clin Transl Neurol 2022;9:1345-58. [PMID: 35880319 DOI: 10.1002/acn3.51634] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Posor Y, Jang W, Haucke V. Phosphoinositides as membrane organizers. Nat Rev Mol Cell Biol 2022;23:797-816. [PMID: 35589852 DOI: 10.1038/s41580-022-00490-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
7 Bolino A. Myelin Biology. Neurotherapeutics 2021. [PMID: 34244924 DOI: 10.1007/s13311-021-01083-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Kruse M, Whitten RJ. Control of Neuronal Excitability by Cell Surface Receptor Density and Phosphoinositide Metabolism. Front Pharmacol 2021;12:663840. [PMID: 33967808 DOI: 10.3389/fphar.2021.663840] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 Ernest James Phillips T, Maguire E. Phosphoinositides: Roles in the Development of Microglial-Mediated Neuroinflammation and Neurodegeneration. Front Cell Neurosci 2021;15:652593. [PMID: 33841102 DOI: 10.3389/fncel.2021.652593] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
10 Posor Y, Haucke V. A Golgi-associated lipid kinase controls peripheral nerve myelination. Proc Natl Acad Sci U S A 2020;117:30873-5. [PMID: 33188090 DOI: 10.1073/pnas.2021130117] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]