BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chen S, Bonifati S, Qin Z, St Gelais C, Kodigepalli KM, Barrett BS, Kim SH, Antonucci JM, Ladner KJ, Buzovetsky O, Knecht KM, Xiong Y, Yount JS, Guttridge DC, Santiago ML, Wu L. SAMHD1 suppresses innate immune responses to viral infections and inflammatory stimuli by inhibiting the NF-κB and interferon pathways. Proc Natl Acad Sci U S A 2018;115:E3798-807. [PMID: 29610295 DOI: 10.1073/pnas.1801213115] [Cited by in Crossref: 47] [Cited by in F6Publishing: 42] [Article Influence: 11.8] [Reference Citation Analysis]
Number Citing Articles
1 Fu L, Xing L, Hao Y, Yang Z, Teng S, Wei L, Zhang W. The anti-inflammatory effects of dry-cured ham derived peptides in RAW264.7 macrophage cells. Journal of Functional Foods 2021;87:104827. [DOI: 10.1016/j.jff.2021.104827] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
2 Matz KM, Guzman RM, Goodman AG. The Role of Nucleic Acid Sensing in Controlling Microbial and Autoimmune Disorders. Int Rev Cell Mol Biol 2019;345:35-136. [PMID: 30904196 DOI: 10.1016/bs.ircmb.2018.08.002] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
3 Mauney CH, Perrino FW, Hollis T. Identification of Inhibitors of the dNTP Triphosphohydrolase SAMHD1 Using a Novel and Direct High-Throughput Assay. Biochemistry 2018;57:6624-36. [PMID: 30380297 DOI: 10.1021/acs.biochem.8b01038] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
4 Chen S, Kumar S, Espada CE, Tirumuru N, Cahill MP, Hu L, He C, Wu L. N6-methyladenosine modification of HIV-1 RNA suppresses type-I interferon induction in differentiated monocytic cells and primary macrophages. PLoS Pathog 2021;17:e1009421. [PMID: 33690734 DOI: 10.1371/journal.ppat.1009421] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
5 Lu Y, Liu W, Zhang M, Deng Y, Jiang M, Bai G. The Screening Research of NF-κB Inhibitors from Moutan Cortex Based on Bioactivity-Integrated UPLC-Q/TOF-MS. Evid Based Complement Alternat Med 2019;2019:6150357. [PMID: 30941197 DOI: 10.1155/2019/6150357] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
6 Chen T, Wang Y, Xu Z, Zou X, Wang P, Ou X, Li Y, Peng T, Chen D, Li M, Cai M. Epstein-Barr virus tegument protein BGLF2 inhibits NF-κB activity by preventing p65 Ser536 phosphorylation. FASEB J 2019;33:10563-76. [PMID: 31337264 DOI: 10.1096/fj.201901196RR] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 4.7] [Reference Citation Analysis]
7 Qi M, Liu B, Li S, Ni Z, Li F. Construction and Investigation of Competing Endogenous RNA Networks and Candidate Genes Involved in SARS-CoV-2 Infection. Int J Gen Med 2021;14:6647-59. [PMID: 34675627 DOI: 10.2147/IJGM.S335162] [Reference Citation Analysis]
8 Chemudupati M, Kenney AD, Bonifati S, Zani A, McMichael TM, Wu L, Yount JS. From APOBEC to ZAP: Diverse mechanisms used by cellular restriction factors to inhibit virus infections. Biochim Biophys Acta Mol Cell Res 2019;1866:382-94. [PMID: 30290238 DOI: 10.1016/j.bbamcr.2018.09.012] [Cited by in Crossref: 35] [Cited by in F6Publishing: 26] [Article Influence: 8.8] [Reference Citation Analysis]
9 Espada CE, St Gelais C, Bonifati S, Maksimova VV, Cahill MP, Kim SH, Wu L. TRAF6 and TAK1 Contribute to SAMHD1-Mediated Negative Regulation of NF-κB Signaling. J Virol 2021;95:e01970-20. [PMID: 33177202 DOI: 10.1128/JVI.01970-20] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Bowen NE, Temple J, Shepard C, Oo A, Arizaga F, Kapoor-Vazirani P, Persaud M, Yu CH, Kim DH, Schinazi RF, Ivanov DN, Diaz-Griffero F, Yu DS, Xiong Y, Kim B. Structural and functional characterization explains loss of dNTPase activity of the cancer-specific R366C/H mutant SAMHD1 proteins. J Biol Chem 2021;297:101170. [PMID: 34492268 DOI: 10.1016/j.jbc.2021.101170] [Reference Citation Analysis]
11 Lu W, Chen S, Yu J, Behrens R, Wiggins J, Sherer N, Liu SL, Xiong Y, Xiang SH, Wu L. The Polar Region of the HIV-1 Envelope Protein Determines Viral Fusion and Infectivity by Stabilizing the gp120-gp41 Association. J Virol 2019;93:e02128-18. [PMID: 30651369 DOI: 10.1128/JVI.02128-18] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
12 Pablo-Maiso L, Echeverría I, Rius-Rocabert S, Luján L, Garcin D, Andrés D, Nistal-Villán E, Reina R. Sendai Virus, a Strong Inducer of Anti-Lentiviral State in Ovine Cells. Vaccines (Basel) 2020;8:E206. [PMID: 32365702 DOI: 10.3390/vaccines8020206] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
13 Oo A, Zandi K, Shepard C, Bassit LC, Musall K, Goh SL, Cho YJ, Kim DH, Schinazi RF, Kim B. Elimination of Aicardi Goutières Syndrome Protein SAMHD1 Activates Cellular Innate Immunity and Suppresses SARS-CoV-2 Replication. J Biol Chem 2022;:101635. [PMID: 35085552 DOI: 10.1016/j.jbc.2022.101635] [Reference Citation Analysis]
14 Chintala K, Mohareer K, Banerjee S. Dodging the Host Interferon-Stimulated Gene Mediated Innate Immunity by HIV-1: A Brief Update on Intrinsic Mechanisms and Counter-Mechanisms. Front Immunol 2021;12:716927. [PMID: 34394123 DOI: 10.3389/fimmu.2021.716927] [Reference Citation Analysis]
15 Cingöz O, Arnow ND, Puig Torrents M, Bannert N. Vpx enhances innate immune responses independently of SAMHD1 during HIV-1 infection. Retrovirology 2021;18:4. [PMID: 33563288 DOI: 10.1186/s12977-021-00548-2] [Reference Citation Analysis]
16 Tirumuru N, Wu L. HIV-1 envelope proteins up-regulate N 6-methyladenosine levels of cellular RNA independently of viral replication. J Biol Chem 2019;294:3249-60. [PMID: 30617182 DOI: 10.1074/jbc.RA118.005608] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
17 Kermi C, Lau L, Asadi Shahmirzadi A, Classon M. Disrupting Mechanisms that Regulate Genomic Repeat Elements to Combat Cancer and Drug Resistance. Front Cell Dev Biol 2022;10:826461. [DOI: 10.3389/fcell.2022.826461] [Reference Citation Analysis]
18 Bergantz L, Subra F, Deprez E, Delelis O, Richetta C. Interplay between Intrinsic and Innate Immunity during HIV Infection. Cells 2019;8:E922. [PMID: 31426525 DOI: 10.3390/cells8080922] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
19 Wayne J, Brooks T, Landras A, Massey AJ. Targeting DNA damage response pathways to activate the STING innate immune signaling pathway in human cancer cells. FEBS J 2021;288:4507-40. [DOI: 10.1111/febs.15747] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
20 Chen S, Bonifati S, Qin Z, St Gelais C, Wu L. SAMHD1 Suppression of Antiviral Immune Responses. Trends Microbiol 2019;27:254-67. [PMID: 30336972 DOI: 10.1016/j.tim.2018.09.009] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
21 Qin Z, Bonifati S, St Gelais C, Li TW, Kim SH, Antonucci JM, Mahboubi B, Yount JS, Xiong Y, Kim B, Wu L. The dNTPase activity of SAMHD1 is important for its suppression of innate immune responses in differentiated monocytic cells. J Biol Chem 2020;295:1575-86. [PMID: 31914403 DOI: 10.1074/jbc.RA119.010360] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
22 Coggins SA, Mahboubi B, Schinazi RF, Kim B. SAMHD1 Functions and Human Diseases. Viruses 2020;12:E382. [PMID: 32244340 DOI: 10.3390/v12040382] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
23 Wang Y, Qian G, Zhu L, Zhao Z, Liu Y, Han W, Zhang X, Zhang Y, Xiong T, Zeng H, Yu X, Yu X, Zhang X, Xu J, Zou Q, Yan D. HIV-1 Vif suppresses antiviral immunity by targeting STING. Cell Mol Immunol 2021. [PMID: 34811497 DOI: 10.1038/s41423-021-00802-9] [Reference Citation Analysis]
24 Deutschmann J, Gramberg T. SAMHD1 … and Viral Ways around It. Viruses 2021;13:395. [PMID: 33801276 DOI: 10.3390/v13030395] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Huang C, Xu X, Jiang D, Jiang W. Binding mediated MNAzyme signal amplification strategy for enzyme-free and label-free detection of DNA-binding proteins. Anal Chim Acta 2021;1166:338560. [PMID: 34022996 DOI: 10.1016/j.aca.2021.338560] [Reference Citation Analysis]
26 Antonucci JM, Kim SH, St Gelais C, Bonifati S, Li TW, Buzovetsky O, Knecht KM, Duchon AA, Xiong Y, Musier-Forsyth K, Wu L. SAMHD1 Impairs HIV-1 Gene Expression and Negatively Modulates Reactivation of Viral Latency in CD4+ T Cells. J Virol 2018;92:e00292-18. [PMID: 29793958 DOI: 10.1128/JVI.00292-18] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
27 Hou Y, Zhang Y, Mi Y, Wang J, Zhang H, Xu J, Yang Y, Liu J, Ding L, Yang J, Chen G, Wu C. A Novel Quinolyl‐Substituted Analogue of Resveratrol Inhibits LPS‐Induced Inflammatory Responses in Microglial Cells by Blocking the NF‐κB/MAPK Signaling Pathways. Mol Nutr Food Res 2019;63:1801380. [DOI: 10.1002/mnfr.201801380] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
28 Yin X, Langer S, Zhang Z, Herbert KM, Yoh S, König R, Chanda SK. Sensor Sensibility-HIV-1 and the Innate Immune Response. Cells 2020;9:E254. [PMID: 31968566 DOI: 10.3390/cells9010254] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 9.0] [Reference Citation Analysis]
29 Majer C, Schüssler JM, König R. Intertwined: SAMHD1 cellular functions, restriction, and viral evasion strategies. Med Microbiol Immunol 2019;208:513-29. [PMID: 30879196 DOI: 10.1007/s00430-019-00593-x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
30 Li Z, Huan C, Wang H, Liu Y, Liu X, Su X, Yu J, Zhao Z, Yu XF, Zheng B, Zhang W. TRIM21-mediated proteasomal degradation of SAMHD1 regulates its antiviral activity. EMBO Rep 2020;21:e47528. [PMID: 31797533 DOI: 10.15252/embr.201847528] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
31 Sermersheim M, Kenney AD, Lin PH, McMichael TM, Cai C, Gumpper K, Adesanya TMA, Li H, Zhou X, Park KH, Yount JS, Ma J. MG53 suppresses interferon-β and inflammation via regulation of ryanodine receptor-mediated intracellular calcium signaling. Nat Commun 2020;11:3624. [PMID: 32681036 DOI: 10.1038/s41467-020-17177-6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
32 Kim ET, Roche KL, Kulej K, Spruce LA, Seeholzer SH, Coen DM, Diaz-Griffero F, Murphy EA, Weitzman MD. SAMHD1 Modulates Early Steps during Human Cytomegalovirus Infection by Limiting NF-κB Activation. Cell Rep 2019;28:434-448.e6. [PMID: 31291579 DOI: 10.1016/j.celrep.2019.06.027] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 11.0] [Reference Citation Analysis]
33 Kodigepalli KM, Bonifati S, Tirumuru N, Wu L. SAMHD1 modulates in vitro proliferation of acute myeloid leukemia-derived THP-1 cells through the PI3K-Akt-p27 axis. Cell Cycle 2018;17:1124-37. [PMID: 29911928 DOI: 10.1080/15384101.2018.1480218] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
34 Chia BS, Li B, Cui A, Eisenhaure T, Raychowdhury R, Lieb D, Hacohen N. Loss of the Nuclear Protein RTF2 Enhances Influenza Virus Replication. J Virol 2020;94:e00319-20. [PMID: 32878895 DOI: 10.1128/JVI.00319-20] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
35 Morris ER, Taylor IA. The missing link: allostery and catalysis in the anti-viral protein SAMHD1. Biochem Soc Trans 2019;47:1013-27. [PMID: 31296733 DOI: 10.1042/BST20180348] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
36 Colomer-Lluch M, Ruiz A, Moris A, Prado JG. Restriction Factors: From Intrinsic Viral Restriction to Shaping Cellular Immunity Against HIV-1. Front Immunol 2018;9:2876. [PMID: 30574147 DOI: 10.3389/fimmu.2018.02876] [Cited by in Crossref: 61] [Cited by in F6Publishing: 56] [Article Influence: 15.3] [Reference Citation Analysis]
37 Ambrose RL, Brice AM, Caputo AT, Alexander MR, Tribolet L, Liu YC, Adams TE, Bean AGD, Stewart CR. Molecular characterisation of ILRUN, a novel inhibitor of proinflammatory and antimicrobial cytokines. Heliyon 2020;6:e04115. [PMID: 32518853 DOI: 10.1016/j.heliyon.2020.e04115] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
38 Tovo PA, Garazzino S, Daprà V, Pruccoli G, Calvi C, Mignone F, Alliaudi C, Denina M, Scolfaro C, Zoppo M, Licciardi F, Ramenghi U, Galliano I, Bergallo M. COVID-19 in Children: Expressions of Type I/II/III Interferons, TRIM28, SETDB1, and Endogenous Retroviruses in Mild and Severe Cases. Int J Mol Sci 2021;22:7481. [PMID: 34299101 DOI: 10.3390/ijms22147481] [Reference Citation Analysis]
39 Nguyen H, Gazy N, Venketaraman V. A Role of Intracellular Toll-Like Receptors (3, 7, and 9) in Response to Mycobacterium tuberculosis and Co-Infection with HIV. Int J Mol Sci 2020;21:E6148. [PMID: 32858917 DOI: 10.3390/ijms21176148] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Kim SK, Shakya AK, O'Callaghan DJ. Interferon Gamma Inhibits Equine Herpesvirus 1 Replication in a Cell Line-Dependent Manner. Pathogens 2021;10:484. [PMID: 33923733 DOI: 10.3390/pathogens10040484] [Reference Citation Analysis]
41 Prochasson L, Jalinot P, Mocquet V. The Complex Relationship between HTLV-1 and Nonsense-Mediated mRNA Decay (NMD). Pathogens 2020;9:E287. [PMID: 32326562 DOI: 10.3390/pathogens9040287] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Wichit S, Hamel R, Zanzoni A, Diop F, Cribier A, Talignani L, Diack A, Ferraris P, Liegeois F, Urbach S, Ekchariyawat P, Merits A, Yssel H, Benkirane M, Missé D. SAMHD1 Enhances Chikungunya and Zika Virus Replication in Human Skin Fibroblasts. Int J Mol Sci 2019;20:E1695. [PMID: 30959732 DOI: 10.3390/ijms20071695] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
43 Kwan JYY, Lin LT, Bell R, Bruce JP, Richardson C, Pugh TJ, Liu FF. Elevation in viral entry genes and innate immunity compromise underlying increased infectivity and severity of COVID-19 in cancer patients. Sci Rep 2021;11:4533. [PMID: 33633121 DOI: 10.1038/s41598-021-83366-y] [Reference Citation Analysis]
44 de Pablo-Maiso L, Doménech A, Echeverría I, Gómez-Arrebola C, de Andrés D, Rosati S, Gómez-Lucia E, Reina R. Prospects in Innate Immune Responses as Potential Control Strategies against Non-Primate Lentiviruses. Viruses 2018;10:E435. [PMID: 30126090 DOI: 10.3390/v10080435] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
45 Khan A, Sergi C. SAMHD1 as the Potential Link Between SARS-CoV-2 Infection and Neurological Complications. Front Neurol 2020;11:562913. [PMID: 33101175 DOI: 10.3389/fneur.2020.562913] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
46 Schott K, Majer C, Bulashevska A, Childs L, Schmidt MHH, Rajalingam K, Munder M, König R. SAMHD1 in cancer: curse or cure? J Mol Med (Berl) 2021. [PMID: 34480199 DOI: 10.1007/s00109-021-02131-w] [Reference Citation Analysis]
47 Wang C, Zhang K, Meng L, Zhang X, Song Y, Zhang Y, Gai Y, Zhang Y, Yu B, Wu J, Wang S, Yu X. The C-terminal domain of feline and bovine SAMHD1 proteins has a crucial role in lentiviral restriction. J Biol Chem 2020;295:4252-64. [PMID: 32075911 DOI: 10.1074/jbc.RA120.012767] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]