BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Huang ZL, Qu WM, Li WD, Mochizuki T, Eguchi N, Watanabe T, Urade Y, Hayaishi O. Arousal effect of orexin A depends on activation of the histaminergic system. Proc Natl Acad Sci U S A 2001;98:9965-70. [PMID: 11493714 DOI: 10.1073/pnas.181330998] [Cited by in Crossref: 376] [Cited by in F6Publishing: 336] [Article Influence: 17.9] [Reference Citation Analysis]
Number Citing Articles
1 Blandina P, Passani MB. Central histaminergic system interactions and cognition. EXS 2006;98:149-63. [PMID: 17019887 DOI: 10.1007/978-3-7643-7772-4_8] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
2 Silkis IG. Search for approaches to correction of daytime sleepiness induced by dopaminergic drugs during treatment of Parkinson’s disease: Neurochemical aspects. Neurochem J 2009;3:221-31. [DOI: 10.1134/s1819712409030118] [Cited by in Crossref: 3] [Article Influence: 0.2] [Reference Citation Analysis]
3 Huo X, Liu W, Qiu M, Huang Z, Qu W. Genistein induces non-rapid eye movement sleep in mice: Genistein induces NREM sleep in mice. Sleep and Biological Rhythms 2012;10:278-86. [DOI: 10.1111/j.1479-8425.2012.00571.x] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
4 Cun Y, Tang L, Yan J, He C, Li Y, Hu Z, Xia J. Orexin A attenuates the sleep-promoting effect of adenosine in the lateral hypothalamus of rats. Neurosci Bull 2014;30:877-86. [PMID: 24898402 DOI: 10.1007/s12264-013-1442-8] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 2.5] [Reference Citation Analysis]
5 Lu GL, Yau HJ, Chiou LC. Conditioned place preference training prevents hippocampal depotentiation in an orexin-dependent manner. J Biomed Sci 2017;24:69. [PMID: 28877723 DOI: 10.1186/s12929-017-0378-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
6 Equihua AC, De La Herrán-Arita AK, Drucker-Colin R. Orexin receptor antagonists as therapeutic agents for insomnia. Front Pharmacol 2013;4:163. [PMID: 24416019 DOI: 10.3389/fphar.2013.00163] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]
7 Shinomiya K, Omichi J, Ohnishi R, Ito H, Yoshida T, Kamei C. Effects of chlorogenic acid and its metabolites on the sleep–wakefulness cycle in rats. European Journal of Pharmacology 2004;504:185-9. [DOI: 10.1016/j.ejphar.2004.09.054] [Cited by in Crossref: 27] [Cited by in F6Publishing: 17] [Article Influence: 1.5] [Reference Citation Analysis]
8 Downs JL, Dunn MR, Borok E, Shanabrough M, Horvath TL, Kohama SG, Urbanski HF. Orexin neuronal changes in the locus coeruleus of the aging rhesus macaque. Neurobiol Aging 2007;28:1286-95. [PMID: 16870307 DOI: 10.1016/j.neurobiolaging.2006.05.025] [Cited by in Crossref: 57] [Cited by in F6Publishing: 55] [Article Influence: 3.6] [Reference Citation Analysis]
9 Masaki T, Yoshimatsu H. The hypothalamic H1 receptor: a novel therapeutic target for disrupting diurnal feeding rhythm and obesity. Trends Pharmacol Sci 2006;27:279-84. [PMID: 16584790 DOI: 10.1016/j.tips.2006.03.008] [Cited by in Crossref: 65] [Cited by in F6Publishing: 54] [Article Influence: 4.1] [Reference Citation Analysis]
10 Monoi N, Matsuno A, Nagamori Y, Kimura E, Nakamura Y, Oka K, Sano T, Midorikawa T, Sugafuji T, Murakoshi M, Uchiyama A, Sugiyama K, Nishino H, Urade Y. Japanese sake yeast supplementation improves the quality of sleep: a double-blind randomised controlled clinical trial. J Sleep Res 2016;25:116-23. [PMID: 26354605 DOI: 10.1111/jsr.12336] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
11 Bessho Y, Iwakoshi-ukena E, Tachibana T, Maejima S, Taniuchi S, Masuda K, Shikano K, Kondo K, Furumitsu M, Ukena K. Characterization of an avian histidine decarboxylase and localization of histaminergic neurons in the chicken brain. Neuroscience Letters 2014;578:106-10. [DOI: 10.1016/j.neulet.2014.06.048] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
12 Oliviero A, Della Marca G, Tonali PA, Pilato F, Saturno E, Dileone M, Versace V, Mennuni G, Di Lazzaro V. Functional involvement of cerebral cortex in human narcolepsy. J Neurol 2005;252:56-61. [DOI: 10.1007/s00415-005-0598-1] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 1.4] [Reference Citation Analysis]
13 Giannoni P, Passani M, Nosi D, Chazot PL, Shenton FC, Medhurst AD, Munari L, Blandina P. Heterogeneity of histaminergic neurons in the tuberomammillary nucleus of the rat. European Journal of Neuroscience 2009;29:2363-74. [DOI: 10.1111/j.1460-9568.2009.06765.x] [Cited by in Crossref: 49] [Cited by in F6Publishing: 47] [Article Influence: 3.8] [Reference Citation Analysis]
14 Bastianini S, Lo Martire V, Berteotti C, Silvani A, Ohtsu H, Lin J, Zoccoli G. High-amplitude theta wave bursts characterizing narcoleptic mice and patients are also produced by histamine deficiency in mice. J Sleep Res 2016;25:591-5. [DOI: 10.1111/jsr.12404] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
15 Selbach O, Haas HL. Hypocretins: The Timing of Sleep and Waking. Chronobiology International 2009;23:63-70. [DOI: 10.1080/07420520500545961] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 2.9] [Reference Citation Analysis]
16 Malherbe P, Borroni E, Gobbi L, Knust H, Nettekoven M, Pinard E, Roche O, Rogers-Evans M, Wettstein JG, Moreau JL. Biochemical and behavioural characterization of EMPA, a novel high-affinity, selective antagonist for the OX(2) receptor. Br J Pharmacol 2009;156:1326-41. [PMID: 19751316 DOI: 10.1111/j.1476-5381.2009.00127.x] [Cited by in Crossref: 62] [Cited by in F6Publishing: 58] [Article Influence: 5.2] [Reference Citation Analysis]
17 Yoshihiro Urade, Osamu Hayaishi. Crucial role of prostaglandin D 2 and adenosine in sleep regulation: experimental evidence from pharmacological approaches to gene-knockout mice. Future Neurology 2010;5:363-76. [DOI: 10.2217/fnl.10.18] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
18 Anaclet C, Parmentier R, Ouk K, Guidon G, Buda C, Sastre JP, Akaoka H, Sergeeva OA, Yanagisawa M, Ohtsu H, Franco P, Haas HL, Lin JS. Orexin/hypocretin and histamine: distinct roles in the control of wakefulness demonstrated using knock-out mouse models. J Neurosci 2009;29:14423-38. [PMID: 19923277 DOI: 10.1523/JNEUROSCI.2604-09.2009] [Cited by in Crossref: 131] [Cited by in F6Publishing: 86] [Article Influence: 10.1] [Reference Citation Analysis]
19 Liu Z, Jiang L, Zhu F, Fu C, Lu S, Zhou J, Wu X, Bai C, Li S. Chronic intermittent hypoxia and the expression of orexin and its receptors in the brains of rats: Intermittent hypoxia and orexin. Sleep and Biological Rhythms 2014;12:22-9. [DOI: 10.1111/sbr.12043] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
20 Sinton CM. Orexin/hypocretin plays a role in the response to physiological disequilibrium. Sleep Med Rev 2011;15:197-207. [PMID: 21269851 DOI: 10.1016/j.smrv.2010.12.003] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 1.5] [Reference Citation Analysis]
21 Sakai N, Chikahisa S, Nishino S. Stimulants in Excessive Daytime Sleepiness. Sleep Medicine Clinics 2010;5:591-607. [DOI: 10.1016/j.jsmc.2010.08.009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
22 Yoshimatsu H. The neuronal histamine H1 and pro-opiomelanocortin–melanocortin 4 receptors: Independent regulation of food intake and energy expenditure. Peptides 2006;27:326-32. [DOI: 10.1016/j.peptides.2005.02.028] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 0.7] [Reference Citation Analysis]
23 Carter ME, Adamantidis A, Ohtsu H, Deisseroth K, de Lecea L. Sleep homeostasis modulates hypocretin-mediated sleep-to-wake transitions. J Neurosci 2009;29:10939-49. [PMID: 19726652 DOI: 10.1523/JNEUROSCI.1205-09.2009] [Cited by in Crossref: 155] [Cited by in F6Publishing: 89] [Article Influence: 11.9] [Reference Citation Analysis]
24 Urade Y. Neurobiological Basis of Hypersomnia. Sleep Medicine Clinics 2017;12:265-77. [DOI: 10.1016/j.jsmc.2017.03.003] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
25 Perez-Leighton CE, Butterick-Peterson TA, Billington CJ, Kotz CM. Role of orexin receptors in obesity: from cellular to behavioral evidence. Int J Obes (Lond) 2013;37:167-74. [PMID: 22391883 DOI: 10.1038/ijo.2012.30] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
26 Krolewski DM, Medina A, Kerman IA, Bernard R, Burke S, Thompson RC, Bunney WE Jr, Schatzberg AF, Myers RM, Akil H, Jones EG, Watson SJ. Expression patterns of corticotropin-releasing factor, arginine vasopressin, histidine decarboxylase, melanin-concentrating hormone, and orexin genes in the human hypothalamus. J Comp Neurol 2010;518:4591-611. [PMID: 20886624 DOI: 10.1002/cne.22480] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 1.9] [Reference Citation Analysis]
27 Arrigoni E, Chee MJS, Fuller PM. To eat or to sleep: That is a lateral hypothalamic question. Neuropharmacology 2019;154:34-49. [PMID: 30503993 DOI: 10.1016/j.neuropharm.2018.11.017] [Cited by in Crossref: 49] [Cited by in F6Publishing: 39] [Article Influence: 12.3] [Reference Citation Analysis]
28 Hu W, Chen Z. The roles of histamine and its receptor ligands in central nervous system disorders: An update. Pharmacology & Therapeutics 2017;175:116-32. [DOI: 10.1016/j.pharmthera.2017.02.039] [Cited by in Crossref: 55] [Cited by in F6Publishing: 48] [Article Influence: 11.0] [Reference Citation Analysis]
29 Su J, Lei Z, Zhang W, Ning H, Ping J. Distribution of orexin B and its relationship with GnRH in the pig hypothalamus. Res Vet Sci 2008;85:315-23. [PMID: 18255106 DOI: 10.1016/j.rvsc.2007.12.007] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 1.6] [Reference Citation Analysis]
30 Yoshida G, Li MX, Horiuchi M, Nakagawa S, Sakata M, Kuchiiwa S, Kuchiiwa T, Jalil MA, Begum L, Lu YB, Iijima M, Hanada T, Nakazato M, Huang ZL, Eguchi N, Kobayashi K, Saheki T. Fasting-induced reduction in locomotor activity and reduced response of orexin neurons in carnitine-deficient mice. Neurosci Res 2006;55:78-86. [PMID: 16540195 DOI: 10.1016/j.neures.2006.02.003] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
31 He C, Chen QH, Ye JN, Li C, Yang L, Zhang J, Xia JX, Hu ZA. Functional inactivation of hypocretin 1 receptors in the medial prefrontal cortex affects the pyramidal neuron activity and gamma oscillations: An in vivo multiple-channel single-unit recording study. Neuroscience 2015;297:1-10. [PMID: 25838117 DOI: 10.1016/j.neuroscience.2015.03.044] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
32 Hou RH, Freeman C, Langley RW, Szabadi E, Bradshaw CM. Does modafinil activate the locus coeruleus in man? Comparison of modafinil and clonidine on arousal and autonomic functions in human volunteers. Psychopharmacology 2005;181:537-49. [DOI: 10.1007/s00213-005-0013-8] [Cited by in Crossref: 82] [Cited by in F6Publishing: 81] [Article Influence: 4.8] [Reference Citation Analysis]
33 Nishino S. Narcolepsy. Sleep Medicine Clinics 2006;1:47-61. [DOI: 10.1016/j.jsmc.2005.11.008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
34 Mieda M, Williams SC, Sinton CM, Richardson JA, Sakurai T, Yanagisawa M. Orexin neurons function in an efferent pathway of a food-entrainable circadian oscillator in eliciting food-anticipatory activity and wakefulness. J Neurosci 2004;24:10493-501. [PMID: 15548664 DOI: 10.1523/JNEUROSCI.3171-04.2004] [Cited by in Crossref: 151] [Cited by in F6Publishing: 63] [Article Influence: 8.9] [Reference Citation Analysis]
35 Arrigoni E, Mochizuki T, Scammell TE. Activation of the basal forebrain by the orexin/hypocretin neurones. Acta Physiol (Oxf) 2010;198:223-35. [PMID: 19723027 DOI: 10.1111/j.1748-1716.2009.02036.x] [Cited by in Crossref: 58] [Cited by in F6Publishing: 55] [Article Influence: 4.5] [Reference Citation Analysis]
36 Szentirmai E, Kapás L, Krueger JM. Ghrelin microinjection into forebrain sites induces wakefulness and feeding in rats. Am J Physiol Regul Integr Comp Physiol 2007;292:R575-85. [PMID: 16917015 DOI: 10.1152/ajpregu.00448.2006] [Cited by in Crossref: 84] [Cited by in F6Publishing: 85] [Article Influence: 5.3] [Reference Citation Analysis]
37 Kohtoh S, Taguchi Y, Matsumoto N, Wada M, Huang Z, Urade Y. Algorithm for sleep scoring in experimental animals based on fast Fourier transform power spectrum analysis of the electroencephalogram. Sleep and Biological Rhythms 2008;6:163-71. [DOI: 10.1111/j.1479-8425.2008.00355.x] [Cited by in Crossref: 59] [Cited by in F6Publishing: 25] [Article Influence: 4.2] [Reference Citation Analysis]
38 Makino Y, Kondo S, Nishimura Y, Tsukamoto Y, Huang Z, Urade Y. Hastatoside and verbenalin are sleep-promoting components in Verbena officinalis. Sleep and Biological Rhythms 2009;7:211-7. [DOI: 10.1111/j.1479-8425.2009.00405.x] [Cited by in Crossref: 18] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
39 Qiu M, Qu W, Xu X, Yan M, Urade Y, Huang Z. D1/D2 receptor-targeting L-stepholidine, an active ingredient of the Chinese herb Stephonia, induces non-rapid eye movement sleep in mice. Pharmacology Biochemistry and Behavior 2009;94:16-23. [DOI: 10.1016/j.pbb.2009.06.018] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 2.1] [Reference Citation Analysis]
40 Panula P, Nuutinen S. The histaminergic network in the brain: basic organization and role in disease. Nat Rev Neurosci 2013;14:472-87. [DOI: 10.1038/nrn3526] [Cited by in Crossref: 179] [Cited by in F6Publishing: 168] [Article Influence: 19.9] [Reference Citation Analysis]
41 Saper CB. Central Autonomic System. The Rat Nervous System. Elsevier; 2004. pp. 761-96. [DOI: 10.1016/b978-012547638-6/50025-0] [Cited by in Crossref: 34] [Article Influence: 1.9] [Reference Citation Analysis]
42 Motawaj M, Burban A, Davenas E, Gbahou F, Faucard R, Morisset S, Arrang J. Le système histaminergique : une cible pour de nouveaux traitements des deficits cognitifs. Therapies 2010;65:415-22. [DOI: 10.2515/therapie/2010058] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
43 James MH, Campbell EJ, Dayas CV. Role of the Orexin/Hypocretin System in Stress-Related Psychiatric Disorders. Curr Top Behav Neurosci 2017;33:197-219. [PMID: 28083790 DOI: 10.1007/7854_2016_56] [Cited by in Crossref: 55] [Cited by in F6Publishing: 55] [Article Influence: 11.0] [Reference Citation Analysis]
44 Rozov SV, Porkka-Heiskanen T, Panula P. On the Role of Histamine Receptors in the Regulation of Circadian Rhythms. PLoS One 2015;10:e0144694. [PMID: 26660098 DOI: 10.1371/journal.pone.0144694] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
45 Nishino S, Sakurai E, Nevsimalova S, Yoshida Y, Watanabe T, Yanai K, Mignot E. Decreased CSF histamine in narcolepsy with and without low CSF hypocretin-1 in comparison to healthy controls. Sleep 2009;32:175-80. [PMID: 19238804 DOI: 10.1093/sleep/32.2.175] [Cited by in Crossref: 94] [Cited by in F6Publishing: 83] [Article Influence: 7.2] [Reference Citation Analysis]
46 Nishino S, Yoshida Y. History and perspectives of hypocretin/orexin research in sleep medicine. Sleep and Biological Rhythms 2003;1:43-54. [DOI: 10.1046/j.1446-9235.2003.00001.x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
47 Konadhode RR, Pelluru D, Shiromani PJ. Neurons containing orexin or melanin concentrating hormone reciprocally regulate wake and sleep. Front Syst Neurosci 2014;8:244. [PMID: 25620917 DOI: 10.3389/fnsys.2014.00244] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 3.6] [Reference Citation Analysis]
48 Shaw PJ, Franken P. Perchance to dream: solving the mystery of sleep through genetic analysis. J Neurobiol 2003;54:179-202. [PMID: 12486704 DOI: 10.1002/neu.10167] [Cited by in Crossref: 52] [Cited by in F6Publishing: 43] [Article Influence: 2.7] [Reference Citation Analysis]
49 Kaushik MK, Aritake K, Takeuchi A, Yanagisawa M, Urade Y. Octacosanol restores stress-affected sleep in mice by alleviating stress. Sci Rep 2017;7:8892. [PMID: 28827687 DOI: 10.1038/s41598-017-08874-2] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.6] [Reference Citation Analysis]
50 Nishino S, Deguzman C, Yamadera W, Chiba S, Kanbayashi T. Neurochemistry and Biomarkers of Narcolepsy and Other Primary and Secondary Hypersomnias. Sleep Medicine Clinics 2012;7:233-48. [DOI: 10.1016/j.jsmc.2012.03.015] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
51 Jaeger LB, Farr SA, Banks WA, Morley JE. Effects of orexin-A on memory processing. Peptides 2002;23:1683-8. [PMID: 12217429 DOI: 10.1016/s0196-9781(02)00110-9] [Cited by in Crossref: 89] [Cited by in F6Publishing: 32] [Article Influence: 4.7] [Reference Citation Analysis]
52 Fang T, Dong H, Xu XH, Yuan XS, Chen ZK, Chen JF, Qu WM, Huang ZL. Adenosine A2A receptor mediates hypnotic effects of ethanol in mice. Sci Rep 2017;7:12678. [PMID: 28978989 DOI: 10.1038/s41598-017-12689-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
53 Lin J, Dauvilliers Y, Arnulf I, Bastuji H, Anaclet C, Parmentier R, Kocher L, Yanagisawa M, Lehert P, Ligneau X, Perrin D, Robert P, Roux M, Lecomte J, Schwartz J. An inverse agonist of the histamine H3 receptor improves wakefulness in narcolepsy: Studies in orexin−/− mice and patients. Neurobiology of Disease 2008;30:74-83. [DOI: 10.1016/j.nbd.2007.12.003] [Cited by in Crossref: 188] [Cited by in F6Publishing: 175] [Article Influence: 13.4] [Reference Citation Analysis]
54 Revel FG, Gottowik J, Gatti S, Wettstein JG, Moreau J. Rodent models of insomnia: A review of experimental procedures that induce sleep disturbances. Neuroscience & Biobehavioral Reviews 2009;33:874-99. [DOI: 10.1016/j.neubiorev.2009.03.002] [Cited by in Crossref: 43] [Cited by in F6Publishing: 43] [Article Influence: 3.3] [Reference Citation Analysis]
55 Aracri P, Banfi D, Pasini ME, Amadeo A, Becchetti A. Hypocretin (orexin) regulates glutamate input to fast-spiking interneurons in layer V of the Fr2 region of the murine prefrontal cortex. Cereb Cortex 2015;25:1330-47. [PMID: 24297328 DOI: 10.1093/cercor/bht326] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 3.2] [Reference Citation Analysis]
56 Nishino S, Mignot E. Wake-Promoting Medications. Principles and Practice of Sleep Medicine. Elsevier; 2011. pp. 510-26. [DOI: 10.1016/b978-1-4160-6645-3.00044-x] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
57 Hou RH, Langley RW, Szabadi E, Bradshaw CM. Comparison of diphenhydramine and modafinil on arousal and autonomic functions in healthy volunteers. J Psychopharmacol 2007;21:567-78. [PMID: 17092978 DOI: 10.1177/0269881106071022] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 2.1] [Reference Citation Analysis]
58 Graebner AK, Iyer M, Carter ME. Understanding how discrete populations of hypothalamic neurons orchestrate complicated behavioral states. Front Syst Neurosci 2015;9:111. [PMID: 26300745 DOI: 10.3389/fnsys.2015.00111] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.9] [Reference Citation Analysis]
59 Lin L, Wisor J, Shiba T, Taheri S, Yanai K, Wurts S, Lin X, Vitaterna M, Takahashi J, Lovenberg T, Koehl M, Uhl G, Nishino S, Mignot E. Measurement of hypocretin/orexin content in the mouse brain using an enzyme immunoassay: the effect of circadian time, age and genetic background. Peptides 2002;23:2203-11. [DOI: 10.1016/s0196-9781(02)00251-6] [Cited by in Crossref: 41] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
60 Suzuki A, Tashiro M, Kimura Y, Mochizuki H, Ishii K, Watabe H, Yanai K, Ishiwata K, Ishii K. Use of reference tissue models for quantification of histamine H1 receptors in human brain by using positron emission tomography and [11C]doxepin. Ann Nucl Med 2005;19:425-33. [DOI: 10.1007/bf02985569] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
61 Stern AL, Naidoo N. Wake-active neurons across aging and neurodegeneration: a potential role for sleep disturbances in promoting disease. Springerplus 2015;4:25. [PMID: 25635245 DOI: 10.1186/s40064-014-0777-6] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 4.3] [Reference Citation Analysis]
62 Gotoh K, Fukagawa K, Fukagawa T, Noguchi H, Kakuma T, Sakata T, Yoshimatsu H. Hypothalamic neuronal histamine mediates the thyrotropin-releasing hormone-induced suppression of food intake. J Neurochem 2007;103:1102-10. [PMID: 17760865 DOI: 10.1111/j.1471-4159.2007.04802.x] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 1.7] [Reference Citation Analysis]
63 Passani MB, Giannoni P, Bucherelli C, Baldi E, Blandina P. Histamine in the brain: Beyond sleep and memory. Biochemical Pharmacology 2007;73:1113-22. [DOI: 10.1016/j.bcp.2006.12.002] [Cited by in Crossref: 56] [Cited by in F6Publishing: 49] [Article Influence: 3.7] [Reference Citation Analysis]
64 Nevárez N, de Lecea L. Hypocretin and the Regulation of Sleep-Wake Transitions. Handbook of Sleep Research. Elsevier; 2019. pp. 89-99. [DOI: 10.1016/b978-0-12-813743-7.00006-2] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
65 Tafti M, Franken P. Invited Review: Genetic dissection of sleep. Journal of Applied Physiology 2002;92:1339-47. [DOI: 10.1152/japplphysiol.00834.2001] [Cited by in Crossref: 47] [Cited by in F6Publishing: 36] [Article Influence: 2.4] [Reference Citation Analysis]
66 Prober DA, Rihel J, Onah AA, Sung RJ, Schier AF. Hypocretin/orexin overexpression induces an insomnia-like phenotype in zebrafish. J Neurosci 2006;26:13400-10. [PMID: 17182791 DOI: 10.1523/JNEUROSCI.4332-06.2006] [Cited by in Crossref: 308] [Cited by in F6Publishing: 153] [Article Influence: 20.5] [Reference Citation Analysis]
67 Matsuki T, Sakurai T. Orexins and Orexin Receptors: From Molecules to Integrative Physiology. In: Civelli O, Zhou Q, editors. Orphan G Protein-Coupled Receptors and Novel Neuropeptides. Berlin: Springer Berlin Heidelberg; 2008. pp. 27-55. [DOI: 10.1007/400_2007_047] [Cited by in Crossref: 51] [Cited by in F6Publishing: 45] [Reference Citation Analysis]
68 Wozniak DR, Quinnell TG. Unmet needs of patients with narcolepsy: perspectives on emerging treatment options. Nat Sci Sleep 2015;7:51-61. [PMID: 26045680 DOI: 10.2147/NSS.S56077] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.1] [Reference Citation Analysis]
69 Tashiro M, Mochizuki H, Iwabuchi K, Sakurada Y, Itoh M, Watanabe T, Yanai K. Roles of histamine in regulation of arousal and cognition: functional neuroimaging of histamine H1 receptors in human brain. Life Sciences 2002;72:409-14. [DOI: 10.1016/s0024-3205(02)02276-2] [Cited by in Crossref: 126] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
70 Luppi P, Clément O, Sapin E, Gervasoni D, Peyron C, Léger L, Salvert D, Fort P. The neuronal network responsible for paradoxical sleep and its dysfunctions causing narcolepsy and rapid eye movement (REM) behavior disorder. Sleep Medicine Reviews 2011;15:153-63. [DOI: 10.1016/j.smrv.2010.08.002] [Cited by in Crossref: 176] [Cited by in F6Publishing: 146] [Article Influence: 16.0] [Reference Citation Analysis]
71 Li J, Hu Z, de Lecea L. The hypocretins/orexins: integrators of multiple physiological functions. Br J Pharmacol 2014;171:332-50. [PMID: 24102345 DOI: 10.1111/bph.12415] [Cited by in Crossref: 153] [Cited by in F6Publishing: 141] [Article Influence: 19.1] [Reference Citation Analysis]
72 Kaushik MK, Aritake K, Imanishi A, Kanbayashi T, Ichikawa T, Shimizu T, Urade Y, Yanagisawa M. Continuous intrathecal orexin delivery inhibits cataplexy in a murine model of narcolepsy. Proc Natl Acad Sci U S A 2018;115:6046-51. [PMID: 29784823 DOI: 10.1073/pnas.1722686115] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
73 Datta S, Maclean RR. Neurobiological mechanisms for the regulation of mammalian sleep-wake behavior: reinterpretation of historical evidence and inclusion of contemporary cellular and molecular evidence. Neurosci Biobehav Rev 2007;31:775-824. [PMID: 17445891 DOI: 10.1016/j.neubiorev.2007.02.004] [Cited by in Crossref: 194] [Cited by in F6Publishing: 166] [Article Influence: 12.9] [Reference Citation Analysis]
74 Luppi PH, Gervasoni D, Verret L, Goutagny R, Peyron C, Salvert D, Leger L, Fort P. Paradoxical (REM) sleep genesis: the switch from an aminergic-cholinergic to a GABAergic-glutamatergic hypothesis. J Physiol Paris 2006;100:271-83. [PMID: 17689057 DOI: 10.1016/j.jphysparis.2007.05.006] [Cited by in Crossref: 121] [Cited by in F6Publishing: 110] [Article Influence: 8.1] [Reference Citation Analysis]
75 Blanco-Centurion C, Gerashchenko D, Shiromani PJ. Effects of saporin-induced lesions of three arousal populations on daily levels of sleep and wake. J Neurosci 2007;27:14041-8. [PMID: 18094243 DOI: 10.1523/JNEUROSCI.3217-07.2007] [Cited by in Crossref: 90] [Cited by in F6Publishing: 61] [Article Influence: 6.4] [Reference Citation Analysis]
76 Yang Y, Wang T, Guan J, Wang J, Chen J, Liu X, Qian J, Xu X, Qu W, Huang Z, Zhan C. Oral Delivery of Honokiol Microparticles for Nonrapid Eye Movement Sleep. Mol Pharm 2019;16:737-43. [PMID: 30652875 DOI: 10.1021/acs.molpharmaceut.8b01016] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
77 Hara J, Yanagisawa M, Sakurai T. Difference in obesity phenotype between orexin-knockout mice and orexin neuron-deficient mice with same genetic background and environmental conditions. Neuroscience Letters 2005;380:239-42. [DOI: 10.1016/j.neulet.2005.01.046] [Cited by in Crossref: 124] [Cited by in F6Publishing: 115] [Article Influence: 7.3] [Reference Citation Analysis]
78 Ishida T, Obara Y, Kamei C. Studies on wakefulness-promoting effect of memantine in rats. Behavioural Brain Research 2010;206:274-8. [DOI: 10.1016/j.bbr.2009.09.025] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
79 Chen A, Singh C, Oikonomou G, Prober DA. Genetic Analysis of Histamine Signaling in Larval Zebrafish Sleep. eNeuro 2017;4:ENEURO. [PMID: 28275716 DOI: 10.1523/ENEURO.0286-16.2017] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 3.4] [Reference Citation Analysis]
80 Eguchi N, Pinzar E, Kuwahata Y, Inui T, Mochizuki T, Urade Y, Hayaishi O. Sleep in transgenic and gene-knockout mice for lipocalin-type prostaglandin D synthase. International Congress Series 2002;1233:429-33. [DOI: 10.1016/s0531-5131(02)00529-0] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
81 Schneider EH, Neumann D, Seifert R. Modulation of behavior by the histaminergic system: Lessons from H1R-and H2R-deficient mice. Neuroscience & Biobehavioral Reviews 2014;42:252-66. [DOI: 10.1016/j.neubiorev.2014.03.009] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 4.4] [Reference Citation Analysis]
82 Schneider WT, Vas S, Nicol AU, Morton AJ. Abnormally abrupt transitions from sleep-to-wake in Huntington's disease sheep (Ovis aries) are revealed by automated analysis of sleep/wake transition dynamics. PLoS One 2021;16:e0251767. [PMID: 33984047 DOI: 10.1371/journal.pone.0251767] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
83 Mieda M, Hasegawa E, Kisanuki YY, Sinton CM, Yanagisawa M, Sakurai T. Differential roles of orexin receptor-1 and -2 in the regulation of non-REM and REM sleep. J Neurosci 2011;31:6518-26. [PMID: 21525292 DOI: 10.1523/JNEUROSCI.6506-10.2011] [Cited by in Crossref: 134] [Cited by in F6Publishing: 78] [Article Influence: 12.2] [Reference Citation Analysis]
84 Kang JE, Lim MM, Bateman RJ, Lee JJ, Smyth LP, Cirrito JR, Fujiki N, Nishino S, Holtzman DM. Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle. Science. 2009;326:1005-1007. [PMID: 19779148 DOI: 10.1126/science.1180962] [Cited by in Crossref: 774] [Cited by in F6Publishing: 749] [Article Influence: 59.5] [Reference Citation Analysis]
85 Sakurai T, Mieda M. Connectomics of orexin-producing neurons: interface of systems of emotion, energy homeostasis and arousal. Trends Pharmacol Sci 2011;32:451-62. [PMID: 21565412 DOI: 10.1016/j.tips.2011.03.007] [Cited by in Crossref: 139] [Cited by in F6Publishing: 136] [Article Influence: 12.6] [Reference Citation Analysis]
86 Mieda M, Sakurai T. Overview of orexin/hypocretin system. Orexin/Hypocretin System. Elsevier; 2012. pp. 5-14. [DOI: 10.1016/b978-0-444-59489-1.00002-1] [Cited by in Crossref: 32] [Cited by in F6Publishing: 8] [Article Influence: 3.2] [Reference Citation Analysis]
87 Nishino S, Sagawa Y. The Neurochemistry of Awakening. Science of Awakening. Elsevier; 2010. pp. 229-55. [DOI: 10.1016/s0074-7742(10)93010-9] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
88 Morairty SR, Wisor J, Silveira K, Sinko W, Kilduff TS. The wake-promoting effects of hypocretin-1 are attenuated in old rats. Neurobiol Aging 2011;32:1514-27. [PMID: 19781813 DOI: 10.1016/j.neurobiolaging.2009.07.017] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 0.9] [Reference Citation Analysis]
89 Johnson PL, Molosh A, Fitz SD, Truitt WA, Shekhar A. Orexin, stress, and anxiety/panic states. Prog Brain Res 2012;198:133-61. [PMID: 22813973 DOI: 10.1016/B978-0-444-59489-1.00009-4] [Cited by in Crossref: 125] [Cited by in F6Publishing: 69] [Article Influence: 12.5] [Reference Citation Analysis]
90 Hancock AA, Fox GB. Cognitive enhancing effects of drugs that target histamine receptors. In: Buccafusco JJ, editor. Cognitive Enhancing Drugs. Basel: Birkhäuser; 2004. pp. 97-114. [DOI: 10.1007/978-3-0348-7867-8_8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.2] [Reference Citation Analysis]
91 Blandina P, Munari L, Provensi G, Passani MB. Histamine neurons in the tuberomamillary nucleus: a whole center or distinct subpopulations? Front Syst Neurosci 2012;6:33. [PMID: 22586376 DOI: 10.3389/fnsys.2012.00033] [Cited by in Crossref: 72] [Cited by in F6Publishing: 62] [Article Influence: 7.2] [Reference Citation Analysis]
92 Tsujino N, Sakurai T. Orexin/hypocretin: a neuropeptide at the interface of sleep, energy homeostasis, and reward system. Pharmacol Rev 2009;61:162-76. [PMID: 19549926 DOI: 10.1124/pr.109.001321] [Cited by in Crossref: 314] [Cited by in F6Publishing: 284] [Article Influence: 26.2] [Reference Citation Analysis]
93 Saper CB, Stornetta RL. Central Autonomic System. The Rat Nervous System. Elsevier; 2015. pp. 629-73. [DOI: 10.1016/b978-0-12-374245-2.00023-1] [Cited by in Crossref: 8] [Article Influence: 1.1] [Reference Citation Analysis]
94 Chen W, Zeitzer JM, Mignot E. The Hypocretins and Narcolepsy. In: de Lecea L, Sutcliffe JG, editors. Hypocretins. Boston: Springer US; 2005. pp. 235-54. [DOI: 10.1007/0-387-25446-3_15] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
95 Sakuma Y. Neural Substrates for Sexual Preference and Motivation in the Female and Male Rat. Annals of the New York Academy of Sciences 2008;1129:55-60. [DOI: 10.1196/annals.1417.009] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 2.6] [Reference Citation Analysis]
96 Nardone R, Bergmann J, Lochner P, Caleri F, Kunz A, Staffen W, Tezzon F, Ladurner G, Trinka E, Golaszewski S. Modafinil reverses hypoexcitability of the motor cortex in narcoleptic patients: a TMS study. Sleep Med 2010;11:870-5. [PMID: 20810311 DOI: 10.1016/j.sleep.2010.05.007] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
97 de Lecea L, Sutcliffe JG, Fabre V. Hypocretins/orexins as integrators of physiological information: lessons from mutant animals. Neuropeptides 2002;36:85-95. [PMID: 12359500 DOI: 10.1054/npep.2002.0892] [Cited by in Crossref: 43] [Cited by in F6Publishing: 41] [Article Influence: 2.2] [Reference Citation Analysis]
98 Gaykema RP, Park SM, McKibbin CR, Goehler LE. Lipopolysaccharide suppresses activation of the tuberomammillary histaminergic system concomitant with behavior: a novel target of immune-sensory pathways. Neuroscience 2008;152:273-87. [PMID: 18082968 DOI: 10.1016/j.neuroscience.2007.10.042] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 1.9] [Reference Citation Analysis]
99 Hasegawa E, Yanagisawa M, Sakurai T, Mieda M. Orexin neurons suppress narcolepsy via 2 distinct efferent pathways. J Clin Invest 2014;124:604-16. [PMID: 24382351 DOI: 10.1172/JCI71017] [Cited by in Crossref: 96] [Cited by in F6Publishing: 49] [Article Influence: 12.0] [Reference Citation Analysis]
100 Chiu HY, Lo WC, Chiang YH, Tsai PS. The effects of sleep on the relationship between brain injury severity and recovery of cognitive function: a prospective study. Int J Nurs Stud 2014;51:892-9. [PMID: 24246095 DOI: 10.1016/j.ijnurstu.2013.10.020] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
101 Svensson E, Apergis-Schoute J, Burnstock G, Nusbaum MP, Parker D, Schiöth HB. General Principles of Neuronal Co-transmission: Insights From Multiple Model Systems. Front Neural Circuits 2018;12:117. [PMID: 30728768 DOI: 10.3389/fncir.2018.00117] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 9.0] [Reference Citation Analysis]
102 Maruyama T, Matsumura M, Sakai N, Nishino S. The pathogenesis of narcolepsy, current treatments and prospective therapeutic targets. Expert Opinion on Orphan Drugs 2015;4:63-82. [DOI: 10.1517/21678707.2016.1117973] [Reference Citation Analysis]
103 Schwartz JC. The histamine H3 receptor: from discovery to clinical trials with pitolisant. Br J Pharmacol 2011;163:713-21. [PMID: 21615387 DOI: 10.1111/j.1476-5381.2011.01286.x] [Cited by in Crossref: 192] [Cited by in F6Publishing: 170] [Article Influence: 17.5] [Reference Citation Analysis]
104 Ikeno T, Yan L. A comparison of the orexin receptor distribution in the brain between diurnal Nile grass rats (Arvicanthis niloticus) and nocturnal mice (Mus musculus). Brain Res 2018;1690:89-95. [PMID: 29630859 DOI: 10.1016/j.brainres.2018.04.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
105 Huang Z, Qu W, Eguchi N, Chu M, Okada T, Sato Y, Sakata M, Mochizuki T, Urade Y, Hayaishi O. Histaminergic role in sleep-wake cycle of orexin, adenosine, and prostaglandin E2 and D2. Sleep and Biological Rhythms 2004;2:S21-2. [DOI: 10.1111/j.1479-8425.2004.00094.x] [Reference Citation Analysis]
106 Overall KL. Medical differentials with potential behavioral manifestations. Vet Clin North Am Small Anim Pract 2003;33:213-29. [PMID: 12701509 DOI: 10.1016/s0195-5616(02)00103-1] [Cited by in Crossref: 26] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
107 Faraco JH, Appelbaum L, Marin W, Gaus SE, Mourrain P, Mignot E. Regulation of hypocretin (orexin) expression in embryonic zebrafish. J Biol Chem 2006;281:29753-61. [PMID: 16867991 DOI: 10.1074/jbc.M605811200] [Cited by in Crossref: 80] [Cited by in F6Publishing: 39] [Article Influence: 5.0] [Reference Citation Analysis]
108 Narita M, Niikura K, Nanjo-niikura K, Narita M, Furuya M, Yamashita A, Saeki M, Matsushima Y, Imai S, Shimizu T, Asato M, Kuzumaki N, Okutsu D, Miyoshi K, Suzuki M, Tsukiyama Y, Konno M, Yomiya K, Matoba M, Suzuki T. Sleep disturbances in a neuropathic pain-like condition in the mouse are associated with altered GABAergic transmission in the cingulate cortex. Pain 2011;152:1358-72. [DOI: 10.1016/j.pain.2011.02.016] [Cited by in Crossref: 50] [Cited by in F6Publishing: 43] [Article Influence: 4.5] [Reference Citation Analysis]
109 Mileykovskiy BY, Kiyashchenko LI, Siegel JM. Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 2005;46:787-98. [PMID: 15924864 DOI: 10.1016/j.neuron.2005.04.035] [Cited by in Crossref: 579] [Cited by in F6Publishing: 545] [Article Influence: 34.1] [Reference Citation Analysis]
110 Cole AG, Stroke IL, Qin L, Hussain Z, Simhadri S, Brescia M, Waksmunski FS, Strohl B, Tellew JE, Williams JP, Saunders J, Appell KC, Henderson I, Webb ML. Synthesis of (3,4-dimethoxyphenoxy)alkylamino acetamides as orexin-2 receptor antagonists. Bioorganic & Medicinal Chemistry Letters 2008;18:5420-3. [DOI: 10.1016/j.bmcl.2008.09.038] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
111 Bonaventure P, Dugovic C, Shireman B, Preville C, Yun S, Lord B, Nepomuceno D, Wennerholm M, Lovenberg T, Carruthers N, Fitz SD, Shekhar A, Johnson PL. Evaluation of JNJ-54717793 a Novel Brain Penetrant Selective Orexin 1 Receptor Antagonist in Two Rat Models of Panic Attack Provocation. Front Pharmacol 2017;8:357. [PMID: 28649201 DOI: 10.3389/fphar.2017.00357] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 4.4] [Reference Citation Analysis]
112 Pintwala S, Peever J. Circuit mechanisms of sleepiness and cataplexy in narcolepsy. Current Opinion in Neurobiology 2017;44:50-8. [DOI: 10.1016/j.conb.2017.02.010] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.6] [Reference Citation Analysis]
113 Shibuya K, Funaki Y, Hiraoka K, Yoshikawa T, Naganuma F, Miyake M, Watanuki S, Sato H, Tashiro M, Yanai K. [(11)C]Doxepin binding to histamine H1 receptors in living human brain: reproducibility during attentive waking and circadian rhythm. Front Syst Neurosci 2012;6:45. [PMID: 22701403 DOI: 10.3389/fnsys.2012.00045] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
114 Mistlberger RE. Circadian regulation of sleep in mammals: Role of the suprachiasmatic nucleus. Brain Research Reviews 2005;49:429-54. [DOI: 10.1016/j.brainresrev.2005.01.005] [Cited by in Crossref: 204] [Cited by in F6Publishing: 173] [Article Influence: 12.0] [Reference Citation Analysis]
115 Nishino S, Okuro M. Emerging treatments for narcolepsy and its related disorders. Expert Opin Emerg Drugs 2010;15:139-58. [PMID: 20166851 DOI: 10.1517/14728210903559852] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
116 Passani MB, Blandina P, Torrealba F. The histamine H3 receptor and eating behavior. J Pharmacol Exp Ther 2011;336:24-9. [PMID: 20864503 DOI: 10.1124/jpet.110.171306] [Cited by in Crossref: 51] [Cited by in F6Publishing: 45] [Article Influence: 4.3] [Reference Citation Analysis]
117 Haxhiu MA, Rust CF, Brooks C, Kc P. CNS determinants of sleep-related worsening of airway functions: implications for nocturnal asthma. Respir Physiol Neurobiol 2006;151:1-30. [PMID: 16198640 DOI: 10.1016/j.resp.2005.07.009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
118 Troxler T, Feuerbach D, Zhang X, Yang CR, Lagu B, Perrone M, Wang TL, Briner K, Bock MG, Auberson YP. The Discovery of LML134, a Histamine H3 Receptor Inverse Agonist for the Clinical Treatment of Excessive Sleep Disorders. ChemMedChem 2019;14:1238-47. [PMID: 30957954 DOI: 10.1002/cmdc.201900176] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
119 Tiligada E, Zampeli E, Sander K, Stark H. Histamine H 3 and H 4 receptors as novel drug targets. Expert Opinion on Investigational Drugs 2009;18:1519-31. [DOI: 10.1517/14728220903188438] [Cited by in Crossref: 102] [Cited by in F6Publishing: 94] [Article Influence: 7.8] [Reference Citation Analysis]
120 Martin G, Fabre V, Siggins GR, de Lecea L. Interaction of the hypocretins with neurotransmitters in the nucleus accumbens. Regul Pept 2002;104:111-7. [PMID: 11830285 DOI: 10.1016/s0167-0115(01)00354-8] [Cited by in Crossref: 63] [Cited by in F6Publishing: 22] [Article Influence: 3.2] [Reference Citation Analysis]
121 Shan L, Bao AM, Swaab DF. The human histaminergic system in neuropsychiatric disorders. Trends Neurosci 2015;38:167-77. [PMID: 25575625 DOI: 10.1016/j.tins.2014.12.008] [Cited by in Crossref: 60] [Cited by in F6Publishing: 58] [Article Influence: 8.6] [Reference Citation Analysis]
122 Bayer L, Serafin M, Eggermann E, Saint-Mleux B, Machard D, Jones BE, Mühlethaler M. Exclusive postsynaptic action of hypocretin-orexin on sublayer 6b cortical neurons. J Neurosci 2004;24:6760-4. [PMID: 15282280 DOI: 10.1523/JNEUROSCI.1783-04.2004] [Cited by in Crossref: 110] [Cited by in F6Publishing: 46] [Article Influence: 6.5] [Reference Citation Analysis]
123 Nishino S, Mignot E. Wake-Promoting Medications: Basic Mechanisms and Pharmacology. Principles and Practice of Sleep Medicine. Elsevier; 2005. pp. 468-83. [DOI: 10.1016/b0-72-160797-7/50045-8] [Cited by in Crossref: 7] [Article Influence: 0.4] [Reference Citation Analysis]
124 Mochizuki T, Arrigoni E, Marcus JN, Clark EL, Yamamoto M, Honer M, Borroni E, Lowell BB, Elmquist JK, Scammell TE. Orexin receptor 2 expression in the posterior hypothalamus rescues sleepiness in narcoleptic mice. Proc Natl Acad Sci U S A 2011;108:4471-6. [PMID: 21368172 DOI: 10.1073/pnas.1012456108] [Cited by in Crossref: 85] [Cited by in F6Publishing: 90] [Article Influence: 7.7] [Reference Citation Analysis]
125 Tsujino N, Sakurai T. Role of orexin in modulating arousal, feeding, and motivation. Front Behav Neurosci 2013;7:28. [PMID: 23616752 DOI: 10.3389/fnbeh.2013.00028] [Cited by in Crossref: 135] [Cited by in F6Publishing: 136] [Article Influence: 15.0] [Reference Citation Analysis]
126 Pekala D, Blasiak T, Raastad M, Lewandowski MH. The influence of orexins on the firing rate and pattern of rat intergeniculate leaflet neurons - electrophysiological and immunohistological studies: Influence of orexins on intergeniculate leaflet. European Journal of Neuroscience 2011;34:1406-18. [DOI: 10.1111/j.1460-9568.2011.07868.x] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 2.7] [Reference Citation Analysis]
127 Urade Y, Hayaishi O. Prostaglandin D2 and sleep/wake regulation. Sleep Med Rev 2011;15:411-8. [PMID: 22024172 DOI: 10.1016/j.smrv.2011.08.003] [Cited by in Crossref: 101] [Cited by in F6Publishing: 84] [Article Influence: 10.1] [Reference Citation Analysis]
128 Sil’kis IG. A Neurochemical Approach to the Search for Drugs for the Treatment of Symptoms of Alzheimer’s Disease. Neurochem J 2018;12:15-22. [DOI: 10.1134/s1819712418010130] [Reference Citation Analysis]
129 Brooks S, Black J. Novel therapies for narcolepsy. Expert Opinion on Investigational Drugs 2005;11:1821-7. [DOI: 10.1517/13543784.11.12.1821] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
130 Nishino S. The hypothalamic peptidergic system, hypocretin/orexin and vigilance control. Neuropeptides 2007;41:117-33. [DOI: 10.1016/j.npep.2007.01.003] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 2.3] [Reference Citation Analysis]
131 Gravett N, Bhagwandin A, Fuxe K, Manger PR. Distribution of orexin-A immunoreactive neurons and their terminal networks in the brain of the rock hyrax, Procavia capensis. J Chem Neuroanat 2011;41:86-96. [PMID: 21126575 DOI: 10.1016/j.jchemneu.2010.11.005] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 1.8] [Reference Citation Analysis]
132 Qu WM, Huang ZL, Xu XH, Matsumoto N, Urade Y. Dopaminergic D1 and D2 receptors are essential for the arousal effect of modafinil. J Neurosci 2008;28:8462-9. [PMID: 18716204 DOI: 10.1523/JNEUROSCI.1819-08.2008] [Cited by in Crossref: 154] [Cited by in F6Publishing: 93] [Article Influence: 11.0] [Reference Citation Analysis]
133 Schöne C, Cao ZF, Apergis-Schoute J, Adamantidis A, Sakurai T, Burdakov D. Optogenetic probing of fast glutamatergic transmission from hypocretin/orexin to histamine neurons in situ. J Neurosci 2012;32:12437-43. [PMID: 22956835 DOI: 10.1523/JNEUROSCI.0706-12.2012] [Cited by in Crossref: 95] [Cited by in F6Publishing: 66] [Article Influence: 9.5] [Reference Citation Analysis]
134 Szentirmai E, Hajdu I, Obal F Jr, Krueger JM. Ghrelin-induced sleep responses in ad libitum fed and food-restricted rats. Brain Res 2006;1088:131-40. [PMID: 16631138 DOI: 10.1016/j.brainres.2006.02.072] [Cited by in Crossref: 60] [Cited by in F6Publishing: 55] [Article Influence: 3.8] [Reference Citation Analysis]
135 Scammell TE, Jackson AC, Franks NP, Wisden W, Dauvilliers Y. Histamine: neural circuits and new medications. Sleep 2019;42. [PMID: 30239935 DOI: 10.1093/sleep/zsy183] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
136 Li YD, Luo YJ, Xu W, Ge J, Cherasse Y, Wang YQ, Lazarus M, Qu WM, Huang ZL. Ventral pallidal GABAergic neurons control wakefulness associated with motivation through the ventral tegmental pathway. Mol Psychiatry 2021;26:2912-28. [PMID: 33057171 DOI: 10.1038/s41380-020-00906-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
137 Seifinejad A, Vassalli A, Tafti M. Neurobiology of cataplexy. Sleep Med Rev 2021;60:101546. [PMID: 34607185 DOI: 10.1016/j.smrv.2021.101546] [Reference Citation Analysis]
138 Ikeda-Sagara M, Ozaki T, Shahid M, Morioka E, Wada K, Honda K, Hori A, Matsuya Y, Toyooka N, Ikeda M. Induction of prolonged, continuous slow-wave sleep by blocking cerebral H₁ histamine receptors in rats. Br J Pharmacol 2012;165:167-82. [PMID: 21699505 DOI: 10.1111/j.1476-5381.2011.01547.x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.3] [Reference Citation Analysis]
139 Luppi P, Fort P. Neurochemistry of sleep. Sleep Disorders. Elsevier; 2011. pp. 173-90. [DOI: 10.1016/b978-0-444-52006-7.00011-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
140 Kumar S, Szymusiak R, Bashir T, Suntsova N, Rai S, McGinty D, Alam MN. Inactivation of median preoptic nucleus causes c-Fos expression in hypocretin- and serotonin-containing neurons in anesthetized rat. Brain Res 2008;1234:66-77. [PMID: 18722360 DOI: 10.1016/j.brainres.2008.07.115] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.1] [Reference Citation Analysis]
141 Mochizuki T, Scammell TE. Orexin/Hypocretin: Wired for Wakefulness. Current Biology 2003;13:R563-4. [DOI: 10.1016/s0960-9822(03)00474-3] [Cited by in Crossref: 15] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
142 Torrealba F, Yanagisawa M, Saper CB. Colocalization of orexin a and glutamate immunoreactivity in axon terminals in the tuberomammillary nucleus in rats. Neuroscience 2003;119:1033-44. [PMID: 12831862 DOI: 10.1016/s0306-4522(03)00238-0] [Cited by in Crossref: 134] [Cited by in F6Publishing: 70] [Article Influence: 7.1] [Reference Citation Analysis]
143 Liu X, Zhang B, Xu X, Huang Z, Qu W. Lesions of suprachiasmatic nucleus modify sleep structure but do not alter the total amount of daily sleep in rats: SCN lesions change sleep structure. Sleep and Biological Rhythms 2012;10:293-301. [DOI: 10.1111/j.1479-8425.2012.00572.x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
144 Kukkonen JP, Holmqvist T, Ammoun S, Åkerman KEO. Functions of the orexinergic/hypocretinergic system. American Journal of Physiology-Cell Physiology 2002;283:C1567-91. [DOI: 10.1152/ajpcell.00055.2002] [Cited by in Crossref: 200] [Cited by in F6Publishing: 188] [Article Influence: 10.0] [Reference Citation Analysis]
145 Fort P, Bassetti CL, Luppi P. Alternating vigilance states: new insights regarding neuronal networks and mechanisms. European Journal of Neuroscience 2009;29:1741-53. [DOI: 10.1111/j.1460-9568.2009.06722.x] [Cited by in Crossref: 96] [Cited by in F6Publishing: 70] [Article Influence: 7.4] [Reference Citation Analysis]
146 Ishizuka T, Murotani T, Yamatodani A. Modanifil activates the histaminergic system through the orexinergic neurons. Neurosci Lett 2010;483:193-6. [PMID: 20696213 DOI: 10.1016/j.neulet.2010.08.005] [Cited by in Crossref: 42] [Cited by in F6Publishing: 33] [Article Influence: 3.5] [Reference Citation Analysis]
147 Haas H, Panula P. The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci 2003;4:121-30. [PMID: 12563283 DOI: 10.1038/nrn1034] [Cited by in Crossref: 585] [Cited by in F6Publishing: 551] [Article Influence: 30.8] [Reference Citation Analysis]
148 Smagin GN, Song D, Budac DP, Waller JA, Li Y, Pehrson AL, Sánchez C. Histamine may contribute to vortioxetine's procognitive effects; possibly through an orexigenic mechanism. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2016;68:25-30. [DOI: 10.1016/j.pnpbp.2016.03.001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
149 Yamanaka A, Tsujino N, Funahashi H, Honda K, Guan JL, Wang QP, Tominaga M, Goto K, Shioda S, Sakurai T. Orexins activate histaminergic neurons via the orexin 2 receptor. Biochem Biophys Res Commun 2002;290:1237-45. [PMID: 11811995 DOI: 10.1006/bbrc.2001.6318] [Cited by in Crossref: 201] [Cited by in F6Publishing: 188] [Article Influence: 10.1] [Reference Citation Analysis]
150 Xu Y, Wang T. LOVIT Is a Putative Vesicular Histamine Transporter Required in Drosophila for Vision. Cell Rep 2019;27:1327-1333.e3. [PMID: 31042461 DOI: 10.1016/j.celrep.2019.04.024] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
151 Kaushik MK, Kaul SC, Wadhwa R, Yanagisawa M, Urade Y, Lakshmana MK. Triethylene glycol, an active component of Ashwagandha (Withania somnifera) leaves, is responsible for sleep induction. PLoS ONE 2017;12:e0172508. [DOI: 10.1371/journal.pone.0172508] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
152 Weinhold SL, Seeck-Hirschner M, Nowak A, Hallschmid M, Göder R, Baier PC. The effect of intranasal orexin-A (hypocretin-1) on sleep, wakefulness and attention in narcolepsy with cataplexy. Behav Brain Res 2014;262:8-13. [PMID: 24406723 DOI: 10.1016/j.bbr.2013.12.045] [Cited by in Crossref: 60] [Cited by in F6Publishing: 61] [Article Influence: 7.5] [Reference Citation Analysis]
153 Inutsuka A, Yamanaka A. The physiological role of orexin/hypocretin neurons in the regulation of sleep/wakefulness and neuroendocrine functions. Front Endocrinol (Lausanne) 2013;4:18. [PMID: 23508038 DOI: 10.3389/fendo.2013.00018] [Cited by in Crossref: 88] [Cited by in F6Publishing: 79] [Article Influence: 9.8] [Reference Citation Analysis]
154 Sakurai T. Roles of orexin/hypocretin in regulation of sleep/wakefulness and energy homeostasis. Sleep Med Rev 2005;9:231-41. [PMID: 15961331 DOI: 10.1016/j.smrv.2004.07.007] [Cited by in Crossref: 196] [Cited by in F6Publishing: 172] [Article Influence: 11.5] [Reference Citation Analysis]
155 Mieda M, Willie JT, Hara J, Sinton CM, Sakurai T, Yanagisawa M. Orexin peptides prevent cataplexy and improve wakefulness in an orexin neuron-ablated model of narcolepsy in mice. Proc Natl Acad Sci U S A 2004;101:4649-54. [PMID: 15070772 DOI: 10.1073/pnas.0400590101] [Cited by in Crossref: 217] [Cited by in F6Publishing: 193] [Article Influence: 12.1] [Reference Citation Analysis]
156 Herwig A, Ivanova EA, Lydon H, Barrett P, Steinlechner S, Loudon AS. Histamine H3 receptor and orexin A expression during daily torpor in the Djungarian hamster (Phodopus sungorus). J Neuroendocrinol 2007;19:1001-7. [PMID: 18001330 DOI: 10.1111/j.1365-2826.2007.01620.x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 0.9] [Reference Citation Analysis]
157 Auberson YP, Troxler T, Zhang X, Yang CR, Fendt M, Feuerbach D, Liu Y, Lagu B, Lerchner A, Perrone M, Lei L, Zhang C, Wang C, Wang T, Bock MG. Ergoline-Derived Inverse Agonists of the Human H3 Receptor for the Treatment of Narcolepsy. ChemMedChem 2014. [DOI: 10.1002/cmdc.201402055] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
158 Hong Z, Huang Z, Qu W, Eguchi N, Urade Y, Hayaishi O. An adenosine A2A receptor agonist induces sleep by increasing GABA release in the tuberomammillary nucleus to inhibit histaminergic systems in rats: CGS21680 inhibits histaminergic systems via GABA. Journal of Neurochemistry 2005;92:1542-9. [DOI: 10.1111/j.1471-4159.2004.02991.x] [Cited by in Crossref: 83] [Cited by in F6Publishing: 70] [Article Influence: 4.9] [Reference Citation Analysis]
159 Oh Y, Jang D, Sonn JY, Choe J. Histamine-HisCl1 receptor axis regulates wake-promoting signals in Drosophila melanogaster. PLoS One 2013;8:e68269. [PMID: 23844178 DOI: 10.1371/journal.pone.0068269] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 2.6] [Reference Citation Analysis]
160 Sakurai T. Reverse pharmacology of orexin: from an orphan GPCR to integrative physiology. Regulatory Peptides 2005;126:3-10. [DOI: 10.1016/j.regpep.2004.08.006] [Cited by in Crossref: 41] [Cited by in F6Publishing: 35] [Article Influence: 2.4] [Reference Citation Analysis]
161 Cao M, Guilleminault C. Hypocretin and its emerging role as a target for treatment of sleep disorders. Curr Neurol Neurosci Rep 2011;11:227-34. [PMID: 21170610 DOI: 10.1007/s11910-010-0172-9] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 1.7] [Reference Citation Analysis]
162 Nevárez N, de Lecea L. Recent advances in understanding the roles of hypocretin/orexin in arousal, affect, and motivation. F1000Res 2018;7:F1000 Faculty Rev-1421. [PMID: 30254737 DOI: 10.12688/f1000research.15097.1] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 5.8] [Reference Citation Analysis]
163 Stahl SM. Selective histamine H1 antagonism: novel hypnotic and pharmacologic actions challenge classical notions of antihistamines. CNS Spectr 2008;13:1027-38. [PMID: 19179941 DOI: 10.1017/s1092852900017089] [Cited by in Crossref: 48] [Cited by in F6Publishing: 16] [Article Influence: 3.7] [Reference Citation Analysis]
164 Wang Q, Yue XF, Qu WM, Tan R, Zheng P, Urade Y, Huang ZL. Morphine inhibits sleep-promoting neurons in the ventrolateral preoptic area via mu receptors and induces wakefulness in rats. Neuropsychopharmacology. 2013;38:791-801. [PMID: 23303062 DOI: 10.1038/npp.2012.244] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 2.8] [Reference Citation Analysis]
165 Nishino S, Mignot E. Narcolepsy and cataplexy. Sleep Disorders. Elsevier; 2011. pp. 783-814. [DOI: 10.1016/b978-0-444-52007-4.00007-2] [Cited by in Crossref: 32] [Cited by in F6Publishing: 9] [Article Influence: 2.9] [Reference Citation Analysis]
166 Oishi Y, Takata Y, Taguchi Y, Kohtoh S, Urade Y, Lazarus M. Polygraphic Recording Procedure for Measuring Sleep in Mice. J Vis Exp 2016;:e53678. [PMID: 26863349 DOI: 10.3791/53678] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
167 Bassetti CL, Baumann CR, Dauvilliers Y, Croyal M, Robert P, Schwartz J. Cerebrospinal fluid histamine levels are decreased in patients with narcolepsy and excessive daytime sleepiness of other origin: CSF histamine and sleepiness/narcolepsy. Journal of Sleep Research 2010;19:620-3. [DOI: 10.1111/j.1365-2869.2010.00819.x] [Cited by in Crossref: 48] [Cited by in F6Publishing: 36] [Article Influence: 4.0] [Reference Citation Analysis]
168 de Lecea L. Hypocretins and the neurobiology of sleep-wake mechanisms. Prog Brain Res 2012;198:15-24. [PMID: 22813967 DOI: 10.1016/B978-0-444-59489-1.00003-3] [Cited by in Crossref: 51] [Cited by in F6Publishing: 27] [Article Influence: 5.1] [Reference Citation Analysis]
169 Benarroch EE, Schmeichel AM, Parisi JE, Low PA. Histaminergic tuberomammillary neuron loss in multiple system atrophy and dementia with Lewy bodies: TUBEROMAMMILLARY NUCLEUS IN SYNUCLEINOPATHIES. Mov Disord 2015;30:1133-9. [DOI: 10.1002/mds.26287] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
170 Wang Y, Takata Y, Li R, Zhang Z, Zhang M, Urade Y, Qu W, Huang Z. Doxepin and diphenhydramine increased non-rapid eye movement sleep through blockade of histamine H1 receptors. Pharmacology Biochemistry and Behavior 2015;129:56-64. [DOI: 10.1016/j.pbb.2014.12.002] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 2.1] [Reference Citation Analysis]
171 Liu Z, Xu XH, Liu TY, Hong ZY, Urade Y, Huang ZL, Qu WM. Safranal enhances non-rapid eye movement sleep in pentobarbital-treated mice. CNS Neurosci Ther 2012;18:623-30. [PMID: 22632633 DOI: 10.1111/j.1755-5949.2012.00334.x] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
172 Etori K, Saito YC, Tsujino N, Sakurai T. Effects of a newly developed potent orexin-2 receptor-selective antagonist, compound 1 m, on sleep/wakefulness states in mice. Front Neurosci 2014;8:8. [PMID: 24550770 DOI: 10.3389/fnins.2014.00008] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.4] [Reference Citation Analysis]
173 Parmentier R, Ohtsu H, Djebbara-Hannas Z, Valatx JL, Watanabe T, Lin JS. Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: evidence for the role of brain histamine in behavioral and sleep-wake control. J Neurosci 2002;22:7695-711. [PMID: 12196593 [PMID: 12196593 DOI: 10.1523/jneurosci.22-17-07695.2002] [Cited by in Crossref: 286] [Article Influence: 14.3] [Reference Citation Analysis]
174 Terao A, Steininger TL, Morairty SR, Kilduff TS. Age-related changes in histamine receptor mRNA levels in the mouse brain. Neurosci Lett 2004;355:81-4. [PMID: 14729240 DOI: 10.1016/j.neulet.2003.10.061] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 1.4] [Reference Citation Analysis]
175 Wang YQ, Li R, Wu X, Zhu F, Takata Y, Zhang Z, Zhang MQ, Li SQ, Qu WM. Fasting activated histaminergic neurons and enhanced arousal effect of caffeine in mice. Pharmacol Biochem Behav 2015;133:164-73. [PMID: 25895691 DOI: 10.1016/j.pbb.2015.04.003] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
176 Jia X, Yan J, Xia J, Xiong J, Wang T, Chen Y, Qi A, Yang N, Fan S, Ye J, Hu Z. Arousal effects of orexin A on acute alcohol intoxication-induced coma in rats. Neuropharmacology 2012;62:775-83. [PMID: 21924278 DOI: 10.1016/j.neuropharm.2011.08.047] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.5] [Reference Citation Analysis]
177 de Lecea L, Huerta R. Hypocretin (orexin) regulation of sleep-to-wake transitions. Front Pharmacol. 2014;5:16. [PMID: 24575043 DOI: 10.3389/fphar.2014.00016] [Cited by in Crossref: 68] [Cited by in F6Publishing: 69] [Article Influence: 8.5] [Reference Citation Analysis]
178 Mobarakeh JI, Takahashi K, Sakurada S, Nishino S, Watanabe H, Kato M, Naghdi N, Yanai K. Enhanced antinociception by intracerebroventricularly administered orexin A in histamine H1 or H2 receptor gene knockout mice. Pain 2005;118:254-62. [DOI: 10.1016/j.pain.2005.08.024] [Cited by in Crossref: 33] [Cited by in F6Publishing: 25] [Article Influence: 1.9] [Reference Citation Analysis]
179 Witkin J, Nelson D. Selective histamine H3 receptor antagonists for treatment of cognitive deficiencies and other disorders of the central nervous system. Pharmacology & Therapeutics 2004;103:1-20. [DOI: 10.1016/j.pharmthera.2004.05.001] [Cited by in Crossref: 103] [Cited by in F6Publishing: 102] [Article Influence: 5.7] [Reference Citation Analysis]
180 Alam MN, Kumar S, Bashir T, Suntsova N, Methippara MM, Szymusiak R, McGinty D. GABA-mediated control of hypocretin- but not melanin-concentrating hormone-immunoreactive neurones during sleep in rats. J Physiol 2005;563:569-82. [PMID: 15613374 DOI: 10.1113/jphysiol.2004.076927] [Cited by in Crossref: 100] [Cited by in F6Publishing: 92] [Article Influence: 5.6] [Reference Citation Analysis]
181 Hirase M, Ishida T, Kamei C. Rebound insomnia induced by abrupt withdrawal of hypnotics in sleep-disturbed rats. Eur J Pharmacol 2008;597:46-50. [PMID: 18789918 DOI: 10.1016/j.ejphar.2008.08.024] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
182 Tang H, Zhu Q, Li W, Qin S, Gong Y, Wang H, Shioda S, Li S, Huang J, Liu B, Fang Y, Liu Y, Wang S, Guo Y, Xia Q, Guo Y, Xu Z. Neurophysiology and Treatment of Disorders of Consciousness Induced by Traumatic Brain Injury: Orexin Signaling as a Potential Therapeutic Target. Curr Pharm Des 2019;25:4208-20. [PMID: 31663471 DOI: 10.2174/1381612825666191029101830] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
183 Dugovic C, Shelton JE, Aluisio LE, Fraser IC, Jiang X, Sutton SW, Bonaventure P, Yun S, Li X, Lord B, Dvorak CA, Carruthers NI, Lovenberg TW. Blockade of orexin-1 receptors attenuates orexin-2 receptor antagonism-induced sleep promotion in the rat. J Pharmacol Exp Ther 2009;330:142-51. [PMID: 19363060 DOI: 10.1124/jpet.109.152009] [Cited by in Crossref: 150] [Cited by in F6Publishing: 154] [Article Influence: 11.5] [Reference Citation Analysis]
184 Franks NP, Zecharia AY. Sleep and general anesthesia. Can J Anaesth 2011;58:139-48. [PMID: 21170623 DOI: 10.1007/s12630-010-9420-3] [Cited by in Crossref: 56] [Cited by in F6Publishing: 54] [Article Influence: 4.7] [Reference Citation Analysis]
185 Hunt NJ, Waters KA, Machaalani R. Orexin receptors in the developing piglet hypothalamus, and effects of nicotine and intermittent hypercapnic hypoxia exposures. Brain Res 2013;1508:73-82. [PMID: 23500635 DOI: 10.1016/j.brainres.2013.03.003] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
186 Bayer L, Eggermann E, Saint-Mleux B, Machard D, Jones BE, Mühlethaler M, Serafin M. Selective action of orexin (hypocretin) on nonspecific thalamocortical projection neurons. J Neurosci 2002;22:7835-9. [PMID: 12223534 [PMID: 12223534 DOI: 10.1523/jneurosci.22-18-07835.2002] [Cited by in Crossref: 107] [Article Influence: 5.4] [Reference Citation Analysis]
187 Cox BM. Pharmacology of Opioid Drugs. In: Pasternak GW, editor. The Opiate Receptors. Totowa: Humana Press; 2011. pp. 23-57. [DOI: 10.1007/978-1-60761-993-2_3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
188 Gerashchenko D, Chou TC, Blanco-Centurion CA, Saper CB, Shiromani PJ. Effects of lesions of the histaminergic tuberomammillary nucleus on spontaneous sleep in rats. Sleep 2004;27:1275-81. [PMID: 15586780 DOI: 10.1093/sleep/27.7.1275] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 2.3] [Reference Citation Analysis]
189 Riveros ME, Perdomo G, Torrealba F. Infralimbic cortex controls core body temperature in a histamine dependent manner. Physiol Behav 2014;128:1-8. [PMID: 24480074 DOI: 10.1016/j.physbeh.2014.01.011] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
190 Fujita A, Bonnavion P, Wilson MH, Mickelsen LE, Bloit J, de Lecea L, Jackson AC. Hypothalamic Tuberomammillary Nucleus Neurons: Electrophysiological Diversity and Essential Role in Arousal Stability. J Neurosci 2017;37:9574-92. [PMID: 28874450 DOI: 10.1523/JNEUROSCI.0580-17.2017] [Cited by in Crossref: 30] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
191 Xia J, Chen X, Song C, Ye J, Yu Z, Hu Z. Postsynaptic excitation of prefrontal cortical pyramidal neurons by hypocretin-1/orexin A through the inhibition of potassium currents. J Neurosci Res 2005;82:729-36. [PMID: 16247802 DOI: 10.1002/jnr.20667] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 2.3] [Reference Citation Analysis]
192 Alam MA, Mallick BN. Glutamic acid stimulation of the perifornical-lateral hypothalamic area promotes arousal and inhibits non-REM/REM sleep. Neurosci Lett. 2008;439:281-286. [PMID: 18534750 DOI: 10.1016/j.neulet.2008.05.042] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 2.2] [Reference Citation Analysis]
193 Ortega JE, Katner J, Davis R, Wade M, Nisenbaum L, Nomikos GG, Svensson KA, Perry KW. Modulation of neurotransmitter release in orexin/hypocretin-2 receptor knockout mice: a microdialysis study. J Neurosci Res 2012;90:588-96. [PMID: 22038504 DOI: 10.1002/jnr.22781] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
194 Nishino S, Kotorii N. Overview of Management of Narcolepsy. In: Goswami M, Pandi-perumal SR, Thorpy MJ, editors. Narcolepsy. New York: Springer; 2010. pp. 251-65. [DOI: 10.1007/978-1-4419-0854-4_23] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
195 Willie JT, Takahira H, Shibahara M, Hara J, Nomiyama M, Yanagisawa M, Sakurai T. Ectopic overexpression of orexin alters sleep/wakefulness states and muscle tone regulation during REM sleep in mice. J Mol Neurosci 2011;43:155-61. [PMID: 20711757 DOI: 10.1007/s12031-010-9437-7] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 2.3] [Reference Citation Analysis]
196 Akça ÖF, Uzun N, Kılınç İ. Orexin A in adolescents with anxiety disorders. International Journal of Psychiatry in Clinical Practice 2020;24:127-34. [DOI: 10.1080/13651501.2019.1711425] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
197 Nishino S. The hypocretin/orexin system in health and disease. Biol Psychiatry 2003;54:87-95. [PMID: 12873797 DOI: 10.1016/s0006-3223(03)00349-4] [Cited by in Crossref: 56] [Cited by in F6Publishing: 10] [Article Influence: 2.9] [Reference Citation Analysis]
198 Yanai K, Tashiro M. The physiological and pathophysiological roles of neuronal histamine: an insight from human positron emission tomography studies. Pharmacol Ther 2007;113:1-15. [PMID: 16890992 DOI: 10.1016/j.pharmthera.2006.06.008] [Cited by in Crossref: 121] [Cited by in F6Publishing: 91] [Article Influence: 7.6] [Reference Citation Analysis]
199 Hong ZY, Huang ZL, Qu WM, Eguchi N. Orexin A promotes histamine, but not norepinephrine or serotonin, release in frontal cortex of mice. Acta Pharmacol Sin 2005;26:155-9. [PMID: 15663891 DOI: 10.1111/j.1745-7254.2005.00523.x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 0.9] [Reference Citation Analysis]
200 Chen X, Chen L, Du Y. Orexin-A increases the firing activity of hippocampal CA1 neurons through orexin-1 receptors: Orexin-A in Hippocampal CA1 Neurons. Journal of Neuroscience Research 2017;95:1415-26. [DOI: 10.1002/jnr.23975] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 5.0] [Reference Citation Analysis]
201 Vernon SD, Nicholson A, Rajeevan M, Dimulescu I, Cameron B, Whistler T, Lloyd A. Correlation of psycho-neuroendocrine-immune (PNI) gene expression with symptoms of acute infectious mononucleosis. Brain Res 2006;1068:1-6. [PMID: 16376318 DOI: 10.1016/j.brainres.2005.11.013] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.4] [Reference Citation Analysis]
202 Xu Q, Xu X, Qu W, Lazarus M, Urade Y, Huang Z. A mouse model mimicking human first night effect for the evaluation of hypnotics. Pharmacology Biochemistry and Behavior 2014;116:129-36. [DOI: 10.1016/j.pbb.2013.11.029] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 2.4] [Reference Citation Analysis]
203 Nardone R, Bergmann J, Kunz A, Caleri F, Seidl M, Tezzon F, Gerstenbrand F, Trinka E, Golaszewski S. Cortical Excitability Changes in Patients with Sleep-Wake Disturbances after Traumatic Brain Injury. Journal of Neurotrauma 2011;28:1165-71. [DOI: 10.1089/neu.2010.1748] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 3.1] [Reference Citation Analysis]
204 Okada T, Mochizuki T, Huang Z, Eguchi N, Sugita Y, Urade Y, Hayaishi O. Dominant localization of adenosine deaminase in leptomeninges and involvement of the enzyme in sleep. Biochemical and Biophysical Research Communications 2003;312:29-34. [DOI: 10.1016/j.bbrc.2003.09.220] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 1.1] [Reference Citation Analysis]
205 Brown JA, Woodworth HL, Leinninger GM. To ingest or rest? Specialized roles of lateral hypothalamic area neurons in coordinating energy balance. Front Syst Neurosci 2015;9:9. [PMID: 25741247 DOI: 10.3389/fnsys.2015.00009] [Cited by in Crossref: 47] [Cited by in F6Publishing: 51] [Article Influence: 6.7] [Reference Citation Analysis]
206 Xu XH, Qiu MH, Dong H, Qu WM, Urade Y, Huang ZL. GABA transporter-1 inhibitor NO-711 alters the EEG power spectra and enhances non-rapid eye movement sleep during the active phase in mice. Eur Neuropsychopharmacol 2014;24:585-94. [PMID: 24080505 DOI: 10.1016/j.euroneuro.2013.09.002] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
207 Nakahara K, Fujiwara Y, Tsukahara T, Yamagami H, Tanigawa T, Shiba M, Tominaga K, Watanabe T, Urade Y, Arakawa T. Acid reflux directly causes sleep disturbances in rat with chronic esophagitis. PLoS One 2014;9:e106969. [PMID: 25215524 DOI: 10.1371/journal.pone.0106969] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
208 Zha X, Xu X. Dissecting the hypothalamic pathways that underlie innate behaviors. Neurosci Bull 2015;31:629-48. [PMID: 26552801 DOI: 10.1007/s12264-015-1564-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
209 Wang Y, Tu Z, Xu X, Li R, Qu W, Urade Y, Huang Z. Acute administration of fluoxetine normalizes rapid eye movement sleep abnormality, but not depressive behaviors in olfactory bulbectomized rats: Effect of fluoxetine on REM sleep and depression. Journal of Neurochemistry 2012;120:314-24. [DOI: 10.1111/j.1471-4159.2011.07558.x] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 2.3] [Reference Citation Analysis]
210 Sakurai T. Orexin deficiency and narcolepsy. Curr Opin Neurobiol 2013;23:760-6. [PMID: 23663890 DOI: 10.1016/j.conb.2013.04.007] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 3.8] [Reference Citation Analysis]
211 Zhang Z, Liu WY, Diao YP, Xu W, Zhong YH, Zhang JY, Lazarus M, Liu YY, Qu WM, Huang ZL. Superior Colliculus GABAergic Neurons Are Essential for Acute Dark Induction of Wakefulness in Mice. Curr Biol 2019;29:637-644.e3. [PMID: 30713103 DOI: 10.1016/j.cub.2018.12.031] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 6.3] [Reference Citation Analysis]
212 Tanida M, Niijima A, Shen J, Yamada S, Sawai H, Fukuda Y, Nagai K. Dose-Different Effects of Orexin-A on the Renal Sympathetic Nerve and Blood Pressure in Urethane-Anesthetized Rats. Exp Biol Med (Maywood) 2006;231:1616-25. [DOI: 10.1177/153537020623101006] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 3.8] [Reference Citation Analysis]
213 Yokogawa T, Marin W, Faraco J, Pézeron G, Appelbaum L, Zhang J, Rosa F, Mourrain P, Mignot E. Characterization of sleep in zebrafish and insomnia in hypocretin receptor mutants. PLoS Biol 2007;5:e277. [PMID: 17941721 DOI: 10.1371/journal.pbio.0050277] [Cited by in Crossref: 237] [Cited by in F6Publishing: 220] [Article Influence: 16.9] [Reference Citation Analysis]
214 Ahmadi-soleimani SM, Mianbandi V, Azizi H, Azhdari-zarmehri H, Ghaemi-jandabi M, Abbasi-mazar A, Mohajer Y, Darana SP. Coregulation of sleep-pain physiological interplay by orexin system: An unprecedented review. Behavioural Brain Research 2020;391:112650. [DOI: 10.1016/j.bbr.2020.112650] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
215 Jalal B. The neuropharmacology of sleep paralysis hallucinations: serotonin 2A activation and a novel therapeutic drug. Psychopharmacology (Berl) 2018;235:3083-91. [PMID: 30288594 DOI: 10.1007/s00213-018-5042-1] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
216 Yoshimatsu H. Hypothalamic neuronal histamine regulates body weight through the modulation of diurnal feeding rhythm. Nutrition 2008;24:827-31. [PMID: 18725079 DOI: 10.1016/j.nut.2008.06.014] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 1.7] [Reference Citation Analysis]
217 Gross TD, Chou S, Bonneville D, Gross RS, Wang P, Campopiano O, Ouellette MA, Zook SE, Reddy JP, Moree WJ, Jovic F, Chopade S. Chemical Development of NBI-75043. Use of a Flow Reactor to Circumvent a Batch-Limited Metal−Halogen Exchange Reaction. Org Process Res Dev 2008;12:929-39. [DOI: 10.1021/op800071m] [Cited by in Crossref: 26] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
218 Eriksson KS, Sergeeva OA, Selbach O, Haas HL. Orexin (hypocretin)/dynorphin neurons control GABAergic inputs to tuberomammillary neurons. Eur J Neurosci 2004;19:1278-84. [PMID: 15016085 DOI: 10.1111/j.1460-9568.2004.03243.x] [Cited by in Crossref: 76] [Cited by in F6Publishing: 75] [Article Influence: 4.2] [Reference Citation Analysis]
219 Qu W, Huang Z, Matsumoto N, Xu X, Urade Y. Drug delivery through a chronically implanted stomach catheter improves efficiency of evaluating wake-promoting components. Journal of Neuroscience Methods 2008;175:58-63. [DOI: 10.1016/j.jneumeth.2008.08.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
220 Nishino S. Clinical and neurobiological aspects of narcolepsy. Sleep Med 2007;8:373-99. [PMID: 17470414 DOI: 10.1016/j.sleep.2007.03.008] [Cited by in Crossref: 122] [Cited by in F6Publishing: 85] [Article Influence: 8.1] [Reference Citation Analysis]
221 Xue Y, Yang YT, Liu HY, Chen WF, Chen AQ, Sheng Q, Chen XY, Wang Y, Chen H, Liu HX, Pang YY, Chen L. Orexin-A increases the activity of globus pallidus neurons in both normal and parkinsonian rats. Eur J Neurosci 2016;44:2247-57. [PMID: 27336845 DOI: 10.1111/ejn.13323] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
222 Dénes A, Boldogkoi Z, Uhereczky G, Hornyák A, Rusvai M, Palkovits M, Kovács KJ. Central autonomic control of the bone marrow: multisynaptic tract tracing by recombinant pseudorabies virus. Neuroscience 2005;134:947-63. [PMID: 15994021 DOI: 10.1016/j.neuroscience.2005.03.060] [Cited by in Crossref: 87] [Cited by in F6Publishing: 77] [Article Influence: 5.1] [Reference Citation Analysis]
223 Hersey M, Bacon AK, Bailey LG, Coggiano MA, Newman AH, Leggio L, Tanda G. Psychostimulant Use Disorder, an Unmet Therapeutic Goal: Can Modafinil Narrow the Gap? Front Neurosci 2021;15:656475. [PMID: 34121988 DOI: 10.3389/fnins.2021.656475] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
224 Sakurai T. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci 2007;8:171-81. [DOI: 10.1038/nrn2092] [Cited by in Crossref: 763] [Cited by in F6Publishing: 716] [Article Influence: 50.9] [Reference Citation Analysis]
225 Rye DB. Inability to replicate cerebrospinal fluid histamine deficits in the primary hypersomnias: a back to the drawing board moment. Sleep 2012;35:1315-7. [PMID: 23024426 DOI: 10.5665/sleep.2098] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
226 Beatrice Passani M, Blandina P, Browman K, Fox G. Cognitive Functions, Attention- Defi cit Hyperactivity Disorders, and Alzheimer's Disease. In: Vohora D, editor. The Third Histamine Receptor. CRC Press; 2008. pp. 213-39. [DOI: 10.1201/9781420053937.secc] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
227 Guillaumin MCC, Burdakov D. Neuropeptides as Primary Mediators of Brain Circuit Connectivity. Front Neurosci 2021;15:644313. [PMID: 33776641 DOI: 10.3389/fnins.2021.644313] [Reference Citation Analysis]
228 Paul JR, Davis JA, Goode LK, Becker BK, Fusilier A, Meador-Woodruff A, Gamble KL. Circadian regulation of membrane physiology in neural oscillators throughout the brain. Eur J Neurosci 2020;51:109-38. [PMID: 30633846 DOI: 10.1111/ejn.14343] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 7.3] [Reference Citation Analysis]
229 Peitsaro N, Sundvik M, Anichtchik OV, Kaslin J, Panula P. Identification of zebrafish histamine H1, H2 and H3 receptors and effects of histaminergic ligands on behavior. Biochemical Pharmacology 2007;73:1205-14. [DOI: 10.1016/j.bcp.2007.01.014] [Cited by in Crossref: 55] [Cited by in F6Publishing: 52] [Article Influence: 3.7] [Reference Citation Analysis]
230 Kong J, Shepel PN, Holden CP, Mackiewicz M, Pack AI, Geiger JD. Brain glycogen decreases with increased periods of wakefulness: implications for homeostatic drive to sleep. J Neurosci 2002;22:5581-7. [PMID: 12097509 DOI: 20026500] [Cited by in Crossref: 196] [Article Influence: 9.8] [Reference Citation Analysis]
231 Federici LM, Caliman IF, Molosh AI, Fitz SD, Truitt WA, Bonaventure P, Carpenter JS, Shekhar A, Johnson PL. Hypothalamic orexin's role in exacerbated cutaneous vasodilation responses to an anxiogenic stimulus in a surgical menopause model. Psychoneuroendocrinology 2016;65:127-37. [PMID: 26765933 DOI: 10.1016/j.psyneuen.2015.12.011] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
232 Malherbe P, Borroni E, Pinard E, Wettstein JG, Knoflach F. Biochemical and Electrophysiological Characterization of Almorexant, a Dual Orexin 1 Receptor (OX 1 )/Orexin 2 Receptor (OX 2 ) Antagonist: Comparison with Selective OX 1 and OX 2 Antagonists. Mol Pharmacol 2009;76:618-31. [DOI: 10.1124/mol.109.055152] [Cited by in Crossref: 54] [Cited by in F6Publishing: 58] [Article Influence: 4.2] [Reference Citation Analysis]
233 Baumann CR, Bassetti CL. Hypocretins (orexins) and sleep–wake disorders. The Lancet Neurology 2005;4:673-82. [DOI: 10.1016/s1474-4422(05)70196-4] [Cited by in Crossref: 102] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
234 Mieda M, Sakurai T. Orexin (hypocretin) receptor agonists and antagonists for treatment of sleep disorders. Rationale for development and current status. CNS Drugs 2013;27:83-90. [PMID: 23359095 DOI: 10.1007/s40263-012-0036-8] [Cited by in Crossref: 62] [Cited by in F6Publishing: 62] [Article Influence: 6.9] [Reference Citation Analysis]
235 Nishino S. Hypothalamus, hypocretins/orexin, and vigilance control. Sleep Disorders. Elsevier; 2011. pp. 765-82. [DOI: 10.1016/b978-0-444-52007-4.00006-0] [Cited by in Crossref: 19] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
236 Ohno K, Sakurai T. Orexin neuronal circuitry: role in the regulation of sleep and wakefulness. Front Neuroendocrinol 2008;29:70-87. [PMID: 17910982 DOI: 10.1016/j.yfrne.2007.08.001] [Cited by in Crossref: 178] [Cited by in F6Publishing: 162] [Article Influence: 11.9] [Reference Citation Analysis]
237 Alexandre C, Andermann ML, Scammell TE. Control of arousal by the orexin neurons. Curr Opin Neurobiol 2013;23:752-9. [PMID: 23683477 DOI: 10.1016/j.conb.2013.04.008] [Cited by in Crossref: 72] [Cited by in F6Publishing: 74] [Article Influence: 8.0] [Reference Citation Analysis]
238 Machaalani R, Hunt NJ, Waters KA. Effects of changes in energy homeostasis and exposure of noxious insults on the expression of orexin (hypocretin) and its receptors in the brain. Brain Res 2013;1526:102-22. [PMID: 23830852 DOI: 10.1016/j.brainres.2013.06.035] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.2] [Reference Citation Analysis]
239 Thakkar MM. Histamine in the regulation of wakefulness. Sleep Med Rev 2011;15:65-74. [PMID: 20851648 DOI: 10.1016/j.smrv.2010.06.004] [Cited by in Crossref: 111] [Cited by in F6Publishing: 102] [Article Influence: 9.3] [Reference Citation Analysis]
240 Kodama T, Kimura M. Arousal effects of orexin-A correlate with GLU release from the locus coeruleus in rats. Peptides 2002;23:1673-81. [DOI: 10.1016/s0196-9781(02)00109-2] [Cited by in Crossref: 35] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
241 Qu WM, Xu XH, Yan MM, Wang YQ, Urade Y, Huang ZL. Essential role of dopamine D2 receptor in the maintenance of wakefulness, but not in homeostatic regulation of sleep, in mice. J Neurosci 2010;30:4382-9. [PMID: 20335474 DOI: 10.1523/JNEUROSCI.4936-09.2010] [Cited by in Crossref: 111] [Cited by in F6Publishing: 51] [Article Influence: 9.3] [Reference Citation Analysis]
242 Cangioli I, Baldi E, Mannaioni PF, Bucherelli C, Blandina P, Passani MB. Activation of histaminergic H 3 receptors in the rat basolateral amygdala improves expression of fear memory and enhances acetylcholine release: Facilitation of memory and ACh release by histamine. European Journal of Neuroscience 2002;16:521-8. [DOI: 10.1046/j.1460-9568.2002.02092.x] [Cited by in Crossref: 69] [Cited by in F6Publishing: 62] [Article Influence: 3.5] [Reference Citation Analysis]
243 Mizoguchi A, Eguchi N, Kimura K, Kiyohara Y, Qu WM, Huang ZL, Mochizuki T, Lazarus M, Kobayashi T, Kaneko T, Narumiya S, Urade Y, Hayaishi O. Dominant localization of prostaglandin D receptors on arachnoid trabecular cells in mouse basal forebrain and their involvement in the regulation of non-rapid eye movement sleep. Proc Natl Acad Sci U S A 2001;98:11674-9. [PMID: 11562489 DOI: 10.1073/pnas.201398898] [Cited by in Crossref: 128] [Cited by in F6Publishing: 106] [Article Influence: 6.1] [Reference Citation Analysis]
244 Bäckberg M, Hervieu G, Wilson S, Meister B. Orexin receptor-1 (OX-R1) immunoreactivity in chemically identified neurons of the hypothalamus: focus on orexin targets involved in control of food and water intake. Eur J Neurosci 2002;15:315-28. [PMID: 11849298 DOI: 10.1046/j.0953-816x.2001.01859.x] [Cited by in Crossref: 180] [Cited by in F6Publishing: 171] [Article Influence: 9.0] [Reference Citation Analysis]
245 Stanojlovic M, Pallais Yllescas JP Jr, Mavanji V, Kotz C. Chemogenetic activation of orexin/hypocretin neurons ameliorates aging-induced changes in behavior and energy expenditure. Am J Physiol Regul Integr Comp Physiol 2019;316:R571-83. [PMID: 30726119 DOI: 10.1152/ajpregu.00383.2018] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
246 Ishizuka T, Murotani T, Yamatodani A. Action of Modafinil Through Histaminergic and Orexinergic Neurons. Sleep Hormones. Elsevier; 2012. pp. 259-78. [DOI: 10.1016/b978-0-12-394623-2.00014-7] [Cited by in Crossref: 23] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
247 Mäkelä KA, Wigren HK, Zant JC, Sakurai T, Alhonen L, Kostin A, Porkka-Heiskanen T, Herzig KH. Characterization of sleep-wake patterns in a novel transgenic mouse line overexpressing human prepro-orexin/hypocretin. Acta Physiol (Oxf) 2010;198:237-49. [PMID: 20003098 DOI: 10.1111/j.1748-1716.2009.02068.x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.0] [Reference Citation Analysis]
248 Vanni-Mercier G, Gigout S, Debilly G, Lin JS. Waking selective neurons in the posterior hypothalamus and their response to histamine H3-receptor ligands: an electrophysiological study in freely moving cats. Behav Brain Res 2003;144:227-41. [PMID: 12946612 DOI: 10.1016/s0166-4328(03)00091-3] [Cited by in Crossref: 75] [Cited by in F6Publishing: 30] [Article Influence: 3.9] [Reference Citation Analysis]
249 Haas HL, Lin J. Waking with the hypothalamus. Pflugers Arch - Eur J Physiol 2012;463:31-42. [DOI: 10.1007/s00424-011-0996-4] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
250 Kaur S, Thankachan S, Begum S, Blanco-Centurion C, Sakurai T, Yanagisawa M, Shiromani PJ. Entrainment of temperature and activity rhythms to restricted feeding in orexin knock out mice. Brain Res 2008;1205:47-54. [PMID: 18343358 DOI: 10.1016/j.brainres.2008.02.026] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 2.9] [Reference Citation Analysis]
251 Yan M, Xu X, Huang Z, Yao M, Urade Y, Qu W. Selection of optimal epoch duration in assessment of rodent sleep-wake profiles: Epoch duration selection in EEG analysis. Sleep and Biological Rhythms 2011;9:46-55. [DOI: 10.1111/j.1479-8425.2010.00484.x] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
252 Pintwala SK, Peever J. Brain Circuits Underlying Narcolepsy. Neuroscientist 2021;:10738584211052263. [PMID: 34704497 DOI: 10.1177/10738584211052263] [Reference Citation Analysis]
253 Xu XH, Qu WM, Bian MJ, Huang F, Fei J, Urade Y, Huang ZL. Essential roles of GABA transporter-1 in controlling rapid eye movement sleep and in increased slow wave activity after sleep deprivation. PLoS One 2013;8:e75823. [PMID: 24155871 DOI: 10.1371/journal.pone.0075823] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
254 Iyer M, Essner RA, Klingenberg B, Carter ME. Identification of discrete, intermingled hypocretin neuronal populations. J Comp Neurol 2018;526:2937-54. [PMID: 30019757 DOI: 10.1002/cne.24490] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
255 Chen L, Brown RE, McKenna JT, McCarley RW. Animal models of narcolepsy. CNS Neurol Disord Drug Targets 2009;8:296-308. [PMID: 19689311 DOI: 10.2174/187152709788921717] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 1.5] [Reference Citation Analysis]
256 Huang ZL, Mochizuki T, Qu WM, Hong ZY, Watanabe T, Urade Y, Hayaishi O. Altered sleep-wake characteristics and lack of arousal response to H3 receptor antagonist in histamine H1 receptor knockout mice. Proc Natl Acad Sci U S A 2006;103:4687-92. [PMID: 16537376 DOI: 10.1073/pnas.0600451103] [Cited by in Crossref: 123] [Cited by in F6Publishing: 113] [Article Influence: 7.7] [Reference Citation Analysis]
257 Diniz Behn CG, Kopell N, Brown EN, Mochizuki T, Scammell TE. Delayed orexin signaling consolidates wakefulness and sleep: physiology and modeling. J Neurophysiol 2008;99:3090-103. [PMID: 18417630 DOI: 10.1152/jn.01243.2007] [Cited by in Crossref: 51] [Cited by in F6Publishing: 47] [Article Influence: 3.6] [Reference Citation Analysis]
258 John J, Kodama T, Siegel JM. Caffeine promotes glutamate and histamine release in the posterior hypothalamus. Am J Physiol Regul Integr Comp Physiol 2014;307:R704-10. [PMID: 25031227 DOI: 10.1152/ajpregu.00114.2014] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
259 Li FW, Deurveilher S, Semba K. Behavioural and neuronal activation after microinjections of AMPA and NMDA into the perifornical lateral hypothalamus in rats. Behav Brain Res 2011;224:376-86. [PMID: 21723327 DOI: 10.1016/j.bbr.2011.06.021] [Cited by in Crossref: 7] [Cited by in F6Publishing: 17] [Article Influence: 0.6] [Reference Citation Analysis]
260 Abe H, Honma S, Ohtsu H, Honma K. Circadian rhythms in behavior and clock gene expressions in the brain of mice lacking histidine decarboxylase. Brain Res Mol Brain Res 2004;124:178-87. [PMID: 15135226 DOI: 10.1016/j.molbrainres.2004.02.015] [Cited by in Crossref: 52] [Cited by in F6Publishing: 49] [Article Influence: 2.9] [Reference Citation Analysis]
261 Wood S, Sage JR, Shuman T, Anagnostaras SG. Psychostimulants and cognition: a continuum of behavioral and cognitive activation. Pharmacol Rev 2014;66:193-221. [PMID: 24344115 DOI: 10.1124/pr.112.007054] [Cited by in Crossref: 146] [Cited by in F6Publishing: 124] [Article Influence: 16.2] [Reference Citation Analysis]
262 Ishizuka T, Sakamoto Y, Sakurai T, Yamatodani A. Modafinil increases histamine release in the anterior hypothalamus of rats. Neurosci Lett 2003;339:143-6. [PMID: 12614915 DOI: 10.1016/s0304-3940(03)00006-5] [Cited by in Crossref: 86] [Cited by in F6Publishing: 23] [Article Influence: 4.5] [Reference Citation Analysis]
263 Yang Y, Long K, Wang Y, Li L, Shi J, Liu J, Kong L, Yu L, Ding J, Huang Z, Wang W, Zhan C. NIR Light-Triggered Quantitative Pulsed Drug Release. Adv Healthc Mater 2021;:e2102362. [PMID: 34851048 DOI: 10.1002/adhm.202102362] [Reference Citation Analysis]
264 Yasuda T, Masaki T, Kakuma T, Hara M, Nawata T, Katsuragi I, Yoshimatsu H. Dual regulatory effects of orexins on sympathetic nerve activity innervating brown adipose tissue in rats. Endocrinology 2005;146:2744-8. [PMID: 15746258 DOI: 10.1210/en.2004-1226] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 2.2] [Reference Citation Analysis]
265 Qu WM, Huang ZL, Xu XH, Aritake K, Eguchi N, Nambu F, Narumiya S, Urade Y, Hayaishi O. Lipocalin-type prostaglandin D synthase produces prostaglandin D2 involved in regulation of physiological sleep. Proc Natl Acad Sci U S A 2006;103:17949-54. [PMID: 17093043 DOI: 10.1073/pnas.0608581103] [Cited by in Crossref: 110] [Cited by in F6Publishing: 101] [Article Influence: 6.9] [Reference Citation Analysis]
266 Williams RH, Chee MJ, Kroeger D, Ferrari LL, Maratos-Flier E, Scammell TE, Arrigoni E. Optogenetic-mediated release of histamine reveals distal and autoregulatory mechanisms for controlling arousal. J Neurosci 2014;34:6023-9. [PMID: 24760861 DOI: 10.1523/JNEUROSCI.4838-13.2014] [Cited by in Crossref: 59] [Cited by in F6Publishing: 39] [Article Influence: 7.4] [Reference Citation Analysis]
267 Arrang J. Histamine and Schizophrenia. Integrating the Neurobiology of Schizophrenia. Elsevier; 2007. pp. 247-87. [DOI: 10.1016/s0074-7742(06)78009-6] [Cited by in Crossref: 28] [Cited by in F6Publishing: 7] [Article Influence: 1.9] [Reference Citation Analysis]
268 Zeitzer JM, Kodama T, Buckmaster CL, Honda Y, Lyons DM, Nishino S, Mignot E. Time-course of cerebrospinal fluid histamine in the wake-consolidated squirrel monkey. J Sleep Res 2012;21:189-94. [PMID: 21910776 DOI: 10.1111/j.1365-2869.2011.00957.x] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.3] [Reference Citation Analysis]
269 Hirashima N, Tsunematsu T, Ichiki K, Tanaka H, Kilduff TS, Yamanaka A. Neuropeptide B induces slow wave sleep in mice. Sleep 2011;34:31-7. [PMID: 21203369 DOI: 10.1093/sleep/34.1.31] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
270 Baumann CR, Bassetti CL. Hypocretins (orexins): clinical impact of the discovery of a neurotransmitter. Sleep Medicine Reviews 2005;9:253-68. [DOI: 10.1016/j.smrv.2005.01.005] [Cited by in Crossref: 38] [Cited by in F6Publishing: 31] [Article Influence: 2.2] [Reference Citation Analysis]
271 Kanbayashi T, Kodama T, Kondo H, Satoh S, Inoue Y, Chiba S, Shimizu T, Nishino S. CSF histamine contents in narcolepsy, idiopathic hypersomnia and obstructive sleep apnea syndrome. Sleep 2009;32:181-7. [PMID: 19238805 DOI: 10.1093/sleep/32.2.181] [Cited by in Crossref: 118] [Cited by in F6Publishing: 85] [Article Influence: 9.1] [Reference Citation Analysis]
272 Schwartz MD, Nguyen AT, Warrier DR, Palmerston JB, Thomas AM, Morairty SR, Neylan TC, Kilduff TS. Locus Coeruleus and Tuberomammillary Nuclei Ablations Attenuate Hypocretin/Orexin Antagonist-Mediated REM Sleep. eNeuro. 2016;3:pii: ENEURO.0018-16.2016. [PMID: 27022631 DOI: 10.1523/eneuro.0018-16.2016] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
273 Huang ZL, Sato Y, Mochizuki T, Okada T, Qu WM, Yamatodani A, Urade Y, Hayaishi O. Prostaglandin E2 activates the histaminergic system via the EP4 receptor to induce wakefulness in rats. J Neurosci 2003;23:5975-83. [PMID: 12853415 [PMID: 12853415 DOI: 10.1523/jneurosci.23-14-05975.2003] [Cited by in Crossref: 50] [Article Influence: 2.6] [Reference Citation Analysis]
274 Zhang Z, Wang HJ, Wang DR, Qu WM, Huang ZL. Red light at intensities above 10 lx alters sleep-wake behavior in mice. Light Sci Appl 2017;6:e16231. [PMID: 30167247 DOI: 10.1038/lsa.2016.231] [Cited by in Crossref: 39] [Cited by in F6Publishing: 31] [Article Influence: 7.8] [Reference Citation Analysis]
275 Sutcliffe JG, de Lecea L. The hypocretins: Setting the arousal threshold. Nat Rev Neurosci 2002;3:339-48. [DOI: 10.1038/nrn808] [Cited by in Crossref: 310] [Cited by in F6Publishing: 293] [Article Influence: 15.5] [Reference Citation Analysis]
276 Shigemoto Y, Fujii Y, Shinomiya K, Kamei C. Participation of histaminergic H1 and noradrenergic α1 receptors in orexin A-induced wakefulness in rats. Brain Research 2004;1023:121-5. [DOI: 10.1016/j.brainres.2004.07.031] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 1.1] [Reference Citation Analysis]
277 Yin D, Dong H, Wang T, Hu Z, Cheng N, Qu W, Huang Z. Glutamate Activates the Histaminergic Tuberomammillary Nucleus and Increases Wakefulness in Rats. Neuroscience 2019;413:86-98. [DOI: 10.1016/j.neuroscience.2019.05.032] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
278 Xu T, Yang Y, Ward R, Gao L, Liu Y. Orexin receptors: Multi-functional therapeutic targets for sleeping disorders, eating disorders, drug addiction, cancers and other physiological disorders. Cellular Signalling 2013;25:2413-23. [DOI: 10.1016/j.cellsig.2013.07.025] [Cited by in Crossref: 68] [Cited by in F6Publishing: 65] [Article Influence: 7.6] [Reference Citation Analysis]
279 Liu YY, Liu TY, Qu WM, Hong ZY, Urade Y, Huang ZL. Dopamine is involved in food-anticipatory activity in mice. J Biol Rhythms 2012;27:398-409. [PMID: 23010662 DOI: 10.1177/0748730412455913] [Cited by in Crossref: 39] [Cited by in F6Publishing: 33] [Article Influence: 4.3] [Reference Citation Analysis]
280 Takahashi K, Lin JS, Sakai K. Neuronal activity of histaminergic tuberomammillary neurons during wake-sleep states in the mouse. J Neurosci 2006;26:10292-8. [PMID: 17021184 DOI: 10.1523/JNEUROSCI.2341-06.2006] [Cited by in Crossref: 202] [Cited by in F6Publishing: 101] [Article Influence: 12.6] [Reference Citation Analysis]
281 John J, Thannickal TC, McGregor R, Ramanathan L, Ohtsu H, Nishino S, Sakai N, Yamanaka A, Stone C, Cornford M, Siegel JM. Greatly increased numbers of histamine cells in human narcolepsy with cataplexy. Ann Neurol 2013;74:786-93. [PMID: 23821583 DOI: 10.1002/ana.23968] [Cited by in Crossref: 69] [Cited by in F6Publishing: 65] [Article Influence: 7.7] [Reference Citation Analysis]
282 Tyree SM, de Lecea L. Optogenetic Investigation of Arousal Circuits. Int J Mol Sci 2017;18:E1773. [PMID: 28809797 DOI: 10.3390/ijms18081773] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
283 Blandina P, Munari L, Giannoni P, Mariottini C, Passani MB. Histamine neuronal system as a therapeutic target for the treatment of cognitive disorders. Future Neurology 2010;5:543-55. [DOI: 10.2217/fnl.10.30] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
284 Kárpáti A, Yoshikawa T, Naganuma F, Matsuzawa T, Kitano H, Yamada Y, Yokoyama M, Futatsugi A, Mikoshiba K, Yanai K. Histamine H1 receptor on astrocytes and neurons controls distinct aspects of mouse behaviour. Sci Rep 2019;9:16451. [PMID: 31712580 DOI: 10.1038/s41598-019-52623-6] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 3.7] [Reference Citation Analysis]
285 Coborn JE, DePorter DP, Mavanji V, Sinton CM, Kotz CM, Billington CJ, Teske JA. Role of orexin-A in the ventrolateral preoptic area on components of total energy expenditure. Int J Obes (Lond) 2017;41:1256-62. [PMID: 28392556 DOI: 10.1038/ijo.2017.92] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
286 Cherasse Y, Aritake K, Oishi Y, Kaushik MK, Korkutata M, Urade Y. The Leptomeninges Produce Prostaglandin D2 Involved in Sleep Regulation in Mice. Front Cell Neurosci 2018;12:357. [PMID: 30364224 DOI: 10.3389/fncel.2018.00357] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
287 Zecharia AY, Nelson LE, Gent TC, Schumacher M, Jurd R, Rudolph U, Brickley SG, Maze M, Franks NP. The involvement of hypothalamic sleep pathways in general anesthesia: testing the hypothesis using the GABAA receptor beta3N265M knock-in mouse. J Neurosci 2009;29:2177-87. [PMID: 19228970 DOI: 10.1523/JNEUROSCI.4997-08.2009] [Cited by in Crossref: 73] [Cited by in F6Publishing: 52] [Article Influence: 5.6] [Reference Citation Analysis]
288 Zlomuzica A, Viggiano D, De Souza Silva MA, Ishizuka T, Carnevale UAG, Ruocco LA, Watanabe T, Sadile AG, Huston JP, Dere E. The histamine H1-receptor mediates the motivational effects of novelty. Eur J Neurosci 2008;27:1461-74. [DOI: 10.1111/j.1460-9568.2008.06115.x] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 3.0] [Reference Citation Analysis]
289 Thannickal TC, Siegel JM, Nienhuis R, Moore RY. Pattern of hypocretin (orexin) soma and axon loss, and gliosis, in human narcolepsy. Brain Pathol. 2003;13:340-351. [PMID: 12946023 DOI: 10.1111/j.1750-3639.2003.tb00033.x] [Cited by in Crossref: 85] [Cited by in F6Publishing: 78] [Article Influence: 4.5] [Reference Citation Analysis]
290 Cheng L, Liu J, Chen Z. The Histaminergic System in Neuropsychiatric Disorders. Biomolecules 2021;11:1345. [PMID: 34572558 DOI: 10.3390/biom11091345] [Reference Citation Analysis]
291 Winrow CJ, Gotter AL, Cox CD, Doran SM, Tannenbaum PL, Breslin MJ, Garson SL, Fox SV, Harrell CM, Stevens J, Reiss DR, Cui D, Coleman PJ, Renger JJ. Promotion of sleep by suvorexant-a novel dual orexin receptor antagonist. J Neurogenet 2011;25:52-61. [PMID: 21473737 DOI: 10.3109/01677063.2011.566953] [Cited by in Crossref: 179] [Cited by in F6Publishing: 166] [Article Influence: 16.3] [Reference Citation Analysis]
292 Wang W, Li Q, Pan Y, Zhu D, Wang L. Influence of hypercapnia on the synthesis of neuropeptides and their receptors in murine brain. Respirology 2013;18:102-7. [PMID: 22882587 DOI: 10.1111/j.1440-1843.2012.02245.x] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
293 Bisetti A, Cvetkovic V, Serafin M, Bayer L, Machard D, Jones B, Mühlethaler M. Excitatory action of hypocretin/orexin on neurons of the central medial amygdala. Neuroscience 2006;142:999-1004. [DOI: 10.1016/j.neuroscience.2006.07.018] [Cited by in Crossref: 73] [Cited by in F6Publishing: 68] [Article Influence: 4.6] [Reference Citation Analysis]
294 Hirai N, Nishino S. Recent Advances in the Treatment of Narcolepsy. Curr Treat Options Neurol 2011;13:437-57. [DOI: 10.1007/s11940-011-0137-6] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
295 Shahid IZ, Rahman AA, Pilowsky PM. Orexin and Central Regulation of Cardiorespiratory System. Sleep Hormones. Elsevier; 2012. pp. 159-84. [DOI: 10.1016/b978-0-12-394623-2.00009-3] [Cited by in Crossref: 27] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
296 Mieda M, Tsujino N, Sakurai T. Differential roles of orexin receptors in the regulation of sleep/wakefulness. Front Endocrinol (Lausanne) 2013;4:57. [PMID: 23730297 DOI: 10.3389/fendo.2013.00057] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 3.1] [Reference Citation Analysis]
297 Chu M, Huang ZL, Qu WM, Eguchi N, Yao MH, Urade Y. Extracellular histamine level in the frontal cortex is positively correlated with the amount of wakefulness in rats. Neurosci Res 2004;49:417-20. [PMID: 15236867 DOI: 10.1016/j.neures.2004.05.001] [Cited by in Crossref: 47] [Cited by in F6Publishing: 43] [Article Influence: 2.6] [Reference Citation Analysis]
298 Hayaishi O, Urade Y. Prostaglandin D2 in Sleep-Wake Regulation: Recent Progress and Perspectives. Neuroscientist 2002;8:12-5. [DOI: 10.1177/107385840200800105] [Cited by in Crossref: 73] [Cited by in F6Publishing: 66] [Article Influence: 12.2] [Reference Citation Analysis]
299 Stein T, Tonussi CR. Involvement of the tuberomammillary nucleus of the hypothalamus in the modulation of nociception and joint edema in a model of monoarthritis. Life Sci 2020;262:118521. [PMID: 33022280 DOI: 10.1016/j.lfs.2020.118521] [Reference Citation Analysis]
300 Kummangal BA, Kumar D, Mallick HN. Intracerebroventricular injection of orexin-2 receptor antagonist promotes REM sleep. Behavioural Brain Research 2013;237:59-62. [DOI: 10.1016/j.bbr.2012.09.015] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.4] [Reference Citation Analysis]
301 Dere E, Zlomuzica A, De Souza Silva M, Ruocco L, Sadile A, Huston J. Neuronal histamine and the interplay of memory, reinforcement and emotions. Behavioural Brain Research 2010;215:209-20. [DOI: 10.1016/j.bbr.2009.12.045] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 3.2] [Reference Citation Analysis]
302 Shinomiya K, Inoue T, Utsu Y, Tokunaga S, Masuoka T, Ohmori A, Kamei C. Effects of kava-kava extract on the sleep–wake cycle in sleep-disturbed rats. Psychopharmacology 2005;180:564-9. [DOI: 10.1007/s00213-005-2196-4] [Cited by in Crossref: 23] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
303 Nagao M, Takasaki K, Nogami A, Hirai Y, Moriyama H, Uchida N, Kubota K, Katsurabayashi S, Mishima K, Nishimura R, Iwasaki K. Effect of Yokukansan on sleep disturbance in a rat model of cerebrovascular dementia: Yokukansan reduces sleep disturbance. Traditional & Kampo Medicine 2014;1:19-26. [DOI: 10.1002/tkm2.1008] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 0.9] [Reference Citation Analysis]
304 Martelli D, Stanić D, Dutschmann M. The emerging role of the parabrachial complex in the generation of wakefulness drive and its implication for respiratory control. Respir Physiol Neurobiol 2013;188:318-23. [PMID: 23816598 DOI: 10.1016/j.resp.2013.06.019] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 2.8] [Reference Citation Analysis]
305 Ventzke K, Oster H, Jöhren O. Diurnal Regulation of the Orexin/Hypocretin System in Mice. Neuroscience 2019;421:59-68. [DOI: 10.1016/j.neuroscience.2019.10.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
306 Ishizuka T, Yamamoto Y, Yamatodani A. The effect of orexin-A and -B on the histamine release in the anterior hypothalamus in rats. Neurosci Lett 2002;323:93-6. [PMID: 11950501 DOI: 10.1016/s0304-3940(01)02552-6] [Cited by in Crossref: 35] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
307 Kaushik MK, Aritake K, Kamauchi S, Hayaishi O, Huang ZL, Lazarus M, Urade Y. Prostaglandin D(2) is crucial for seizure suppression and postictal sleep. Exp Neurol 2014;253:82-90. [PMID: 24333565 DOI: 10.1016/j.expneurol.2013.12.002] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.0] [Reference Citation Analysis]
308 Kelly JM, Bianchi MT. Mammalian sleep genetics. Neurogenetics 2012;13:287-326. [DOI: 10.1007/s10048-012-0341-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
309 Enevoldsen LH, Tindborg M, Hovmand NL, Christoffersen C, Ellingsgaard H, Suetta C, Stallknecht BM, Jennum PJ, Kjær A, Gammeltoft S. Functional brown adipose tissue and sympathetic activity after cold exposure in humans with type 1 narcolepsy. Sleep 2018;41. [DOI: 10.1093/sleep/zsy092] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
310 Zhang XY, Yu L, Zhuang QX, Zhu JN, Wang JJ. Central functions of the orexinergic system. Neurosci Bull 2013;29:355-65. [PMID: 23299718 DOI: 10.1007/s12264-012-1297-4] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 2.0] [Reference Citation Analysis]
311 Arrang J. Le récepteur H3 de l’histamine : une cible pour de nouveaux traitements des troubles de l’éveil et de la cognition. Annales Pharmaceutiques Françaises 2007;65:275-84. [DOI: 10.1016/s0003-4509(07)90047-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
312 Yamanaka A, Tabuchi S, Tsunematsu T, Fukazawa Y, Tominaga M. Orexin directly excites orexin neurons through orexin 2 receptor. J Neurosci. 2010;30:12642-12652. [PMID: 20861370 DOI: 10.1523/jneurosci.2120-10.2010] [Cited by in Crossref: 67] [Cited by in F6Publishing: 43] [Article Influence: 5.6] [Reference Citation Analysis]
313 Cui Y, Kataoka Y, Inui T, Mochizuki T, Onoe H, Matsumura K, Urade Y, Yamada H, Watanabe Y. Up-regulated neuronal COX-2 expression after cortical spreading depression is involved in non-REM sleep induction in rats. J Neurosci Res 2008;86:929-36. [DOI: 10.1002/jnr.21531] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.1] [Reference Citation Analysis]
314 Hoyer D, Jacobson LH. Orexin in sleep, addiction and more: Is the perfect insomnia drug at hand? Neuropeptides 2013;47:477-88. [DOI: 10.1016/j.npep.2013.10.009] [Cited by in Crossref: 67] [Cited by in F6Publishing: 61] [Article Influence: 7.4] [Reference Citation Analysis]
315 Chen C, Qu W, Qiu M, Xu X, Yao M, Urade Y, Huang Z. Modafinil exerts a dose-dependent antiepileptic effect mediated by adrenergic α1 and histaminergic H1 receptors in mice. Neuropharmacology 2007;53:534-41. [DOI: 10.1016/j.neuropharm.2007.06.017] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 1.1] [Reference Citation Analysis]
316 Xu C, Michelsen KA, Wu M, Morozova E, Panula P, Alreja M. Histamine innervation and activation of septohippocampal GABAergic neurones: involvement of local ACh release. J Physiol 2004;561:657-70. [PMID: 15486020 DOI: 10.1113/jphysiol.2004.071712] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 1.9] [Reference Citation Analysis]
317 Sakurai T, Mieda M, Tsujino N. The orexin system: roles in sleep/wake regulation: Orexin and sleep/wake state. Annals of the New York Academy of Sciences 2010;1200:149-61. [DOI: 10.1111/j.1749-6632.2010.05513.x] [Cited by in Crossref: 125] [Cited by in F6Publishing: 111] [Article Influence: 10.4] [Reference Citation Analysis]
318 John J, Ramanathan L, Siegel JM. Rapid changes in glutamate levels in the posterior hypothalamus across sleep-wake states in freely behaving rats. Am J Physiol Regul Integr Comp Physiol 2008;295:R2041-9. [PMID: 18815208 DOI: 10.1152/ajpregu.90541.2008] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 2.1] [Reference Citation Analysis]
319 Giannoni P, Medhurst AD, Passani MB, Giovannini MG, Ballini C, Corte LD, Blandina P. Regional differential effects of the novel histamine H3 receptor antagonist 6-[(3-cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-3-pyridinecarboxamide hydrochloride (GSK189254) on histamine release in the central nervous system of freely moving rats. J Pharmacol Exp Ther 2010;332:164-72. [PMID: 19815811 DOI: 10.1124/jpet.109.158444] [Cited by in Crossref: 50] [Cited by in F6Publishing: 51] [Article Influence: 3.8] [Reference Citation Analysis]
320 Torrealba F, Riveros ME, Contreras M, Valdes JL. Histamine and motivation. Front Syst Neurosci 2012;6:51. [PMID: 22783171 DOI: 10.3389/fnsys.2012.00051] [Cited by in Crossref: 38] [Cited by in F6Publishing: 37] [Article Influence: 3.8] [Reference Citation Analysis]
321 Zecharia AY, Yu X, Götz T, Ye Z, Carr DR, Wulff P, Bettler B, Vyssotski AL, Brickley SG, Franks NP, Wisden W. GABAergic inhibition of histaminergic neurons regulates active waking but not the sleep-wake switch or propofol-induced loss of consciousness. J Neurosci 2012;32:13062-75. [PMID: 22993424 DOI: 10.1523/JNEUROSCI.2931-12.2012] [Cited by in Crossref: 59] [Cited by in F6Publishing: 41] [Article Influence: 5.9] [Reference Citation Analysis]
322 Haas HL, Sergeeva OA, Selbach O. Histamine in the nervous system. Physiol Rev 2008;88:1183-241. [PMID: 18626069 DOI: 10.1152/physrev.00043.2007] [Cited by in Crossref: 707] [Cited by in F6Publishing: 671] [Article Influence: 50.5] [Reference Citation Analysis]
323 Shan L, Dauvilliers Y, Siegel JM. Interactions of the histamine and hypocretin systems in CNS disorders. Nat Rev Neurol 2015;11:401-13. [PMID: 26100750 DOI: 10.1038/nrneurol.2015.99] [Cited by in Crossref: 56] [Cited by in F6Publishing: 55] [Article Influence: 8.0] [Reference Citation Analysis]
324 Upton N. In Vivo Pharmacology of Orexin (Hypocretin) Receptors. In: de Lecea L, Sutcliffe JG, editors. Hypocretins. Boston: Springer US; 2005. pp. 205-20. [DOI: 10.1007/0-387-25446-3_13] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
325 Mamelak M. Narcolepsy and depression and the neurobiology of gammahydroxybutyrate. Prog Neurobiol 2009;89:193-219. [PMID: 19654034 DOI: 10.1016/j.pneurobio.2009.07.004] [Cited by in Crossref: 47] [Cited by in F6Publishing: 38] [Article Influence: 3.6] [Reference Citation Analysis]
326 Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW. Control of sleep and wakefulness. Physiol Rev 2012;92:1087-187. [PMID: 22811426 DOI: 10.1152/physrev.00032.2011] [Cited by in Crossref: 700] [Cited by in F6Publishing: 590] [Article Influence: 70.0] [Reference Citation Analysis]
327 Horowitz SS, Blanchard J, Morin LP. Medial vestibular connections with the hypocretin (orexin) system. J Comp Neurol 2005;487:127-46. [DOI: 10.1002/cne.20521] [Cited by in Crossref: 39] [Cited by in F6Publishing: 43] [Article Influence: 2.3] [Reference Citation Analysis]
328 Scammell TE, Winrow CJ. Orexin receptors: pharmacology and therapeutic opportunities. Annu Rev Pharmacol Toxicol 2011;51:243-66. [PMID: 21034217 DOI: 10.1146/annurev-pharmtox-010510-100528] [Cited by in Crossref: 202] [Cited by in F6Publishing: 194] [Article Influence: 18.4] [Reference Citation Analysis]
329 John J, Wu M, Boehmer LN, Siegel JM. Cataplexy-Active Neurons in the Hypothalamus. Neuron 2004;42:619-34. [DOI: 10.1016/s0896-6273(04)00247-8] [Cited by in Crossref: 131] [Cited by in F6Publishing: 69] [Article Influence: 7.3] [Reference Citation Analysis]
330 Mieda M. The roles of orexins in sleep/wake regulation. Neuroscience Research 2017;118:56-65. [DOI: 10.1016/j.neures.2017.03.015] [Cited by in Crossref: 42] [Cited by in F6Publishing: 39] [Article Influence: 8.4] [Reference Citation Analysis]
331 Franks NP. General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat Rev Neurosci. 2008;9:370-386. [PMID: 18425091 DOI: 10.1038/nrn2372] [Cited by in Crossref: 752] [Cited by in F6Publishing: 686] [Article Influence: 53.7] [Reference Citation Analysis]
332 Hondo M, Nagai K, Ohno K, Kisanuki Y, Willie JT, Watanabe T, Yanagisawa M, Sakurai T. Histamine-1 receptor is not required as a downstream effector of orexin-2 receptor in maintenance of basal sleep/wake states. Acta Physiol (Oxf) 2010;198:287-94. [PMID: 19694625 DOI: 10.1111/j.1748-1716.2009.02032.x] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 2.6] [Reference Citation Analysis]
333 Schömig E, Lazar A, Gründemann D. Extraneuronal Monoamine Transporter and Organic Cation Transporters 1 and 2: A Review of Transport Efficiency. In: Sitte HH, Freissmuth M, editors. Neurotransmitter Transporters. Berlin/Heidelberg: Springer-Verlag; 2006. pp. 151-80. [DOI: 10.1007/3-540-29784-7_8] [Cited by in Crossref: 65] [Cited by in F6Publishing: 63] [Reference Citation Analysis]
334 Sun Y, Jiang SY, Ni J, Luo YJ, Chen CR, Hong ZY, Yanagawa Y, Qu WM, Wang L, Huang ZL. Ethanol inhibits histaminergic neurons in mouse tuberomammillary nucleus slices via potentiating GABAergic transmission onto the neurons at both pre- and postsynaptic sites. Acta Pharmacol Sin 2016;37:1325-36. [PMID: 27498778 DOI: 10.1038/aps.2016.66] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
335 Sundvik M, Kudo H, Toivonen P, Rozov S, Chen YC, Panula P. The histaminergic system regulates wakefulness and orexin/hypocretin neuron development via histamine receptor H1 in zebrafish. FASEB J 2011;25:4338-47. [PMID: 21885652 DOI: 10.1096/fj.11-188268] [Cited by in Crossref: 47] [Cited by in F6Publishing: 50] [Article Influence: 4.3] [Reference Citation Analysis]
336 Takahashi K, Lin JS, Sakai K. Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse. Neuroscience 2008;153:860-70. [PMID: 18424001 DOI: 10.1016/j.neuroscience.2008.02.058] [Cited by in Crossref: 161] [Cited by in F6Publishing: 150] [Article Influence: 11.5] [Reference Citation Analysis]
337 Valko PO, Gavrilov YV, Yamamoto M, Reddy H, Haybaeck J, Mignot E, Baumann CR, Scammell TE. Increase of histaminergic tuberomammillary neurons in narcolepsy: Histaminergic Neurons. Ann Neurol 2013;74:794-804. [DOI: 10.1002/ana.24019] [Cited by in Crossref: 85] [Cited by in F6Publishing: 79] [Article Influence: 10.6] [Reference Citation Analysis]
338 Willie JT, Chemelli RM, Sinton CM, Tokita S, Williams SC, Kisanuki YY, Marcus JN, Lee C, Elmquist JK, Kohlmeier KA, Leonard CS, Richardson JA, Hammer RE, Yanagisawa M. Distinct narcolepsy syndromes in Orexin receptor-2 and Orexin null mice: molecular genetic dissection of Non-REM and REM sleep regulatory processes. Neuron 2003;38:715-30. [PMID: 12797957 DOI: 10.1016/s0896-6273(03)00330-1] [Cited by in Crossref: 410] [Cited by in F6Publishing: 190] [Article Influence: 21.6] [Reference Citation Analysis]
339 Black SW, Yamanaka A, Kilduff TS. Challenges in the development of therapeutics for narcolepsy. Prog Neurobiol 2017;152:89-113. [PMID: 26721620 DOI: 10.1016/j.pneurobio.2015.12.002] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 4.6] [Reference Citation Analysis]
340 Hayaishi O. Invited Review: Molecular genetic studies on sleep-wake regulation, with special emphasis on the prostaglandin D 2 system. Journal of Applied Physiology 2002;92:863-8. [DOI: 10.1152/japplphysiol.00766.2001] [Cited by in Crossref: 59] [Cited by in F6Publishing: 49] [Article Influence: 3.0] [Reference Citation Analysis]
341 Scammell TE. The neurobiology, diagnosis, and treatment of narcolepsy. Ann Neurol 2003;53:154-66. [DOI: 10.1002/ana.10444] [Cited by in Crossref: 155] [Cited by in F6Publishing: 130] [Article Influence: 8.2] [Reference Citation Analysis]
342 Mochizuki T, Crocker A, McCormack S, Yanagisawa M, Sakurai T, Scammell TE. Behavioral state instability in orexin knock-out mice. J Neurosci 2004;24:6291-300. [PMID: 15254084 DOI: 10.1523/JNEUROSCI.0586-04.2004] [Cited by in Crossref: 246] [Cited by in F6Publishing: 134] [Article Influence: 13.7] [Reference Citation Analysis]
343 Kageyama H, Kita T, Toshinai K, Guan JL, Date Y, Takenoya F, Kato S, Matsumoto H, Ohtaki T, Nakazato M, Shioda S. Galanin-like peptide promotes feeding behaviour via activation of orexinergic neurones in the rat lateral hypothalamus. J Neuroendocrinol 2006;18:33-41. [PMID: 16451218 DOI: 10.1111/j.1365-2826.2005.01382.x] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 1.8] [Reference Citation Analysis]
344 Rahmadi M, Narita M, Yamashita A, Imai S, Kuzumaki N, Suzuki T. Sleep disturbance associated with an enhanced orexinergic system induced by chronic treatment with paroxetine and milnacipran. Synapse 2011;65:652-7. [PMID: 21157932 DOI: 10.1002/syn.20893] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]