BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Franck C, Foster SR, Johansen-Leete J, Chowdhury S, Cielesh M, Bhusal RP, Mackay JP, Larance M, Stone MJ, Payne RJ. Semisynthesis of an evasin from tick saliva reveals a critical role of tyrosine sulfation for chemokine binding and inhibition. Proc Natl Acad Sci U S A 2020;117:12657-64. [PMID: 32461364 DOI: 10.1073/pnas.2000605117] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
Number Citing Articles
1 Ribeiro JMC, Bayona-Vásquez NJ, Budachetri K, Kumar D, Frederick JC, Tahir F, Faircloth BC, Glenn TC, Karim S. A draft of the genome of the Gulf Coast tick, Amblyomma maculatum. Ticks Tick Borne Dis 2022;14:102090. [PMID: 36446165 DOI: 10.1016/j.ttbdis.2022.102090] [Reference Citation Analysis]
2 Aryal P, Devkota SR, Jeevarajah D, Law R, Payne RJ, Bhusal RP, Stone MJ. Swapping N-terminal regions among tick evasins reveals cooperative interactions influencing chemokine binding and selectivity. J Biol Chem 2022;:102382. [PMID: 35973511 DOI: 10.1016/j.jbc.2022.102382] [Reference Citation Analysis]
3 Stewart V, Ronald PC. Sulfotyrosine residues: interaction specificity determinants for extracellular protein-protein interactions. Journal of Biological Chemistry 2022. [DOI: 10.1016/j.jbc.2022.102232] [Reference Citation Analysis]
4 Schön MP. The tick and I: Parasite-host interactions between ticks and humans. J Dtsch Dermatol Ges 2022;20:818-53. [PMID: 35674196 DOI: 10.1111/ddg.14821] [Reference Citation Analysis]
5 Schön MP. Die Zecke und ich: Parasiten-Wirt-Interaktionen zwischen Zecken und Menschen. J Dtsch Dermatol Ges 2022;20:818-55. [PMID: 35711058 DOI: 10.1111/ddg.14821_g] [Reference Citation Analysis]
6 Bhusal RP, Aryal P, Devkota SR, Pokhrel R, Gunzburg MJ, Foster SR, Lim HD, Payne RJ, Wilce MCJ, Stone MJ. Structure-guided engineering of tick evasins for targeting chemokines in inflammatory diseases. Proc Natl Acad Sci U S A 2022;119:e2122105119. [PMID: 35217625 DOI: 10.1073/pnas.2122105119] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Schäfer M, Pfaff F, Höper D, Silaghi C. Early Transcriptional Changes in the Midgut of Ornithodoros moubata after Feeding and Infection with Borrelia duttonii. Microorganisms 2022;10:525. [DOI: 10.3390/microorganisms10030525] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Wang L, Wang N, Zhang W, Cheng X, Yan Z, Shao G, Wang X, Wang R, Fu C. Therapeutic peptides: current applications and future directions. Sig Transduct Target Ther 2022;7. [DOI: 10.1038/s41392-022-00904-4] [Cited by in Crossref: 40] [Cited by in F6Publishing: 48] [Article Influence: 40.0] [Reference Citation Analysis]
9 Liu D, Wei Q, Xia W, He C, Zhang Q, Huang L, Wang X, Sun Y, Ma Y, Zhang X, Wang Y, Shi X, Liu C, Dong S. O-Glycosylation Induces Amyloid-β To Form New Fibril Polymorphs Vulnerable for Degradation. J Am Chem Soc 2021;143:20216-23. [PMID: 34841862 DOI: 10.1021/jacs.1c08607] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
10 Denisov SS, Dijkgraaf I. Immunomodulatory Proteins in Tick Saliva From a Structural Perspective. Front Cell Infect Microbiol 2021;11:769574. [PMID: 34722347 DOI: 10.3389/fcimb.2021.769574] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
11 Stewart V, Ronald PC. Sulfotyrosine, an interaction specificity determinant for extracellular protein-protein interactions.. [DOI: 10.1101/2021.10.29.466493] [Reference Citation Analysis]
12 Dowman LJ, Agten SM, Ripoll-Rozada J, Calisto BM, Pereira PJB, Payne RJ. Synthesis and evaluation of peptidic thrombin inhibitors bearing acid-stable sulfotyrosine analogues. Chem Commun (Camb) 2021;57:10923-6. [PMID: 34596182 DOI: 10.1039/d1cc04742f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Xu R, Wang Y, Huang H, Jin X, Li J, Du G, Kang Z. Closed-Loop System Driven by ADP Phosphorylation from Pyrophosphate Affords Equimolar Transformation of ATP to 3′-Phosphoadenosine-5′-phosphosulfate. ACS Catal 2021;11:10405-15. [DOI: 10.1021/acscatal.1c02004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
14 Stark LE, Guan W, Colvin ME, LiWang PJ. The binding and specificity of chemokine binding proteins, through the lens of experiment and computation. Biomed J 2021:S2319-4170(21)00092-5. [PMID: 34311129 DOI: 10.1016/j.bj.2021.07.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Kitsou C, Fikrig E, Pal U. Tick host immunity: vector immunomodulation and acquired tick resistance. Trends Immunol 2021;42:554-74. [PMID: 34074602 DOI: 10.1016/j.it.2021.05.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
16 Agouridas V, El Mahdi O, Melnyk O. Chemical Protein Synthesis in Medicinal Chemistry. J Med Chem 2020;63:15140-52. [PMID: 33236900 DOI: 10.1021/acs.jmedchem.0c01082] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
17 Denisov SS, Ramírez-Escudero M, Heinzmann ACA, Ippel JH, Dawson PE, Koenen RR, Hackeng TM, Janssen BJC, Dijkgraaf I. Structural characterization of anti-CCL5 activity of the tick salivary protein evasin-4. J Biol Chem 2020;295:14367-78. [PMID: 32817341 DOI: 10.1074/jbc.RA120.013891] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
18 Li C, He C. Facile synthesis of sulfotyrosine-containing α-conotoxins. Org Biomol Chem 2020;18:7559-64. [PMID: 32945320 DOI: 10.1039/d0ob01526a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
19 Maxwell JW, Payne RJ. Revealing the functional roles of tyrosine sulfation using synthetic sulfopeptides and sulfoproteins. Current Opinion in Chemical Biology 2020;58:72-85. [DOI: 10.1016/j.cbpa.2020.05.007] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
20 Mans BJ. Quantitative Visions of Reality at the Tick-Host Interface: Biochemistry, Genomics, Proteomics, and Transcriptomics as Measures of Complete Inventories of the Tick Sialoverse. Front Cell Infect Microbiol 2020;10:574405. [PMID: 33042874 DOI: 10.3389/fcimb.2020.574405] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
21 Franck C, Foster SR, Johansen-Leete J, Chowdhury S, Cielesh M, Bhusal RP, Mackay JP, Larance M, Stone MJ, Payne RJ. Semisynthesis of an evasin from tick saliva reveals a critical role of tyrosine sulfation for chemokine binding and inhibition. Proc Natl Acad Sci U S A 2020;117:12657-64. [PMID: 32461364 DOI: 10.1073/pnas.2000605117] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
22 Clayton D, Kulkarni SS, Sayers J, Dowman LJ, Ripoll-rozada J, Pereira PJB, Payne RJ. Chemical synthesis of a haemathrin sulfoprotein library reveals enhanced thrombin inhibition following tyrosine sulfation. RSC Chem Biol 2020;1:379-84. [DOI: 10.1039/d0cb00146e] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]