BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Park Y, Kim YJ, Adams ME. Identification of G protein-coupled receptors for Drosophila PRXamide peptides, CCAP, corazonin, and AKH supports a theory of ligand-receptor coevolution. Proc Natl Acad Sci U S A 2002;99:11423-8. [PMID: 12177421 DOI: 10.1073/pnas.162276199] [Cited by in Crossref: 279] [Cited by in F6Publishing: 260] [Article Influence: 14.0] [Reference Citation Analysis]
Number Citing Articles
1 Abdulganiyyu IA, Kaczmarek K, Zabrocki J, Nachman RJ, Marchal E, Schellens S, Verlinden H, Broeck JV, Marco H, Jackson GE. Conformational analysis of a cyclic AKH neuropeptide analog that elicits selective activity on locust versus honeybee receptor. Insect Biochem Mol Biol 2020;125:103362. [PMID: 32730893 DOI: 10.1016/j.ibmb.2020.103362] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
2 Shi Y, Huang H, Deng X, He X, Yang J, Yang H, Shi L, Mei L, Gao J, Zhou N. Identification and functional characterization of two orphan G-protein-coupled receptors for adipokinetic hormones from silkworm Bombyx mori. J Biol Chem 2011;286:42390-402. [PMID: 22009754 DOI: 10.1074/jbc.M111.275602] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
3 Yang J, Huang H, Yang H, He X, Jiang X, Shi Y, Alatangaole D, Shi L, Zhou N. Specific activation of the G protein-coupled receptor BNGR-A21 by the neuropeptide corazonin from the silkworm, Bombyx mori, dually couples to the G(q) and G(s) signaling cascades. J Biol Chem 2013;288:11662-75. [PMID: 23457297 DOI: 10.1074/jbc.M112.441675] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
4 Lu K, Zhang X, Chen X, Li Y, Li W, Cheng Y, Zhou J, You K, Zhou Q. Adipokinetic Hormone Receptor Mediates Lipid Mobilization to Regulate Starvation Resistance in the Brown Planthopper, Nilaparvata lugens. Front Physiol 2018;9:1730. [PMID: 30555355 DOI: 10.3389/fphys.2018.01730] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
5 Aikins MJ, Schooley DA, Begum K, Detheux M, Beeman RW, Park Y. Vasopressin-like peptide and its receptor function in an indirect diuretic signaling pathway in the red flour beetle. Insect Biochem Mol Biol 2008;38:740-8. [PMID: 18549960 DOI: 10.1016/j.ibmb.2008.04.006] [Cited by in Crossref: 80] [Cited by in F6Publishing: 69] [Article Influence: 5.7] [Reference Citation Analysis]
6 Li C, Yun X, Hu X, Zhang Y, Sang M, Liu X, Wu W, Li B. Identification of G protein-coupled receptors in the pea aphid, Acyrthosiphon pisum. Genomics 2013;102:345-54. [DOI: 10.1016/j.ygeno.2013.06.003] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 2.3] [Reference Citation Analysis]
7 Jurenka R, Blomquist G, Schal C, Tittiger C. Biochemistry and Molecular Biology of Pheromone Production ☆. Reference Module in Life Sciences. Elsevier; 2017. [DOI: 10.1016/b978-0-12-809633-8.04037-1] [Cited by in Crossref: 4] [Article Influence: 0.8] [Reference Citation Analysis]
8 Rafaeli A. Mechanisms involved in the control of pheromone production in female moths: recent developments. Entomologia Experimentalis et Applicata 2005;115:7-15. [DOI: 10.1111/j.1570-7458.2005.00292.x] [Cited by in Crossref: 27] [Cited by in F6Publishing: 17] [Article Influence: 1.6] [Reference Citation Analysis]
9 Iversen A, Cazzamali G, Williamson M, Hauser F, Grimmelikhuijzen CJ. Molecular cloning and functional expression of a Drosophila receptor for the neuropeptides capa-1 and -2. Biochem Biophys Res Commun 2002;299:628-33. [PMID: 12459185 DOI: 10.1016/s0006-291x(02)02709-2] [Cited by in Crossref: 84] [Cited by in F6Publishing: 22] [Article Influence: 4.4] [Reference Citation Analysis]
10 Nagy D, Cusumano P, Andreatta G, Anduaga AM, Hermann-Luibl C, Reinhard N, Gesto J, Wegener C, Mazzotta G, Rosato E, Kyriacou CP, Helfrich-Förster C, Costa R. Peptidergic signaling from clock neurons regulates reproductive dormancy in Drosophila melanogaster. PLoS Genet 2019;15:e1008158. [PMID: 31194738 DOI: 10.1371/journal.pgen.1008158] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
11 Porras M, De Loof A, Breuer M, Aréchiga H. Corazonin promotes tegumentary pigment migration in the crayfish Procambarus clarkii. Peptides 2003;24:1581-9. [DOI: 10.1016/j.peptides.2003.08.016] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 0.9] [Reference Citation Analysis]
12 Hauser F, Cazzamali G, Williamson M, Park Y, Li B, Tanaka Y, Predel R, Neupert S, Schachtner J, Verleyen P, Grimmelikhuijzen CJ. A genome-wide inventory of neurohormone GPCRs in the red flour beetle Tribolium castaneum. Front Neuroendocrinol 2008;29:142-65. [PMID: 18054377 DOI: 10.1016/j.yfrne.2007.10.003] [Cited by in Crossref: 171] [Cited by in F6Publishing: 161] [Article Influence: 11.4] [Reference Citation Analysis]
13 Choi MY, Fuerst EJ, Rafaeli A, Jurenka R. Identification of a G protein-coupled receptor for pheromone biosynthesis activating neuropeptide from pheromone glands of the moth Helicoverpa zea. Proc Natl Acad Sci U S A 2003;100:9721-6. [PMID: 12888624 DOI: 10.1073/pnas.1632485100] [Cited by in Crossref: 122] [Cited by in F6Publishing: 105] [Article Influence: 6.4] [Reference Citation Analysis]
14 Rafaeli A. Pheromone biosynthesis activating neuropeptide (PBAN): Regulatory role and mode of action. General and Comparative Endocrinology 2009;162:69-78. [DOI: 10.1016/j.ygcen.2008.04.004] [Cited by in Crossref: 93] [Cited by in F6Publishing: 83] [Article Influence: 7.2] [Reference Citation Analysis]
15 Neupert S, Russell WK, Russell DH, Predel R. Two capa-genes are expressed in the neuroendocrine system of Rhodnius prolixus. Peptides 2010;31:408-11. [DOI: 10.1016/j.peptides.2009.09.021] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.3] [Reference Citation Analysis]
16 Kodrík D. Adipokinetic hormone functions that are not associated with insect flight. Physiological Entomology 2008;33:171-80. [DOI: 10.1111/j.1365-3032.2008.00625.x] [Cited by in Crossref: 81] [Cited by in F6Publishing: 57] [Article Influence: 5.8] [Reference Citation Analysis]
17 Jiang H, Wei Z, Nachman RJ, Kaczmarek K, Zabrocki J, Park Y. Functional characterization of five different PRXamide receptors of the red flour beetle Tribolium castaneum with peptidomimetics and identification of agonists and antagonists. Peptides 2015;68:246-52. [PMID: 25447413 DOI: 10.1016/j.peptides.2014.11.004] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 2.9] [Reference Citation Analysis]
18 Johnson EC, Garczynski SF, Park D, Crim JW, Nassel DR, Taghert PH. Identification and characterization of a G protein-coupled receptor for the neuropeptide proctolin in Drosophilamelanogaster. Proc Natl Acad Sci U S A 2003;100:6198-203. [PMID: 12730362 DOI: 10.1073/pnas.1030108100] [Cited by in Crossref: 59] [Cited by in F6Publishing: 55] [Article Influence: 3.1] [Reference Citation Analysis]
19 Dufour S, Quérat B, Tostivint H, Pasqualini C, Vaudry H, Rousseau K. Origin and Evolution of the Neuroendocrine Control of Reproduction in Vertebrates, With Special Focus on Genome and Gene Duplications. Physiol Rev 2020;100:869-943. [PMID: 31625459 DOI: 10.1152/physrev.00009.2019] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 4.7] [Reference Citation Analysis]
20 Bigot L, Zatylny-gaudin C, Rodet F, Bernay B, Boudry P, Favrel P. Characterization of GnRH-related peptides from the Pacific oyster Crassostrea gigas. Peptides 2012;34:303-10. [DOI: 10.1016/j.peptides.2012.01.017] [Cited by in Crossref: 49] [Cited by in F6Publishing: 39] [Article Influence: 4.9] [Reference Citation Analysis]
21 Veenstra JA. WITHDRAWN: Neuropeptide evolution: Chelicerate neurohormone and neuropeptide genes may reflect one or more whole genome duplications. General and Comparative Endocrinology 2016. [DOI: 10.1016/j.ygcen.2015.07.014] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
22 Hansen KK, Stafflinger E, Schneider M, Hauser F, Cazzamali G, Williamson M, Kollmann M, Schachtner J, Grimmelikhuijzen CJ. Discovery of a novel insect neuropeptide signaling system closely related to the insect adipokinetic hormone and corazonin hormonal systems. J Biol Chem 2010;285:10736-47. [PMID: 20068045 DOI: 10.1074/jbc.M109.045369] [Cited by in Crossref: 118] [Cited by in F6Publishing: 41] [Article Influence: 9.8] [Reference Citation Analysis]
23 Sha K, Choi SH, Im J, Lee GG, Loeffler F, Park JH. Regulation of ethanol-related behavior and ethanol metabolism by the Corazonin neurons and Corazonin receptor in Drosophila melanogaster. PLoS One 2014;9:e87062. [PMID: 24489834 DOI: 10.1371/journal.pone.0087062] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 3.9] [Reference Citation Analysis]
24 Bodláková K, Jedlička P, Kodrík D. Adipokinetic hormones control amylase activity in the cockroach ( Periplaneta americana ) gut. Insect Science 2017;24:259-69. [DOI: 10.1111/1744-7917.12314] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
25 Cao Z, Yan L, Shen Z, Chen Y, Shi Y, He X, Zhou N. A novel splice variant of Gαq-coupled Bombyx CAPA-PVK receptor 1 functions as a specific Gαi/o-linked receptor for CAPA-PK. Biochim Biophys Acta Mol Cell Res 2020;1867:118718. [PMID: 32289337 DOI: 10.1016/j.bbamcr.2020.118718] [Reference Citation Analysis]
26 Watanabe K, Hull JJ, Niimi T, Imai K, Matsumoto S, Yaginuma T, Kataoka H. FXPRL-amide peptides induce ecdysteroidogenesis through a G-protein coupled receptor expressed in the prothoracic gland of Bombyx mori. Mol Cell Endocrinol 2007;273:51-8. [PMID: 17590269 DOI: 10.1016/j.mce.2007.05.008] [Cited by in Crossref: 57] [Cited by in F6Publishing: 45] [Article Influence: 3.8] [Reference Citation Analysis]
27 Verleyen P, Clynen E, Huybrechts J, Van Lommel A, Vanden Bosch L, De Loof A, Zdarek J, Schoofs L. Fraenkel's pupariation factor identified at last. Developmental Biology 2004;273:38-47. [DOI: 10.1016/j.ydbio.2004.05.021] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 1.8] [Reference Citation Analysis]
28 Ianowski JP, Paluzzi JP, Te Brugge VA, Orchard I. The antidiuretic neurohormone RhoprCAPA-2 downregulates fluid transport across the anterior midgut in the blood-feeding insect Rhodnius prolixus. Am J Physiol Regul Integr Comp Physiol 2010;298:R548-57. [PMID: 20007522 DOI: 10.1152/ajpregu.00208.2009] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 2.1] [Reference Citation Analysis]
29 Zandawala M, Tian S, Elphick MR. The evolution and nomenclature of GnRH-type and corazonin-type neuropeptide signaling systems. Gen Comp Endocrinol 2018;264:64-77. [PMID: 28622978 DOI: 10.1016/j.ygcen.2017.06.007] [Cited by in Crossref: 50] [Cited by in F6Publishing: 38] [Article Influence: 10.0] [Reference Citation Analysis]
30 Mertens I, Meeusen T, Huybrechts R, De Loof A, Schoofs L. Characterization of the short neuropeptide F receptor from Drosophila melanogaster. Biochemical and Biophysical Research Communications 2002;297:1140-8. [DOI: 10.1016/s0006-291x(02)02351-3] [Cited by in Crossref: 103] [Cited by in F6Publishing: 36] [Article Influence: 5.2] [Reference Citation Analysis]
31 Gáliková M, Klepsatel P, Xu Y, Kühnlein RP. The obesity-related Adipokinetic hormone controls feeding and expression of neuropeptide regulators of Drosophila metabolism: AKH controls feeding and neuropeptide expression. Eur J Lipid Sci Technol 2017;119:1600138. [DOI: 10.1002/ejlt.201600138] [Cited by in Crossref: 29] [Cited by in F6Publishing: 10] [Article Influence: 4.8] [Reference Citation Analysis]
32 Maruyama K, Kaiya H, Miyazato M, Konno N, Wakasugi T, Uchiyama M, Shioda S, Murakami N, Matsuda K. Isolation and characterisation of two cDNAs encoding the neuromedin U receptor from goldfish brain. J Neuroendocrinol 2011;23:282-91. [PMID: 21182546 DOI: 10.1111/j.1365-2826.2010.02106.x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 0.8] [Reference Citation Analysis]
33 Ben-Menahem D. GnRH-Related Neurohormones in the Fruit Fly Drosophila melanogaster. Int J Mol Sci 2021;22:5035. [PMID: 34068603 DOI: 10.3390/ijms22095035] [Reference Citation Analysis]
34 Nachman RJ, Coast GM. Structure-activity relationships for in vitro diuretic activity of CAP2b in the housefly. Peptides 2007;28:57-61. [DOI: 10.1016/j.peptides.2006.09.020] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.0] [Reference Citation Analysis]
35 Žitňan D, Žitňanová I, Spalovská I, Takáč P, Park Y, Adams ME. Conservation of ecdysis-triggering hormone signalling in insects. Journal of Experimental Biology 2003;206:1275-89. [DOI: 10.1242/jeb.00261] [Cited by in Crossref: 62] [Cited by in F6Publishing: 50] [Article Influence: 3.3] [Reference Citation Analysis]
36 Pandit AA, Ragionieri L, Marley R, Yeoh JGC, Inward DJG, Davies SA, Predel R, Dow JAT. Coordinated RNA-Seq and peptidomics identify neuropeptides and G-protein coupled receptors (GPCRs) in the large pine weevil Hylobius abietis, a major forestry pest. Insect Biochem Mol Biol 2018;101:94-107. [PMID: 30165105 DOI: 10.1016/j.ibmb.2018.08.003] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
37 Shen Z, Yang X, Chen Y, Shi L. CAPA periviscerokinin-mediated activation of MAPK/ERK signaling through Gq-PLC-PKC-dependent cascade and reciprocal ERK activation-dependent internalized kinetics of Bom-CAPA-PVK receptor 2. Insect Biochem Mol Biol 2018;98:1-15. [PMID: 29730398 DOI: 10.1016/j.ibmb.2018.04.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
38 Jiang H, Wei Z, Nachman RJ, Park Y. Molecular cloning and functional characterization of the diapause hormone receptor in the corn earworm Helicoverpa zea. Peptides 2014;53:243-9. [PMID: 24257143 DOI: 10.1016/j.peptides.2013.11.005] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 3.6] [Reference Citation Analysis]
39 Johnson E, White M. Stressed-Out Insects: Hormonal Actions and Behavioral Modifications. Hormones, Brain and Behavior. Elsevier; 2009. pp. 1069-97. [DOI: 10.1016/b978-008088783-8.00031-0] [Cited by in Crossref: 11] [Article Influence: 0.8] [Reference Citation Analysis]
40 Garcia VJ, Daur N, Temporal S, Schulz DJ, Bucher D. Neuropeptide receptor transcript expression levels and magnitude of ionic current responses show cell type-specific differences in a small motor circuit. J Neurosci 2015;35:6786-800. [PMID: 25926455 DOI: 10.1523/JNEUROSCI.0171-15.2015] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 3.6] [Reference Citation Analysis]
41 Lee SS, Ding Y, Karapetians N, Rivera-perez C, Noriega FG, Adams ME. Hormonal Signaling Cascade during an Early-Adult Critical Period Required for Courtship Memory Retention in Drosophila. Current Biology 2017;27:2798-2809.e3. [DOI: 10.1016/j.cub.2017.08.017] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
42 Winther ÅM, Siviter RJ, Isaac RE, Predel R, Nässel DR. Neuronal expression of tachykinin-related peptides and gene transcript during postembryonic development of Drosophila: TRP and Gene Transcript Expression in Drosophila. J Comp Neurol 2003;464:180-96. [DOI: 10.1002/cne.10790] [Cited by in Crossref: 53] [Cited by in F6Publishing: 52] [Article Influence: 2.8] [Reference Citation Analysis]
43 Alfa RW, Park S, Skelly KR, Poffenberger G, Jain N, Gu X, Kockel L, Wang J, Liu Y, Powers AC, Kim SK. Suppression of insulin production and secretion by a decretin hormone. Cell Metab 2015;21:323-34. [PMID: 25651184 DOI: 10.1016/j.cmet.2015.01.006] [Cited by in Crossref: 85] [Cited by in F6Publishing: 70] [Article Influence: 14.2] [Reference Citation Analysis]
44 Toprak U. The Role of Peptide Hormones in Insect Lipid Metabolism. Front Physiol 2020;11:434. [PMID: 32457651 DOI: 10.3389/fphys.2020.00434] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 8.0] [Reference Citation Analysis]
45 Nässel DR, Zandawala M. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog Neurobiol 2019;179:101607. [PMID: 30905728 DOI: 10.1016/j.pneurobio.2019.02.003] [Cited by in Crossref: 98] [Cited by in F6Publishing: 78] [Article Influence: 32.7] [Reference Citation Analysis]
46 Marchal E, Schellens S, Monjon E, Bruyninckx E, Marco HG, Gäde G, Vanden Broeck J, Verlinden H. Analysis of Peptide Ligand Specificity of Different Insect Adipokinetic Hormone Receptors. Int J Mol Sci 2018;19:E542. [PMID: 29439466 DOI: 10.3390/ijms19020542] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
47 Jurenka R. The PRXamide Neuropeptide Signalling System. Elsevier; 2015. pp. 123-70. [DOI: 10.1016/bs.aiip.2015.07.001] [Cited by in Crossref: 22] [Cited by in F6Publishing: 8] [Article Influence: 3.1] [Reference Citation Analysis]
48 Rafaeli A, Bober R, Becker L, Choi MY, Fuerst EJ, Jurenka R. Spatial distribution and differential expression of the PBAN receptor in tissues of adult Helicoverpa spp. (Lepidoptera: Noctuidae). Insect Mol Biol 2007;16:287-93. [PMID: 17328713 DOI: 10.1111/j.1365-2583.2007.00725.x] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 2.1] [Reference Citation Analysis]
49 Truman JW. Hormonal Control of Insect Ecdysis: Endocrine Cascades for Coordinating Behavior with Physiology. Insect Hormones. Elsevier; 2005. pp. 1-30. [DOI: 10.1016/s0083-6729(05)73001-6] [Cited by in Crossref: 104] [Cited by in F6Publishing: 32] [Article Influence: 6.1] [Reference Citation Analysis]
50 Park Y, Adams M. Insect G Protein-Coupled Receptors: Recent Discoveries and Implications. Comprehensive Molecular Insect Science. Elsevier; 2005. pp. 143-71. [DOI: 10.1016/b0-44-451924-6/00091-0] [Cited by in Crossref: 3] [Article Influence: 0.2] [Reference Citation Analysis]
51 Verleyen P, Baggerman G, Mertens I, Vandersmissen T, Huybrechts J, Lommel AV, Loof AD, Schoofs L. Cloning and characterization of a third isoform of corazonin in the honey bee Apis mellifera. Peptides 2006;27:493-9. [DOI: 10.1016/j.peptides.2005.03.065] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 1.3] [Reference Citation Analysis]
52 Mirabeau O, Perlas E, Severini C, Audero E, Gascuel O, Possenti R, Birney E, Rosenthal N, Gross C. Identification of novel peptide hormones in the human proteome by hidden Markov model screening. Genome Res 2007;17:320-7. [PMID: 17284679 DOI: 10.1101/gr.5755407] [Cited by in Crossref: 147] [Cited by in F6Publishing: 137] [Article Influence: 9.8] [Reference Citation Analysis]
53 Koyama T, Texada MJ, Halberg KA, Rewitz K. Metabolism and growth adaptation to environmental conditions in Drosophila. Cell Mol Life Sci 2020;77:4523-51. [PMID: 32448994 DOI: 10.1007/s00018-020-03547-2] [Cited by in Crossref: 32] [Cited by in F6Publishing: 15] [Article Influence: 16.0] [Reference Citation Analysis]
54 Heier C, Klishch S, Stilbytska O, Semaniuk U, Lushchak O. The Drosophila model to interrogate triacylglycerol biology. Biochim Biophys Acta Mol Cell Biol Lipids 2021;1866:158924. [PMID: 33716135 DOI: 10.1016/j.bbalip.2021.158924] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Choi MY, Vander Meer RK. GPCR-Based Bioactive Peptide Screening Using Phage-Displayed Peptides and an Insect Cell System for Insecticide Discovery. Biomolecules 2021;11:583. [PMID: 33923387 DOI: 10.3390/biom11040583] [Reference Citation Analysis]
56 Bauknecht P, Jékely G. Large-Scale Combinatorial Deorphanization of Platynereis Neuropeptide GPCRs. Cell Reports 2015;12:684-93. [DOI: 10.1016/j.celrep.2015.06.052] [Cited by in Crossref: 77] [Cited by in F6Publishing: 63] [Article Influence: 11.0] [Reference Citation Analysis]
57 Root-bernstein RS. Peptide self-aggregation and peptide complementarity as bases for the evolution of peptide receptors: a review. J Mol Recognit 2005;18:40-9. [DOI: 10.1002/jmr.690] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 1.5] [Reference Citation Analysis]
58 Bodmer R, Wessells R, Johnson E, Dowse H. Heart Development and Function. Comprehensive Molecular Insect Science. Elsevier; 2005. pp. 199-250. [DOI: 10.1016/b0-44-451924-6/00024-7] [Cited by in Crossref: 15] [Article Influence: 0.9] [Reference Citation Analysis]
59 Redeker J, Bläser M, Neupert S, Predel R. Identification and distribution of products from novel tryptopyrokinin genes in the locust, Locusta migratoria. Biochemical and Biophysical Research Communications 2017;486:70-5. [DOI: 10.1016/j.bbrc.2017.02.135] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
60 da Silva R, Lange AB. The association of crustacean cardioactive peptide with the spermatheca of the African migratory locust, Locusta migratoria. J Insect Physiol 2006;52:399-409. [PMID: 16516227 DOI: 10.1016/j.jinsphys.2006.01.006] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.0] [Reference Citation Analysis]
61 Hull JJ, Brent CS, Choi MY, Mikó Z, Fodor J, Fónagy A. Molecular and Functional Characterization of Pyrokinin-Like Peptides in the Western Tarnished Plant Bug Lygus hesperus (Hemiptera: Miridae). Insects 2021;12:914. [PMID: 34680683 DOI: 10.3390/insects12100914] [Reference Citation Analysis]
62 Veenstra JA. The contribution of the genomes of a termite and a locust to our understanding of insect neuropeptides and neurohormones. Front Physiol 2014;5:454. [PMID: 25477824 DOI: 10.3389/fphys.2014.00454] [Cited by in Crossref: 84] [Cited by in F6Publishing: 75] [Article Influence: 10.5] [Reference Citation Analysis]
63 Mitchell JD, Maguire JJ, Kuc RE, Davenport AP. Expression and vasoconstrictor function of anorexigenic peptides neuromedin U-25 and S in the human cardiovascular system. Cardiovasc Res 2009;81:353-61. [PMID: 18987052 DOI: 10.1093/cvr/cvn302] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 1.9] [Reference Citation Analysis]
64 Ben-Shlomo I, Yu Hsu S, Rauch R, Kowalski HW, Hsueh AJ. Signaling receptome: a genomic and evolutionary perspective of plasma membrane receptors involved in signal transduction. Sci STKE 2003;2003:RE9. [PMID: 12815191 DOI: 10.1126/stke.2003.187.re9] [Cited by in Crossref: 17] [Cited by in F6Publishing: 62] [Article Influence: 0.9] [Reference Citation Analysis]
65 Roch GJ, Busby ER, Sherwood NM. GnRH receptors and peptides: Skating backward. General and Comparative Endocrinology 2014;209:118-34. [DOI: 10.1016/j.ygcen.2014.07.025] [Cited by in Crossref: 75] [Cited by in F6Publishing: 66] [Article Influence: 9.4] [Reference Citation Analysis]
66 Paluzzi JP, Park Y, Nachman RJ, Orchard I. Isolation, expression analysis, and functional characterization of the first antidiuretic hormone receptor in insects. Proc Natl Acad Sci U S A 2010;107:10290-5. [PMID: 20479227 DOI: 10.1073/pnas.1003666107] [Cited by in Crossref: 58] [Cited by in F6Publishing: 51] [Article Influence: 4.8] [Reference Citation Analysis]
67 Grönke S, Müller G, Hirsch J, Fellert S, Andreou A, Haase T, Jäckle H, Kühnlein RP. Dual lipolytic control of body fat storage and mobilization in Drosophila. PLoS Biol 2007;5:e137. [PMID: 17488184 DOI: 10.1371/journal.pbio.0050137] [Cited by in Crossref: 208] [Cited by in F6Publishing: 193] [Article Influence: 13.9] [Reference Citation Analysis]
68 Xiong C, Wulff JP, Nachman RJ, Pietrantonio PV. Myotropic Activities of Tick Pyrokinin Neuropeptides and Analog in Feeding Tissues of Hard Ticks (Ixodidae). Front Physiol 2021;12:826399. [PMID: 35242048 DOI: 10.3389/fphys.2021.826399] [Reference Citation Analysis]
69 Shen Z, Jiang X, Yan L, Chen Y, Wang W, Shi Y, Shi L, Liu D, Zhou N. Structural basis for the interaction of diapause hormone with its receptor in the silkworm, Bombyx mori. FASEB J 2018;32:1338-53. [PMID: 29101222 DOI: 10.1096/fj.201700931R] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
70 Johnson EC, Shafer OT, Trigg JS, Park J, Schooley DA, Dow JA, Taghert PH. A novel diuretic hormone receptor in Drosophila: evidence for conservation of CGRP signaling. J Exp Biol 2005;208:1239-46. [PMID: 15781884 DOI: 10.1242/jeb.01529] [Cited by in Crossref: 133] [Cited by in F6Publishing: 106] [Article Influence: 7.8] [Reference Citation Analysis]
71 Ibrahim E, Dobeš P, Kunc M, Hyršl P, Kodrík D. Adipokinetic hormone and adenosine interfere with nematobacterial infection and locomotion in Drosophila melanogaster. Journal of Insect Physiology 2018;107:167-74. [DOI: 10.1016/j.jinsphys.2018.04.002] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
72 Zhang H, Rodgers EW, Krenz WD, Clark MC, Baro DJ. Cell specific dopamine modulation of the transient potassium current in the pyloric network by the canonical D1 receptor signal transduction cascade. J Neurophysiol 2010;104:873-84. [PMID: 20519576 DOI: 10.1152/jn.00195.2010] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 1.3] [Reference Citation Analysis]
73 Melcher C, Pankratz MJ. Candidate gustatory interneurons modulating feeding behavior in the Drosophila brain. PLoS Biol 2005;3:e305. [PMID: 16122349 DOI: 10.1371/journal.pbio.0030305] [Cited by in Crossref: 186] [Cited by in F6Publishing: 172] [Article Influence: 10.9] [Reference Citation Analysis]
74 Terhzaz S, Cabrero P, Robben JH, Radford JC, Hudson BD, Milligan G, Dow JA, Davies SA. Mechanism and function of Drosophila capa GPCR: a desiccation stress-responsive receptor with functional homology to human neuromedinU receptor. PLoS One 2012;7:e29897. [PMID: 22253819 DOI: 10.1371/journal.pone.0029897] [Cited by in Crossref: 64] [Cited by in F6Publishing: 57] [Article Influence: 6.4] [Reference Citation Analysis]
75 Kodrík D, Bednářová A, Zemanová M, Krishnan N. Hormonal Regulation of Response to Oxidative Stress in Insects-An Update. Int J Mol Sci 2015;16:25788-816. [PMID: 26516847 DOI: 10.3390/ijms161025788] [Cited by in Crossref: 61] [Cited by in F6Publishing: 46] [Article Influence: 8.7] [Reference Citation Analysis]
76 Fodor J, Hull JJ, Köblös G, Jacquin-Joly E, Szlanka T, Fónagy A. Identification and functional characterization of the pheromone biosynthesis activating neuropeptide receptor isoforms from Mamestra brassicae. Gen Comp Endocrinol 2018;258:60-9. [PMID: 28579335 DOI: 10.1016/j.ygcen.2017.05.024] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.4] [Reference Citation Analysis]
77 Valsalan R, Manoj N. Evolutionary history of the neuropeptide S receptor/neuropeptide S system. Gen Comp Endocrinol 2014;209:11-20. [PMID: 24859256 DOI: 10.1016/j.ygcen.2014.05.011] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
78 Hou QL, Jiang HB, Gui SH, Chen EH, Wei DD, Li HM, Wang JJ, Smagghe G. A Role of Corazonin Receptor in Larval-Pupal Transition and Pupariation in the Oriental Fruit Fly Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Front Physiol 2017;8:77. [PMID: 28261106 DOI: 10.3389/fphys.2017.00077] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
79 Hauser F, Cazzamali G, Williamson M, Blenau W, Grimmelikhuijzen CJ. A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera. Prog Neurobiol 2006;80:1-19. [PMID: 17070981 DOI: 10.1016/j.pneurobio.2006.07.005] [Cited by in Crossref: 215] [Cited by in F6Publishing: 201] [Article Influence: 14.3] [Reference Citation Analysis]
80 Wegener C, Gorbashov A. Molecular evolution of neuropeptides in the genus Drosophila. Genome Biol 2008;9:R131. [PMID: 18717992 DOI: 10.1186/gb-2008-9-8-r131] [Cited by in Crossref: 53] [Cited by in F6Publishing: 50] [Article Influence: 3.8] [Reference Citation Analysis]
81 Caers J, Janssen T, Van Rompay L, Broeckx V, Van Den Abbeele J, Gäde G, Schoofs L, Beets I. Characterization and pharmacological analysis of two adipokinetic hormone receptor variants of the tsetse fly, Glossina morsitans morsitans. Insect Biochem Mol Biol 2016;70:73-84. [PMID: 26690928 DOI: 10.1016/j.ibmb.2015.11.010] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 2.6] [Reference Citation Analysis]
82 Zitnan D, Kim YJ, Zitnanová I, Roller L, Adams ME. Complex steroid-peptide-receptor cascade controls insect ecdysis. Gen Comp Endocrinol 2007;153:88-96. [PMID: 17507015 DOI: 10.1016/j.ygcen.2007.04.002] [Cited by in Crossref: 116] [Cited by in F6Publishing: 100] [Article Influence: 7.7] [Reference Citation Analysis]
83 Coast GM. Insect Diuretic and Antidiuretic Hormones. Handbook of Biologically Active Peptides. Elsevier; 2006. pp. 157-62. [DOI: 10.1016/b978-012369442-3/50027-1] [Cited by in Crossref: 2] [Article Influence: 0.1] [Reference Citation Analysis]
84 Watteyne J, Peymen K, Van der Auwera P, Borghgraef C, Vandewyer E, Van Damme S, Rutten I, Lammertyn J, Jelier R, Schoofs L, Beets I. Neuromedin U signaling regulates retrieval of learned salt avoidance in a C. elegans gustatory circuit. Nat Commun 2020;11:2076. [PMID: 32350283 DOI: 10.1038/s41467-020-15964-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
85 Roch GJ, Tello JA, Sherwood NM. At the transition from invertebrates to vertebrates, a novel GnRH-like peptide emerges in amphioxus. Mol Biol Evol 2014;31:765-78. [PMID: 24361996 DOI: 10.1093/molbev/mst269] [Cited by in Crossref: 47] [Cited by in F6Publishing: 37] [Article Influence: 5.2] [Reference Citation Analysis]
86 Adamson SW, Browning RE, Chao CC, Bateman RC Jr, Ching WM, Karim S. Molecular characterization of tick salivary gland glutaminyl cyclase. Insect Biochem Mol Biol 2013;43:781-93. [PMID: 23770496 DOI: 10.1016/j.ibmb.2013.05.011] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
87 Hamoudi Z, Lange AB, Orchard I. Identification and Characterization of the Corazonin Receptor and Possible Physiological Roles of the Corazonin-Signaling Pathway in Rhodnius prolixus. Front Neurosci 2016;10:357. [PMID: 27536213 DOI: 10.3389/fnins.2016.00357] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
88 Olsen SS, Cazzamali G, Williamson M, Grimmelikhuijzen CJ, Hauser F. Identification of one capa and two pyrokinin receptors from the malaria mosquito Anopheles gambiae. Biochem Biophys Res Commun 2007;362:245-51. [PMID: 17709098 DOI: 10.1016/j.bbrc.2007.06.190] [Cited by in Crossref: 52] [Cited by in F6Publishing: 50] [Article Influence: 3.5] [Reference Citation Analysis]
89 Gäde G, Marco HG. AKH/RPCH Peptides. Handbook of Biologically Active Peptides. Elsevier; 2013. pp. 185-90. [DOI: 10.1016/b978-0-12-385095-9.00028-2] [Cited by in Crossref: 14] [Article Influence: 1.6] [Reference Citation Analysis]
90 Sajadi F, Uyuklu A, Paputsis C, Lajevardi A, Wahedi A, Ber LT, Matei A, Paluzzi JV. CAPA neuropeptides and their receptor form an anti-diuretic hormone signaling system in the human disease vector, Aedes aegypti. Sci Rep 2020;10:1755. [PMID: 32020001 DOI: 10.1038/s41598-020-58731-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
91 Gäde G, Auerswald L. Mode of action of neuropeptides from the adipokinetic hormone family. Gen Comp Endocrinol 2003;132:10-20. [PMID: 12765639 DOI: 10.1016/s0016-6480(03)00159-x] [Cited by in Crossref: 173] [Cited by in F6Publishing: 52] [Article Influence: 9.6] [Reference Citation Analysis]
92 Paluzzi JP, O'Donnell MJ. Identification, spatial expression analysis and functional characterization of a pyrokinin-1 receptor in the Chagas' disease vector, Rhodnius prolixus. Mol Cell Endocrinol 2012;363:36-45. [PMID: 22820129 DOI: 10.1016/j.mce.2012.07.007] [Cited by in Crossref: 38] [Cited by in F6Publishing: 38] [Article Influence: 3.8] [Reference Citation Analysis]
93 Verlinden H, Vleugels R, Zels S, Dillen S, Lenaerts C, Crabbé K, Spit J, Vanden Broeck J. Receptors for Neuronal or Endocrine Signalling Molecules as Potential Targets for the Control of Insect Pests. Target Receptors in the Control of Insect Pests: Part II. Elsevier; 2014. pp. 167-303. [DOI: 10.1016/b978-0-12-417010-0.00003-3] [Cited by in Crossref: 33] [Article Influence: 4.1] [Reference Citation Analysis]
94 Mirabeau O, Joly JS. Molecular evolution of peptidergic signaling systems in bilaterians. Proc Natl Acad Sci U S A 2013;110:E2028-37. [PMID: 23671109 DOI: 10.1073/pnas.1219956110] [Cited by in Crossref: 243] [Cited by in F6Publishing: 215] [Article Influence: 27.0] [Reference Citation Analysis]
95 Kawasawa Y, McKenzie LM, Hill DP, Bono H, Yanagisawa M; RIKEN GER Group., GSL Members. G protein-coupled receptor genes in the FANTOM2 database. Genome Res 2003;13:1466-77. [PMID: 12819145 DOI: 10.1101/gr.1087603] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 1.3] [Reference Citation Analysis]
96 Veenstra JA, Rombauts S, Grbić M. In silico cloning of genes encoding neuropeptides, neurohormones and their putative G-protein coupled receptors in a spider mite. Insect Biochem Mol Biol 2012;42:277-95. [PMID: 22214827 DOI: 10.1016/j.ibmb.2011.12.009] [Cited by in Crossref: 78] [Cited by in F6Publishing: 73] [Article Influence: 7.1] [Reference Citation Analysis]
97 Dubos M, Bernay B, Favrel P. Molecular characterization of an adipokinetic hormone-related neuropeptide (AKH) from a mollusk. General and Comparative Endocrinology 2017;243:15-21. [DOI: 10.1016/j.ygcen.2016.11.002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
98 Fujii Y, Enomoto M, Ikemoto T, Endo D, Okubo K, Aida K, Park MK. Molecular cloning and characterization of a gonadotropin-releasing hormone receptor in the guinea pig, Cavia porcellus. General and Comparative Endocrinology 2004;136:208-16. [DOI: 10.1016/j.ygcen.2003.12.011] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 0.7] [Reference Citation Analysis]
99 Shen Z, Chen Y, Hong L, Cui Z, Yang H, He X, Shi Y, Shi L, Han F, Zhou N. BNGR-A25L and -A27 are two functional G protein-coupled receptors for CAPA periviscerokinin neuropeptides in the silkworm Bombyx mori. J Biol Chem 2017;292:16554-70. [PMID: 28842502 DOI: 10.1074/jbc.M117.803445] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 2.2] [Reference Citation Analysis]
100 Lu K, Wang Y, Chen X, Zhang X, Li W, Cheng Y, Li Y, Zhou J, You K, Song Y, Zhou Q, Zeng R. Adipokinetic Hormone Receptor Mediates Trehalose Homeostasis to Promote Vitellogenin Uptake by Oocytes in Nilaparvata lugens. Front Physiol 2018;9:1904. [PMID: 30687120 DOI: 10.3389/fphys.2018.01904] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
101 Choi MY, Vander Meer RK. Ant trail pheromone biosynthesis is triggered by a neuropeptide hormone. PLoS One 2012;7:e50400. [PMID: 23226278 DOI: 10.1371/journal.pone.0050400] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
102 Bestman JE, Booker R. The control of anterior foregut motility during a larval molt of the moth Manduca sexta involves the modulation of presynaptic activity. Journal of Experimental Biology 2006;209:4000-10. [DOI: 10.1242/jeb.02479] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
103 Sun B, Kavanaugh SI, Tsai P. Gonadotropin-releasing hormone in protostomes: Insights from functional studies on Aplysia californica. General and Comparative Endocrinology 2012;176:321-6. [DOI: 10.1016/j.ygcen.2011.11.030] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 2.5] [Reference Citation Analysis]
104 Hyun S, Lee Y, Hong ST, Bang S, Paik D, Kang J, Shin J, Lee J, Jeon K, Hwang S, Bae E, Kim J. Drosophila GPCR Han is a receptor for the circadian clock neuropeptide PDF. Neuron 2005;48:267-78. [PMID: 16242407 DOI: 10.1016/j.neuron.2005.08.025] [Cited by in Crossref: 209] [Cited by in F6Publishing: 207] [Article Influence: 13.1] [Reference Citation Analysis]
105 Veenstra JA, Šimo L. The TRH-ortholog EFLamide in the migratory locust. Insect Biochemistry and Molecular Biology 2020;116:103281. [DOI: 10.1016/j.ibmb.2019.103281] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
106 Sajwan S, Sidorov R, Stašková T, Žaloudíková A, Takasu Y, Kodrík D, Zurovec M. Targeted mutagenesis and functional analysis of adipokinetic hormone-encoding gene in Drosophila. Insect Biochemistry and Molecular Biology 2015;61:79-86. [DOI: 10.1016/j.ibmb.2015.01.011] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 3.7] [Reference Citation Analysis]
107 Schooley D, Horodyski F, Coast G. Hormones Controlling Homeostasis in Insects. Insect Endocrinology. Elsevier; 2012. pp. 366-429. [DOI: 10.1016/b978-0-12-384749-2.10009-3] [Cited by in Crossref: 17] [Article Influence: 1.7] [Reference Citation Analysis]
108 Nachman RJ, Wang XJ, Etzkorn FA, Kaczmarek K, Zabrocki J, Lopez J, Coast GM. Evaluation of insect CAP2b analogs with either an (E)-alkene, trans- or a (Z)-alkene, cis-Pro isostere identifies the Pro orientation for antidiuretic activity in the stink bug. Peptides 2013;41:101-6. [DOI: 10.1016/j.peptides.2012.09.026] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
109 Gui S, Jiang H, Xu L, Pei Y, Liu X, Smagghe G, Wang J. Role of a tachykinin-related peptide and its receptor in modulating the olfactory sensitivity in the oriental fruit fly, Bactrocera dorsalis (Hendel). Insect Biochemistry and Molecular Biology 2017;80:71-8. [DOI: 10.1016/j.ibmb.2016.12.002] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
110 Kubiak TM, Larsen MJ, Nulf SC, Zantello MR, Burton KJ, Bowman JW, Modric T, Lowery DE. Differential activation of "social" and "solitary" variants of the Caenorhabditis elegans G protein-coupled receptor NPR-1 by its cognate ligand AF9. J Biol Chem 2003;278:33724-9. [PMID: 12821653 DOI: 10.1074/jbc.M304861200] [Cited by in Crossref: 63] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
111 Hauser F, Grimmelikhuijzen CJ. Evolution of the AKH/corazonin/ACP/GnRH receptor superfamily and their ligands in the Protostomia. Gen Comp Endocrinol 2014;209:35-49. [PMID: 25058364 DOI: 10.1016/j.ygcen.2014.07.009] [Cited by in Crossref: 91] [Cited by in F6Publishing: 78] [Article Influence: 11.4] [Reference Citation Analysis]
112 Cazzamali G, Saxild N, Grimmelikhuijzen C. Molecular cloning and functional expression of a Drosophila corazonin receptor. Biochem Biophys Res Commun 2002;298:31-6. [PMID: 12379215 DOI: 10.1016/s0006-291x(02)02398-7] [Cited by in Crossref: 80] [Cited by in F6Publishing: 25] [Article Influence: 4.0] [Reference Citation Analysis]
113 Braco JT, Gillespie EL, Alberto GE, Brenman JE, Johnson EC. Energy-dependent modulation of glucagon-like signaling in Drosophila via the AMP-activated protein kinase. Genetics 2012;192:457-66. [PMID: 22798489 DOI: 10.1534/genetics.112.143610] [Cited by in Crossref: 53] [Cited by in F6Publishing: 51] [Article Influence: 5.3] [Reference Citation Analysis]
114 Kim YJ, Spalovská-Valachová I, Cho KH, Zitnanova I, Park Y, Adams ME, Zitnan D. Corazonin receptor signaling in ecdysis initiation. Proc Natl Acad Sci U S A 2004;101:6704-9. [PMID: 15096620 DOI: 10.1073/pnas.0305291101] [Cited by in Crossref: 143] [Cited by in F6Publishing: 118] [Article Influence: 7.9] [Reference Citation Analysis]
115 Hughes AL. Amino acid sequence coevolution in the insect bursicon ligand-receptor system. Mol Phylogenet Evol 2012;63:617-24. [PMID: 22373512 DOI: 10.1016/j.ympev.2012.02.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
116 Frooninckx L, Van Rompay L, Temmerman L, Van Sinay E, Beets I, Janssen T, Husson SJ, Schoofs L. Neuropeptide GPCRs in C. elegans. Front Endocrinol (Lausanne) 2012;3:167. [PMID: 23267347 DOI: 10.3389/fendo.2012.00167] [Cited by in Crossref: 65] [Cited by in F6Publishing: 58] [Article Influence: 6.5] [Reference Citation Analysis]
117 Hao K, Tu X, Ullah H, McNeill MR, Zhang Z. Novel Lom-dh Genes Play Potential Role in Promoting Egg Diapause of Locusta migratoria L. Front Physiol 2019;10:767. [PMID: 31275172 DOI: 10.3389/fphys.2019.00767] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
118 Bharucha KN, Tarr P, Zipursky SL. A glucagon-like endocrine pathway in Drosophila modulates both lipid and carbohydrate homeostasis. J Exp Biol 2008;211:3103-10. [PMID: 18805809 DOI: 10.1242/jeb.016451] [Cited by in Crossref: 144] [Cited by in F6Publishing: 128] [Article Influence: 10.3] [Reference Citation Analysis]
119 Jékely G. Global view of the evolution and diversity of metazoan neuropeptide signaling. Proc Natl Acad Sci U S A 2013;110:8702-7. [PMID: 23637342 DOI: 10.1073/pnas.1221833110] [Cited by in Crossref: 252] [Cited by in F6Publishing: 218] [Article Influence: 28.0] [Reference Citation Analysis]
120 Nusawardani T, Kroemer JA, Choi MY, Jurenka RA. Identification and characterization of the pyrokinin/pheromone biosynthesis activating neuropeptide family of G protein-coupled receptors from Ostrinia nubilalis. Insect Mol Biol 2013;22:331-40. [PMID: 23551811 DOI: 10.1111/imb.12025] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 3.8] [Reference Citation Analysis]
121 Yapici N, Kim YJ, Ribeiro C, Dickson BJ. A receptor that mediates the post-mating switch in Drosophila reproductive behaviour. Nature 2008;451:33-7. [PMID: 18066048 DOI: 10.1038/nature06483] [Cited by in Crossref: 331] [Cited by in F6Publishing: 271] [Article Influence: 23.6] [Reference Citation Analysis]
122 Tsai PS, Zhang L. The emergence and loss of gonadotropin-releasing hormone in protostomes: orthology, phylogeny, structure, and function. Biol Reprod 2008;79:798-805. [PMID: 18614699 DOI: 10.1095/biolreprod.108.070185] [Cited by in Crossref: 67] [Cited by in F6Publishing: 58] [Article Influence: 4.8] [Reference Citation Analysis]
123 Neupert S, Derst C, Sturm S, Predel R. Identification of two capa cDNA transcripts and detailed peptidomic characterization of their peptide products in Periplaneta americana. EuPA Open Proteomics 2014;3:195-205. [DOI: 10.1016/j.euprot.2014.02.005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
124 Hector CE, Bretz CA, Zhao Y, Johnson EC. Functional differences between two CRF-related diuretic hormone receptors in Drosophila. J Exp Biol 2009;212:3142-7. [PMID: 19749107 DOI: 10.1242/jeb.033175] [Cited by in Crossref: 38] [Cited by in F6Publishing: 36] [Article Influence: 2.9] [Reference Citation Analysis]
125 Kawai T, Katayama Y, Guo L, Liu D, Suzuki T, Hayakawa K, Lee JM, Nagamine T, Hull JJ, Matsumoto S, Nagasawa H, Tanokura M, Nagata K. Identification of functionally important residues of the silkmoth pheromone biosynthesis-activating neuropeptide receptor, an insect ortholog of the vertebrate neuromedin U receptor. J Biol Chem 2014;289:19150-63. [PMID: 24847080 DOI: 10.1074/jbc.M113.488999] [Cited by in Crossref: 17] [Cited by in F6Publishing: 3] [Article Influence: 2.1] [Reference Citation Analysis]
126 Suga H, Haga T. Ligand screening system using fusion proteins of G protein-coupled receptors with G protein alpha subunits. Neurochem Int 2007;51:140-64. [PMID: 17659814 DOI: 10.1016/j.neuint.2007.06.006] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 0.7] [Reference Citation Analysis]
127 Predel R, Neupert S, Russell WK, Hauser F, Russell DH, Li A, Nachman RJ. CAPA-gene products in the haematophagous sandfly Phlebotomus papatasi (Scopoli)--vector for leishmaniasis disease. Peptides 2013;41:2-7. [PMID: 23266568 DOI: 10.1016/j.peptides.2012.12.009] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
128 Metpally RP, Sowdhamini R. Cross genome phylogenetic analysis of human and Drosophila G protein-coupled receptors: application to functional annotation of orphan receptors. BMC Genomics 2005;6:106. [PMID: 16091152 DOI: 10.1186/1471-2164-6-106] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 2.1] [Reference Citation Analysis]
129 Park Y, Kim YJ, Dupriez V, Adams ME. Two subtypes of ecdysis-triggering hormone receptor in Drosophila melanogaster. J Biol Chem 2003;278:17710-5. [PMID: 12586820 DOI: 10.1074/jbc.M301119200] [Cited by in Crossref: 65] [Cited by in F6Publishing: 34] [Article Influence: 3.4] [Reference Citation Analysis]
130 Cvejic S, Zhu Z, Felice SJ, Berman Y, Huang X. The endogenous ligand Stunted of the GPCR Methuselah extends lifespan in Drosophila. Nat Cell Biol 2004;6:540-6. [DOI: 10.1038/ncb1133] [Cited by in Crossref: 64] [Cited by in F6Publishing: 62] [Article Influence: 3.6] [Reference Citation Analysis]
131 Walkowiak-Nowicka K, Chowański S, Urbański A, Marciniak P. Insects as a New Complex Model in Hormonal Basis of Obesity. Int J Mol Sci 2021;22:11066. [PMID: 34681728 DOI: 10.3390/ijms222011066] [Reference Citation Analysis]
132 Weaver RJ, Marco HG, Šimek P, Audsley N, Clark KD, Gäde G. Adipokinetic hormones (AKHs) of sphingid Lepidoptera, including the identification of a second M. sexta AKH. Peptides 2012;34:44-50. [DOI: 10.1016/j.peptides.2012.01.009] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.4] [Reference Citation Analysis]
133 Jackson GE, Gäde G, Marco HG. In Silico Screening for Pesticide Candidates against the Desert Locust Schistocerca gregaria. Life 2022;12:387. [DOI: 10.3390/life12030387] [Reference Citation Analysis]
134 Wicher D, Agricola H, Söhler S, Gundel M, Heinemann SH, Wollweber L, Stengl M, Derst C. Differential Receptor Activation by Cockroach Adipokinetic Hormones Produces Differential Effects on Ion Currents, Neuronal Activity, and Locomotion. Journal of Neurophysiology 2006;95:2314-25. [DOI: 10.1152/jn.01007.2005] [Cited by in Crossref: 71] [Cited by in F6Publishing: 69] [Article Influence: 4.4] [Reference Citation Analysis]
135 Gáliková M, Diesner M, Klepsatel P, Hehlert P, Xu Y, Bickmeyer I, Predel R, Kühnlein RP. Energy Homeostasis Control in Drosophila Adipokinetic Hormone Mutants. Genetics 2015;201:665-83. [PMID: 26275422 DOI: 10.1534/genetics.115.178897] [Cited by in Crossref: 104] [Cited by in F6Publishing: 91] [Article Influence: 14.9] [Reference Citation Analysis]
136 Semmens DC, Elphick MR. The evolution of neuropeptide signalling: insights from echinoderms. Brief Funct Genomics 2017;16:288-98. [PMID: 28444138 DOI: 10.1093/bfgp/elx005] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 6.3] [Reference Citation Analysis]
137 Gade G, Hoffmann K. Neuropeptides regulating development and reproduction in insects. Physiol Entomol 2005;30:103-21. [DOI: 10.1111/j.1365-3032.2005.00442.x] [Cited by in Crossref: 44] [Cited by in F6Publishing: 27] [Article Influence: 2.6] [Reference Citation Analysis]
138 Hull JJ, Ohnishi A, Moto K, Kawasaki Y, Kurata R, Suzuki MG, Matsumoto S. Cloning and characterization of the pheromone biosynthesis activating neuropeptide receptor from the silkmoth, Bombyx mori. Significance of the carboxyl terminus in receptor internalization. J Biol Chem 2004;279:51500-7. [PMID: 15358772 DOI: 10.1074/jbc.M408142200] [Cited by in Crossref: 89] [Cited by in F6Publishing: 27] [Article Influence: 4.9] [Reference Citation Analysis]
139 Schoofs A, Hückesfeld S, Schlegel P, Miroschnikow A, Peters M, Zeymer M, Spieß R, Chiang AS, Pankratz MJ. Selection of motor programs for suppressing food intake and inducing locomotion in the Drosophila brain. PLoS Biol 2014;12:e1001893. [PMID: 24960360 DOI: 10.1371/journal.pbio.1001893] [Cited by in Crossref: 62] [Cited by in F6Publishing: 50] [Article Influence: 7.8] [Reference Citation Analysis]
140 Predel R, Neupert S, Garczynski SF, Crim JW, Brown MR, Russell WK, Kahnt J, Russell DH, Nachman RJ. Neuropeptidomics of the mosquito Aedes aegypti. J Proteome Res 2010;9:2006-15. [PMID: 20163154 DOI: 10.1021/pr901187p] [Cited by in Crossref: 105] [Cited by in F6Publishing: 94] [Article Influence: 8.8] [Reference Citation Analysis]
141 Wahedi A, Paluzzi JP. Molecular identification, transcript expression, and functional deorphanization of the adipokinetic hormone/corazonin-related peptide receptor in the disease vector, Aedes aegypti. Sci Rep 2018;8:2146. [PMID: 29391531 DOI: 10.1038/s41598-018-20517-8] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
142 Terhzaz S, Teets NM, Cabrero P, Henderson L, Ritchie MG, Nachman RJ, Dow JA, Denlinger DL, Davies SA. Insect capa neuropeptides impact desiccation and cold tolerance. Proc Natl Acad Sci U S A 2015;112:2882-7. [PMID: 25730885 DOI: 10.1073/pnas.1501518112] [Cited by in Crossref: 79] [Cited by in F6Publishing: 60] [Article Influence: 11.3] [Reference Citation Analysis]
143 Koziol U. Precursors of neuropeptides and peptide hormones in the genomes of tardigrades. General and Comparative Endocrinology 2018;267:116-27. [DOI: 10.1016/j.ygcen.2018.06.012] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
144 Alexander JL, Oliphant A, Wilcockson DC, Audsley N, Down RE, Lafont R, Webster SG. Functional Characterization and Signaling Systems of Corazonin and Red Pigment Concentrating Hormone in the Green Shore Crab, Carcinus maenas. Front Neurosci 2017;11:752. [PMID: 29379412 DOI: 10.3389/fnins.2017.00752] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
145 Jiang H, Wei Z, Nachman RJ, Adams ME, Park Y. Functional phylogenetics reveals contributions of pleiotropic peptide action to ligand-receptor coevolution. Sci Rep 2014;4:6800. [PMID: 25348027 DOI: 10.1038/srep06800] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 4.3] [Reference Citation Analysis]
146 Roch GJ, Busby ER, Sherwood NM. Evolution of Reproductive Neurohormones. Handbook of Neuroendocrinology. Elsevier; 2012. pp. 73-94. [DOI: 10.1016/b978-0-12-375097-6.10004-6] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
147 Veenstra JA. Does corazonin signal nutritional stress in insects? Insect Biochem Mol Biol 2009;39:755-62. [PMID: 19815069 DOI: 10.1016/j.ibmb.2009.09.008] [Cited by in Crossref: 69] [Cited by in F6Publishing: 61] [Article Influence: 5.3] [Reference Citation Analysis]
148 Dulcis D, Levine RB, Ewer J. Role of the neuropeptide CCAP inDrosophila cardiac function. J Neurobiol 2005;64:259-74. [DOI: 10.1002/neu.20136] [Cited by in Crossref: 68] [Cited by in F6Publishing: 67] [Article Influence: 4.0] [Reference Citation Analysis]
149 Buček A, Brabcová J, Vogel H, Prchalová D, Kindl J, Valterová I, Pichová I. Exploring complex pheromone biosynthetic processes in the bumblebee male labial gland by RNA sequencing. Insect Mol Biol 2016;25:295-314. [PMID: 26945888 DOI: 10.1111/imb.12221] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
150 Lee D, Vanden Broeck J, Lange AB. Identification and expression of the CCAP receptor in the Chagas' disease vector, Rhodnius prolixus, and its involvement in cardiac control. PLoS One 2013;8:e68897. [PMID: 23874803 DOI: 10.1371/journal.pone.0068897] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.1] [Reference Citation Analysis]
151 Ikemoto T, Enomoto M, Park M. Identification and characterization of a reptilian GnRH receptor from the leopard gecko. Molecular and Cellular Endocrinology 2004;214:137-47. [DOI: 10.1016/j.mce.2003.10.062] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 1.2] [Reference Citation Analysis]
152 Nelson JM, Saunders CJ, Johnson EC. The Intrinsic Nutrient Sensing Adipokinetic Hormone Producing Cells Function in Modulation of Metabolism, Activity, and Stress. Int J Mol Sci 2021;22:7515. [PMID: 34299134 DOI: 10.3390/ijms22147515] [Reference Citation Analysis]
153 Predel R, Eckert M, Pollák E, Molnár L, Scheibner O, Neupert S. Peptidomics of identified neurons demonstrates a highly differentiated expression pattern of FXPRLamides in the neuroendocrine system of an insect. J Comp Neurol 2007;500:498-512. [DOI: 10.1002/cne.21183] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 1.8] [Reference Citation Analysis]
154 Kapan N, Lushchak OV, Luo J, Nässel DR. Identified peptidergic neurons in the Drosophila brain regulate insulin-producing cells, stress responses and metabolism by coexpressed short neuropeptide F and corazonin. Cell Mol Life Sci 2012;69:4051-66. [PMID: 22828865 DOI: 10.1007/s00018-012-1097-z] [Cited by in Crossref: 80] [Cited by in F6Publishing: 76] [Article Influence: 8.0] [Reference Citation Analysis]
155 Bergland AO, Chae HS, Kim YJ, Tatar M. Fine-scale mapping of natural variation in fly fecundity identifies neuronal domain of expression and function of an aquaporin. PLoS Genet 2012;8:e1002631. [PMID: 22509142 DOI: 10.1371/journal.pgen.1002631] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 2.7] [Reference Citation Analysis]
156 Pauls D, Chen J, Reiher W, Vanselow JT, Schlosser A, Kahnt J, Wegener C. Peptidomics and processing of regulatory peptides in the fruit fly Drosophila. EuPA Open Proteomics 2014;3:114-27. [DOI: 10.1016/j.euprot.2014.02.007] [Cited by in Crossref: 18] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
157 Patel H, Orchard I, Veenstra J, Lange A. The distribution and physiological effects of three evolutionarily and sequence-related neuropeptides in Rhodnius prolixus: Adipokinetic hormone, corazonin and adipokinetic hormone/corazonin-related peptide. General and Comparative Endocrinology 2014;195:1-8. [DOI: 10.1016/j.ygcen.2013.10.012] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 5.0] [Reference Citation Analysis]
158 Patel H, Orchard I, Veenstra J, Lange A. Reprint of “The distribution and physiological effects of three evolutionarily and sequence-related neuropeptides in Rhodnius prolixus: Adipokinetic hormone, corazonin and adipokinetic hormone/corazonin-related peptide”. General and Comparative Endocrinology 2014;203:307-14. [DOI: 10.1016/j.ygcen.2014.07.001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
159 Matsumoto S, Ohnishi A, Lee JM, Hull JJ. Unraveling the pheromone biosynthesis activating neuropeptide (PBAN) signal transduction cascade that regulates sex pheromone production in moths. Vitam Horm 2010;83:425-45. [PMID: 20831957 DOI: 10.1016/S0083-6729(10)83018-3] [Cited by in Crossref: 22] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
160 Tsai PS. Gonadotropin-releasing hormone by any other name would smell as sweet. Gen Comp Endocrinol 2018;264:58-63. [PMID: 28927877 DOI: 10.1016/j.ygcen.2017.09.010] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
161 Mizuno Y, Imura E, Kurogi Y, Shimada-Niwa Y, Kondo S, Tanimoto H, Hückesfeld S, Pankratz MJ, Niwa R. A population of neurons that produce hugin and express the diuretic hormone 44 receptor gene projects to the corpora allata in Drosophila melanogaster. Dev Growth Differ 2021;63:249-61. [PMID: 34021588 DOI: 10.1111/dgd.12733] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
162 Maier W, Adilov B, Regenass M, Alcedo J. A neuromedin U receptor acts with the sensory system to modulate food type-dependent effects on C. elegans lifespan. PLoS Biol 2010;8:e1000376. [PMID: 20520844 DOI: 10.1371/journal.pbio.1000376] [Cited by in Crossref: 64] [Cited by in F6Publishing: 57] [Article Influence: 5.3] [Reference Citation Analysis]
163 Park JH, Schroeder AJ, Helfrich-förster C, Jackson FR, Ewer J. Targeted ablation of CCAP neuropeptide-containing neurons of Drosophila causes specific defects in execution and circadian timing of ecdysis behavior. Development 2003;130:2645-56. [DOI: 10.1242/dev.00503] [Cited by in Crossref: 164] [Cited by in F6Publishing: 159] [Article Influence: 8.6] [Reference Citation Analysis]
164 Dubos M, Badariotti F, Rodet F, Lelong C, Favrel P. Molecular and physiological characterization of an invertebrate homologue of a calcitonin-related receptor. Biochemical and Biophysical Research Communications 2003;310:972-8. [DOI: 10.1016/j.bbrc.2003.09.116] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 0.9] [Reference Citation Analysis]
165 Rosenkilde C, Cazzamali G, Williamson M, Hauser F, Søndergaard L, Delotto R, Grimmelikhuijzen CJ. Molecular cloning, functional expression, and gene silencing of two Drosophila receptors for the Drosophila neuropeptide pyrokinin-2. Biochemical and Biophysical Research Communications 2003;309:485-94. [DOI: 10.1016/j.bbrc.2003.08.022] [Cited by in Crossref: 64] [Cited by in F6Publishing: 66] [Article Influence: 3.4] [Reference Citation Analysis]
166 Rodet F, Lelong C, Dubos M, Favrel P. Alternative splicing of a single precursor mRNA generates two subtypes of Gonadotropin-Releasing Hormone receptor orthologues and their variants in the bivalve mollusc Crassostrea gigas. Gene 2008;414:1-9. [DOI: 10.1016/j.gene.2008.01.022] [Cited by in Crossref: 26] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
167 Tanaka Y, Ishibashi J, Tanaka S. Comparison of structure-activity relations of corazonin using two different bioassay systems. Peptides 2003;24:837-44. [PMID: 12948835 DOI: 10.1016/s0196-9781(03)00169-4] [Cited by in Crossref: 16] [Cited by in F6Publishing: 2] [Article Influence: 0.9] [Reference Citation Analysis]
168 Pollock VP, McGettigan J, Cabrero P, Maudlin IM, Dow JA, Davies SA. Conservation of capa peptide-induced nitric oxide signalling in Diptera. J Exp Biol 2004;207:4135-45. [PMID: 15498959 DOI: 10.1242/jeb.01255] [Cited by in Crossref: 56] [Cited by in F6Publishing: 51] [Article Influence: 3.3] [Reference Citation Analysis]
169 Tinoco AB, Semmens DC, Patching EC, Gunner EF, Egertová M, Elphick MR. Characterization of NGFFYamide Signaling in Starfish Reveals Roles in Regulation of Feeding Behavior and Locomotory Systems. Front Endocrinol (Lausanne) 2018;9:507. [PMID: 30283399 DOI: 10.3389/fendo.2018.00507] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
170 Ibrahim E, Hejníková M, Shaik HA, Doležel D, Kodrík D. Adipokinetic hormone activities in insect body infected by entomopathogenic nematode. J Insect Physiol 2017;98:347-55. [PMID: 28254268 DOI: 10.1016/j.jinsphys.2017.02.009] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
171 Siangcham T, Tinikul Y, Poljaroen J, Sroyraya M, Changklungmoa N, Phoungpetchara I, Kankuan W, Sumpownon C, Wanichanon C, Hanna PJ, Sobhon P. The effects of serotonin, dopamine, gonadotropin-releasing hormones, and corazonin, on the androgenic gland of the giant freshwater prawn, Macrobrachium rosenbergii. Gen Comp Endocrinol 2013;193:10-8. [PMID: 23867230 DOI: 10.1016/j.ygcen.2013.06.028] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 3.1] [Reference Citation Analysis]
172 Li J, Song J, Zaytseva YY, Liu Y, Rychahou P, Jiang K, Starr ME, Kim JT, Harris JW, Yiannikouris FB, Katz WS, Nilsson PM, Orho-Melander M, Chen J, Zhu H, Fahrenholz T, Higashi RM, Gao T, Morris AJ, Cassis LA, Fan TW, Weiss HL, Dobner PR, Melander O, Jia J, Evers BM. An obligatory role for neurotensin in high-fat-diet-induced obesity. Nature 2016;533:411-5. [PMID: 27193687 DOI: 10.1038/nature17662] [Cited by in Crossref: 132] [Cited by in F6Publishing: 130] [Article Influence: 22.0] [Reference Citation Analysis]
173 Bendena WG. Neuropeptide physiology in insects. Adv Exp Med Biol 2010;692:166-91. [PMID: 21189679 DOI: 10.1007/978-1-4419-6902-6_9] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 1.5] [Reference Citation Analysis]
174 Li S, Hauser F, Skadborg SK, Nielsen SV, Kirketerp-Møller N, Grimmelikhuijzen CJ. Adipokinetic hormones and their G protein-coupled receptors emerged in Lophotrochozoa. Sci Rep 2016;6:32789. [PMID: 27628442 DOI: 10.1038/srep32789] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
175 Huang H, Deng X, He X, Yang W, Li G, Shi Y, Shi L, Mei L, Gao J, Zhou N. Identification of distinct c-terminal domains of the Bombyx adipokinetic hormone receptor that are essential for receptor export, phosphorylation and internalization. Cellular Signalling 2011;23:1455-65. [DOI: 10.1016/j.cellsig.2011.04.006] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 0.8] [Reference Citation Analysis]
176 Poljaroen J, Tinikul Y, Phoungpetchara I, Kankoun W, Suwansa-ard S, Siangcham T, Meeratana P, Cummins SF, Sretarugsa P, Hanna PJ, Sobhon P. The effects of biogenic amines, gonadotropin-releasing hormones and corazonin on spermatogenesis in sexually mature small giant freshwater prawns, Macrobrachium rosenbergii (De Man, 1879). Aquaculture 2011;321:121-9. [DOI: 10.1016/j.aquaculture.2011.08.022] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
177 Heier C, Kühnlein RP. Triacylglycerol Metabolism in Drosophila melanogaster. Genetics 2018;210:1163-84. [PMID: 30523167 DOI: 10.1534/genetics.118.301583] [Cited by in Crossref: 56] [Cited by in F6Publishing: 38] [Article Influence: 18.7] [Reference Citation Analysis]
178 Ziegler R, Isoe J, Moore W, Riehle MA, Wells MA. The putative AKH receptor of the tobacco hornworm, Manduca sexta, and its expression. J Insect Sci 2011;11:40. [PMID: 21529255 DOI: 10.1673/031.011.0140] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 2.5] [Reference Citation Analysis]
179 Roller L, Zitnanová I, Dai L, Simo L, Park Y, Satake H, Tanaka Y, Adams ME, Zitnan D. Ecdysis triggering hormone signaling in arthropods. Peptides 2010;31:429-41. [PMID: 19951734 DOI: 10.1016/j.peptides.2009.11.022] [Cited by in Crossref: 63] [Cited by in F6Publishing: 54] [Article Influence: 4.8] [Reference Citation Analysis]
180 Zheng H, Chen C, Liu C, Song Q, Zhou S. Rhythmic change of adipokinetic hormones diurnally regulates locust vitellogenesis and egg development. Insect Mol Biol 2020;29:283-92. [PMID: 31904153 DOI: 10.1111/imb.12633] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
181 Lionarons DA, Boyer JL, Cai SY. Evolution of substrate specificity for the bile salt transporter ASBT (SLC10A2). J Lipid Res 2012;53:1535-42. [PMID: 22669917 DOI: 10.1194/jlr.M025726] [Cited by in Crossref: 22] [Cited by in F6Publishing: 14] [Article Influence: 2.2] [Reference Citation Analysis]
182 Park Y. Endocrine regulation of insect diuresis in the early postgenomic era 1 This review is part of a virtual symposium on recent advances in understanding a variety of complex regulatory processes in insect physiology and endocrinology, including development, metabolism, cold hardiness, food intake and digestion, and diuresis, through the use of omics technologies in the postgenomic era. Can J Zool 2012;90:507-20. [DOI: 10.1139/z2012-013] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
183 Elphick MR, Mirabeau O, Larhammar D. Evolution of neuropeptide signalling systems. J Exp Biol 2018;221:jeb151092. [PMID: 29440283 DOI: 10.1242/jeb.151092] [Cited by in Crossref: 72] [Cited by in F6Publishing: 62] [Article Influence: 18.0] [Reference Citation Analysis]
184 Van Hiel MB, Van Loy T, Poels J, Vandersmissen HP, Verlinden H, Badisco L, Vanden Broeck J. Neuropeptide Receptors as Possible Targets for Development of Insect Pest Control Agents. In: Geary TG, Maule AG, editors. Neuropeptide Systems as Targets for Parasite and Pest Control. Boston: Springer US; 2010. pp. 211-26. [DOI: 10.1007/978-1-4419-6902-6_11] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 2.3] [Reference Citation Analysis]
185 Jurenka R, Nusawardani T. The pyrokinin/ pheromone biosynthesis-activating neuropeptide (PBAN) family of peptides and their receptors in Insecta: evolutionary trace indicates potential receptor ligand-binding domains: Pyrokinin/PBAN ligands and receptors. Insect Molecular Biology 2011;20:323-34. [DOI: 10.1111/j.1365-2583.2010.01065.x] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 3.4] [Reference Citation Analysis]
186 Davies SA, Cabrero P, Overend G, Aitchison L, Sebastian S, Terhzaz S, Dow JA. Cell signalling mechanisms for insect stress tolerance. J Exp Biol 2014;217:119-28. [PMID: 24353211 DOI: 10.1242/jeb.090571] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
187 Predel R, Nachman RJ. The FXPRLamide (Pyrokinin/PBAN) Peptide Family. Handbook of Biologically Active Peptides. Elsevier; 2006. pp. 207-12. [DOI: 10.1016/b978-012369442-3/50035-0] [Cited by in Crossref: 10] [Article Influence: 0.6] [Reference Citation Analysis]
188 Ahn SJ, Corcoran JA, Vander Meer RK, Choi MY. Identification and Characterization of GPCRs for Pyrokinin and CAPA Peptides in the Brown Marmorated Stink Bug, Halyomorpha halys (Hemiptera: Pentatomidae). Front Physiol 2020;11:559. [PMID: 32547421 DOI: 10.3389/fphys.2020.00559] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
189 Melcher C, Bader R, Walther S, Simakov O, Pankratz MJ. Neuromedin U and its putative Drosophila homolog hugin. PLoS Biol 2006;4:e68. [PMID: 16524341 DOI: 10.1371/journal.pbio.0040068] [Cited by in Crossref: 36] [Cited by in F6Publishing: 31] [Article Influence: 2.3] [Reference Citation Analysis]
190 Homma T, Watanabe K, Tsurumaru S, Kataoka H, Imai K, Kamba M, Niimi T, Yamashita O, Yaginuma T. G protein-coupled receptor for diapause hormone, an inducer of Bombyx embryonic diapause. Biochem Biophys Res Commun 2006;344:386-93. [PMID: 16600181 DOI: 10.1016/j.bbrc.2006.03.085] [Cited by in Crossref: 91] [Cited by in F6Publishing: 82] [Article Influence: 5.7] [Reference Citation Analysis]
191 Johnson EC, Bohn LM, Barak LS, Birse RT, Nässel DR, Caron MG, Taghert PH. Identification of Drosophila neuropeptide receptors by G protein-coupled receptors-beta-arrestin2 interactions. J Biol Chem 2003;278:52172-8. [PMID: 14555656 DOI: 10.1074/jbc.M306756200] [Cited by in Crossref: 95] [Cited by in F6Publishing: 35] [Article Influence: 5.0] [Reference Citation Analysis]
192 Gáliková M, Klepsatel P. Endocrine control of glycogen and triacylglycerol breakdown in the fly model. Semin Cell Dev Biol 2022:S1084-9521(22)00116-1. [PMID: 35393234 DOI: 10.1016/j.semcdb.2022.03.034] [Reference Citation Analysis]
193 Neupert S, Huetteroth W, Schachtner J, Predel R. Conservation of the function counts: homologous neurons express sequence-related neuropeptides that originate from different genes. Journal of Neurochemistry 2009;111:757-65. [DOI: 10.1111/j.1471-4159.2009.06361.x] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.1] [Reference Citation Analysis]
194 De Oliveira AL, Calcino A, Wanninger A. Extensive conservation of the proneuropeptide and peptide prohormone complement in mollusks. Sci Rep 2019;9:4846. [PMID: 30890731 DOI: 10.1038/s41598-019-40949-0] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
195 Marco HG, Verlinden H, Vanden Broeck J, Gäde G. Characterisation and pharmacological analysis of a crustacean G protein-coupled receptor: the red pigment-concentrating hormone receptor of Daphnia pulex. Sci Rep 2017;7:6851. [PMID: 28761110 DOI: 10.1038/s41598-017-06805-9] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
196 Birse RT, Johnson EC, Taghert PH, Nässel DR. Widely distributed Drosophila G-protein-coupled receptor (CG7887) is activated by endogenous tachykinin-related peptides. J Neurobiol 2006;66:33-46. [PMID: 16193493 DOI: 10.1002/neu.20189] [Cited by in Crossref: 63] [Cited by in F6Publishing: 56] [Article Influence: 3.9] [Reference Citation Analysis]
197 Matsumoto S, Joe Hull J, Ohnishi A, Moto K, Fónagy A. Molecular mechanisms underlying sex pheromone production in the silkmoth, Bombyx mori: Characterization of the molecular components involved in bombykol biosynthesis. Journal of Insect Physiology 2007;53:752-9. [DOI: 10.1016/j.jinsphys.2007.02.014] [Cited by in Crossref: 39] [Cited by in F6Publishing: 27] [Article Influence: 2.6] [Reference Citation Analysis]
198 Rodet F, Lelong C, Dubos MP, Costil K, Favrel P. Molecular cloning of a molluscan gonadotropin-releasing hormone receptor orthologue specifically expressed in the gonad. Biochim Biophys Acta 2005;1730:187-95. [PMID: 16150500 DOI: 10.1016/j.bbaexp.2005.05.012] [Cited by in Crossref: 54] [Cited by in F6Publishing: 49] [Article Influence: 3.2] [Reference Citation Analysis]
199 Choi MY, Jurenka RA. Site-directed mutagenesis and PBAN activation of the Helicoverpa zea PBAN-receptor. FEBS Lett 2010;584:1212-6. [PMID: 20159019 DOI: 10.1016/j.febslet.2010.02.033] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
200 Ikemoto T, Park M. Identification and molecular characterization of three GnRH ligands and five GnRH receptors in the spotted green pufferfish. Molecular and Cellular Endocrinology 2005;242:67-79. [DOI: 10.1016/j.mce.2005.07.004] [Cited by in Crossref: 34] [Cited by in F6Publishing: 27] [Article Influence: 2.0] [Reference Citation Analysis]
201 Vinokurov K, Bednářová A, Tomčala A, Stašková T, Krishnan N, Kodrík D. Role of adipokinetic hormone in stimulation of salivary gland activities: the fire bug Pyrrhocoris apterus L. (Heteroptera) as a model species. J Insect Physiol 2014;60:58-67. [PMID: 24269343 DOI: 10.1016/j.jinsphys.2013.11.005] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
202 Nachman RJ, Kim YJ, Wang XJ, Etzkorn FA, Kaczmarek K, Zabrocki J, Adams ME. Potent activity of a PK/PBAN analog with an (E)-alkene, trans-Pro mimic identifies the Pro orientation and core conformation during interaction with HevPBANR-C receptor. Bioorg Med Chem 2009;17:4216-20. [PMID: 19356938 DOI: 10.1016/j.bmc.2009.03.036] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
203 Cazzamali G, Hauser F, Kobberup S, Williamson M, Grimmelikhuijzen CJ. Molecular identification of a Drosophila G protein-coupled receptor specific for crustacean cardioactive peptide. Biochemical and Biophysical Research Communications 2003;303:146-52. [DOI: 10.1016/s0006-291x(03)00302-4] [Cited by in Crossref: 44] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
204 Kim YJ, Nachman RJ, Aimanova K, Gill S, Adams ME. The pheromone biosynthesis activating neuropeptide (PBAN) receptor of Heliothis virescens: identification, functional expression, and structure-activity relationships of ligand analogs. Peptides 2008;29:268-75. [PMID: 18243415 DOI: 10.1016/j.peptides.2007.12.001] [Cited by in Crossref: 52] [Cited by in F6Publishing: 49] [Article Influence: 3.5] [Reference Citation Analysis]
205 Gondalia K, Qudrat A, Bruno B, Fleites Medina J, Paluzzi JV. Identification and functional characterization of a pyrokinin neuropeptide receptor in the Lyme disease vector, Ixodes scapularis. Peptides 2016;86:42-54. [PMID: 27667704 DOI: 10.1016/j.peptides.2016.09.011] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
206 Ewer J. Behavioral actions of neuropeptides in invertebrates: insights from Drosophila. Horm Behav 2005;48:418-29. [PMID: 15996666 DOI: 10.1016/j.yhbeh.2005.05.018] [Cited by in Crossref: 43] [Cited by in F6Publishing: 36] [Article Influence: 2.5] [Reference Citation Analysis]
207 Li B, Beeman RW, Park Y. Functions of duplicated genes encoding CCAP receptors in the red flour beetle, Tribolium castaneum. J Insect Physiol 2011;57:1190-7. [PMID: 21708161 DOI: 10.1016/j.jinsphys.2011.05.011] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 2.5] [Reference Citation Analysis]
208 Davies SA, Cabrero P, Povsic M, Johnston NR, Terhzaz S, Dow JA. Signaling by Drosophila capa neuropeptides. Gen Comp Endocrinol 2013;188:60-6. [PMID: 23557645 DOI: 10.1016/j.ygcen.2013.03.012] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 3.9] [Reference Citation Analysis]
209 Kaufmann C, Merzendorfer H, Gäde G. The adipokinetic hormone system in Culicinae (Diptera: Culicidae): molecular identification and characterization of two adipokinetic hormone (AKH) precursors from Aedes aegypti and Culex pipiens and two putative AKH receptor variants from A. aegypti. Insect Biochem Mol Biol 2009;39:770-81. [PMID: 19748585 DOI: 10.1016/j.ibmb.2009.09.002] [Cited by in Crossref: 64] [Cited by in F6Publishing: 58] [Article Influence: 4.9] [Reference Citation Analysis]
210 Sakai T, Satake H, Takeda M. Nutrient-induced α-amylase and protease activity is regulated by crustacean cardioactive peptide (CCAP) in the cockroach midgut. Peptides 2006;27:2157-64. [DOI: 10.1016/j.peptides.2006.04.009] [Cited by in Crossref: 48] [Cited by in F6Publishing: 45] [Article Influence: 3.0] [Reference Citation Analysis]
211 Kim D, Šimo L, Park Y. Molecular characterization of neuropeptide elevenin and two elevenin receptors, IsElevR1 and IsElevR2, from the blacklegged tick, Ixodes scapularis. Insect Biochem Mol Biol 2018;101:66-75. [PMID: 30075240 DOI: 10.1016/j.ibmb.2018.07.005] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
212 Sehadova H, Takasu Y, Zaloudikova A, Lin YH, Sauman I, Sezutsu H, Rouhova L, Kodrik D, Zurovec M. Functional Analysis of Adipokinetic Hormone Signaling in Bombyx mori. Cells 2020;9:E2667. [PMID: 33322530 DOI: 10.3390/cells9122667] [Reference Citation Analysis]
213 Lindemans M, Janssen T, Husson SJ, Meelkop E, Temmerman L, Clynen E, Mertens I, Schoofs L. A neuromedin-pyrokinin-like neuropeptide signaling system in Caenorhabditis elegans. Biochem Biophys Res Commun 2009;379:760-4. [PMID: 19133232 DOI: 10.1016/j.bbrc.2008.12.121] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 2.2] [Reference Citation Analysis]
214 Herbert Z, Pollák E, Zougman A, Boros A, Kapan N, Molnár L. Identification of novel neuropeptides in the ventral nerve cord ganglia and their targets in an annelid worm, Eisenia fetida. J Comp Neurol 2009;514:415-32. [PMID: 19350635 DOI: 10.1002/cne.22043] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 0.8] [Reference Citation Analysis]
215 Yamanaka N, Yamamoto S, Zitnan D, Watanabe K, Kawada T, Satake H, Kaneko Y, Hiruma K, Tanaka Y, Shinoda T, Kataoka H. Neuropeptide receptor transcriptome reveals unidentified neuroendocrine pathways. PLoS One 2008;3:e3048. [PMID: 18725956 DOI: 10.1371/journal.pone.0003048] [Cited by in Crossref: 159] [Cited by in F6Publishing: 143] [Article Influence: 11.4] [Reference Citation Analysis]
216 Blomquist G, Jurenka R, Schal C, Tittiger C. Pheromone Production. Insect Endocrinology. Elsevier; 2012. pp. 523-67. [DOI: 10.1016/b978-0-12-384749-2.10012-3] [Cited by in Crossref: 12] [Article Influence: 1.2] [Reference Citation Analysis]
217 Sajadi F, Curcuruto C, Al Dhaheri A, Paluzzi JV. Anti-diuretic action of a CAPA neuropeptide against a subset of diuretic hormones in the disease vector Aedes aegypti. J Exp Biol 2018;221:jeb177089. [PMID: 29496779 DOI: 10.1242/jeb.177089] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
218 Moris-Sanz M, Estacio-Gómez A, Sánchez-Herrero E, Díaz-Benjumea FJ. The study of the Bithorax-complex genes in patterning CCAP neurons reveals a temporal control of neuronal differentiation by Abd-B. Biol Open 2015;4:1132-42. [PMID: 26276099 DOI: 10.1242/bio.012872] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 2.1] [Reference Citation Analysis]
219 Cazzamali G, Torp M, Hauser F, Williamson M, Grimmelikhuijzen CJ. The Drosophila gene CG9918 codes for a pyrokinin-1 receptor. Biochem Biophys Res Commun 2005;335:14-9. [PMID: 16054112 DOI: 10.1016/j.bbrc.2005.07.038] [Cited by in Crossref: 91] [Cited by in F6Publishing: 86] [Article Influence: 5.4] [Reference Citation Analysis]
220 Birgül Iyison N, Shahraki A, Kahveci K, Düzgün MB, Gün G. Are insect GPCRs ideal next‐generation pesticides: opportunities and challenges. FEBS J 2021;288:2727-45. [DOI: 10.1111/febs.15708] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
221 Belmont M, Cazzamali G, Williamson M, Hauser F, Grimmelikhuijzen CJ. Identification of four evolutionarily related G protein-coupled receptors from the malaria mosquito Anopheles gambiae. Biochem Biophys Res Commun 2006;344:160-5. [PMID: 16616003 DOI: 10.1016/j.bbrc.2006.03.117] [Cited by in Crossref: 58] [Cited by in F6Publishing: 58] [Article Influence: 3.6] [Reference Citation Analysis]
222 Shiomi K, Takasu Y, Kunii M, Tsuchiya R, Mukaida M, Kobayashi M, Sezutsu H, Ichida Takahama M, Mizoguchi A. Disruption of diapause induction by TALEN-based gene mutagenesis in relation to a unique neuropeptide signaling pathway in Bombyx. Sci Rep 2015;5:15566. [PMID: 26497859 DOI: 10.1038/srep15566] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 3.4] [Reference Citation Analysis]
223 Claeys I, Poels J, Simonet G, Franssens V, Van Loy T, Van Hiel MB, Breugelmans B, Vanden Broeck J. Insect Neuropeptide and Peptide Hormone Receptors: Current Knowledge and Future Directions. Insect Hormones. Elsevier; 2005. pp. 217-82. [DOI: 10.1016/s0083-6729(05)73007-7] [Cited by in Crossref: 33] [Cited by in F6Publishing: 6] [Article Influence: 1.9] [Reference Citation Analysis]
224 Jurenka R, Rafaeli A. Regulatory Role of PBAN in Sex Pheromone Biosynthesis of Heliothine Moths. Front Endocrinol (Lausanne) 2011;2:46. [PMID: 22654810 DOI: 10.3389/fendo.2011.00046] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 2.6] [Reference Citation Analysis]
225 Neupert S, Marciniak P, Köhler R, Nachman RJ, Suh CP, Predel R. Different processing of CAPA and pyrokinin precursors in the giant mealworm beetle Zophobas atratus (Tenebrionidae) and the boll weevil Anthonomus grandis grandis (Curculionidae). General and Comparative Endocrinology 2018;258:53-9. [DOI: 10.1016/j.ygcen.2017.08.026] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
226 Semmens DC, Beets I, Rowe ML, Blowes LM, Oliveri P, Elphick MR. Discovery of sea urchin NGFFFamide receptor unites a bilaterian neuropeptide family. Open Biol 2015;5:150030. [PMID: 25904544 DOI: 10.1098/rsob.150030] [Cited by in Crossref: 31] [Cited by in F6Publishing: 22] [Article Influence: 5.2] [Reference Citation Analysis]
227 Paluzzi JP, Russell WK, Nachman RJ, Orchard I. Isolation, cloning, and expression mapping of a gene encoding an antidiuretic hormone and other CAPA-related peptides in the disease vector, Rhodnius prolixus. Endocrinology 2008;149:4638-46. [PMID: 18511504 DOI: 10.1210/en.2008-0353] [Cited by in Crossref: 82] [Cited by in F6Publishing: 74] [Article Influence: 5.9] [Reference Citation Analysis]
228 Zhao Y, Bretz CA, Hawksworth SA, Hirsh J, Johnson EC. Corazonin neurons function in sexually dimorphic circuitry that shape behavioral responses to stress in Drosophila. PLoS One 2010;5:e9141. [PMID: 20161767 DOI: 10.1371/journal.pone.0009141] [Cited by in Crossref: 64] [Cited by in F6Publishing: 59] [Article Influence: 5.3] [Reference Citation Analysis]
229 Mertens I, Vandingenen A, Meeusen T, De Loof A, Schoofs L. Postgenomic characterization of G-protein-coupled receptors. Pharmacogenomics 2004;5:657-72. [DOI: 10.1517/14622416.5.6.657] [Cited by in Crossref: 22] [Cited by in F6Publishing: 26] [Article Influence: 1.2] [Reference Citation Analysis]
230 Konuma T, Morooka N, Nagasawa H, Nagata S. Knockdown of the Adipokinetic Hormone Receptor Increases Feeding Frequency in the Two-Spotted Cricket Gryllus bimaculatus. Endocrinology 2012;153:3111-22. [DOI: 10.1210/en.2011-1533] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 3.7] [Reference Citation Analysis]
231 Kaufmann C, Brown MR. Adipokinetic hormones in the African malaria mosquito, Anopheles gambiae: identification and expression of genes for two peptides and a putative receptor. Insect Biochem Mol Biol 2006;36:466-81. [PMID: 16731343 DOI: 10.1016/j.ibmb.2006.03.009] [Cited by in Crossref: 65] [Cited by in F6Publishing: 61] [Article Influence: 4.1] [Reference Citation Analysis]
232 Zandawala M, Hamoudi Z, Lange AB, Orchard I. Adipokinetic hormone signalling system in the Chagas disease vector, Rhodnius prolixus: Rhodnius adipokinetic hormone signalling system. Insect Mol Biol 2015;24:264-76. [DOI: 10.1111/imb.12157] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 3.1] [Reference Citation Analysis]
233 Hou QL, Chen EH, Jiang HB, Wei DD, Gui SH, Wang JJ, Smagghe G. Adipokinetic hormone receptor gene identification and its role in triacylglycerol mobilization and sexual behavior in the oriental fruit fly (Bactrocera dorsalis). Insect Biochem Mol Biol 2017;90:1-13. [PMID: 28919559 DOI: 10.1016/j.ibmb.2017.09.006] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
234 Even N, Devaud JM, Barron AB. General Stress Responses in the Honey Bee. Insects 2012;3:1271-98. [PMID: 26466739 DOI: 10.3390/insects3041271] [Cited by in Crossref: 73] [Cited by in F6Publishing: 59] [Article Influence: 7.3] [Reference Citation Analysis]
235 Chopra G, Kaushik S, Kain P. Nutrient Sensing via Gut in Drosophila melanogaster. Int J Mol Sci 2022;23:2694. [PMID: 35269834 DOI: 10.3390/ijms23052694] [Reference Citation Analysis]
236 Bai H, Palli SR. G Protein-Coupled Receptors as Target Sites for Insecticide Discovery. In: Ishaaya I, Palli SR, Horowitz AR, editors. Advanced Technologies for Managing Insect Pests. Dordrecht: Springer Netherlands; 2013. pp. 57-82. [DOI: 10.1007/978-94-007-4497-4_4] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
237 Schlegel P, Texada MJ, Miroschnikow A, Schoofs A, Hückesfeld S, Peters M, Schneider-Mizell CM, Lacin H, Li F, Fetter RD, Truman JW, Cardona A, Pankratz MJ. Synaptic transmission parallels neuromodulation in a central food-intake circuit. Elife 2016;5:e16799. [PMID: 27845623 DOI: 10.7554/eLife.16799] [Cited by in Crossref: 75] [Cited by in F6Publishing: 41] [Article Influence: 12.5] [Reference Citation Analysis]
238 Alves-bezerra M, De Paula IF, Medina JM, Silva-oliveira G, Medeiros JS, Gäde G, Gondim KC. Adipokinetic hormone receptor gene identification and its role in triacylglycerol metabolism in the blood-sucking insect Rhodnius prolixus. Insect Biochemistry and Molecular Biology 2016;69:51-60. [DOI: 10.1016/j.ibmb.2015.06.013] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 4.8] [Reference Citation Analysis]
239 Yamanaka N, Hua YJ, Roller L, Spalovská-Valachová I, Mizoguchi A, Kataoka H, Tanaka Y. Bombyx prothoracicostatic peptides activate the sex peptide receptor to regulate ecdysteroid biosynthesis. Proc Natl Acad Sci U S A 2010;107:2060-5. [PMID: 20133850 DOI: 10.1073/pnas.0907471107] [Cited by in Crossref: 86] [Cited by in F6Publishing: 76] [Article Influence: 7.2] [Reference Citation Analysis]
240 Fu D, Sun Y, Liu B, Ning H, Wang L, Chen H. Identification, expression patterns and RNA interference of Capa peptide receptors in Dendroctonus armandi larvae under cold. J Applied Entomology 2022;146:144-57. [DOI: 10.1111/jen.12941] [Reference Citation Analysis]
241 Predel R, Russell WK, Neupert S, Russell DH, Esquivel JF, Nachman RJ. Identification of the first neuropeptides from the CNS of Hemiptera: CAPA peptides of the southern green stinkbug Nezara viridula (L.). Peptides 2006;27:2670-7. [PMID: 16824649 DOI: 10.1016/j.peptides.2006.05.013] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.1] [Reference Citation Analysis]
242 Mitchell JD, Maguire JJ, Davenport AP. Emerging pharmacology and physiology of neuromedin U and the structurally related peptide neuromedin S. Br J Pharmacol 2009;158:87-103. [PMID: 19519756 DOI: 10.1111/j.1476-5381.2009.00252.x] [Cited by in Crossref: 66] [Cited by in F6Publishing: 61] [Article Influence: 5.1] [Reference Citation Analysis]
243 Lee D. Identification of neuropeptide receptors from the brain of the bean pod borer, Maruca vitrata. Journal of Asia-Pacific Entomology 2022;25:101845. [DOI: 10.1016/j.aspen.2021.11.006] [Reference Citation Analysis]
244 Cardoso JC, Félix RC, Fonseca VG, Power DM. Feeding and the rhodopsin family g-protein coupled receptors in nematodes and arthropods. Front Endocrinol (Lausanne) 2012;3:157. [PMID: 23264768 DOI: 10.3389/fendo.2012.00157] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 1.9] [Reference Citation Analysis]
245 Paluzzi JP. Anti-diuretic factors in insects: the role of CAPA peptides. Gen Comp Endocrinol 2012;176:300-8. [PMID: 22226757 DOI: 10.1016/j.ygcen.2011.12.022] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 1.6] [Reference Citation Analysis]
246 Bednářová A, Kodrík D, Krishnan N. Adipokinetic hormone exerts its anti-oxidative effects using a conserved signal-transduction mechanism involving both PKC and cAMP by mobilizing extra- and intracellular Ca2+ stores. Comp Biochem Physiol C Toxicol Pharmacol 2013;158:142-9. [PMID: 23845878 DOI: 10.1016/j.cbpc.2013.07.002] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 1.8] [Reference Citation Analysis]
247 Lee JM, Hull JJ, Kawai T, Tsuneizumi K, Kurihara M, Tanokura M, Nagata K, Nagasawa H, Matsumoto S. Establishment of Sf9 Transformants Constitutively Expressing PBAN Receptor Variants: Application to Functional Evaluation. Front Endocrinol (Lausanne) 2012;3:56. [PMID: 22654874 DOI: 10.3389/fendo.2012.00056] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
248 De Haes W, Van Sinay E, Detienne G, Temmerman L, Schoofs L, Boonen K. Functional neuropeptidomics in invertebrates. Biochim Biophys Acta 2015;1854:812-26. [PMID: 25528324 DOI: 10.1016/j.bbapap.2014.12.011] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
249 Zemanová M, Stašková T, Kodrík D. Role of adipokinetic hormone and adenosine in the anti-stress response in Drosophila melanogaster. Journal of Insect Physiology 2016;91-92:39-47. [DOI: 10.1016/j.jinsphys.2016.06.010] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]
250 Šimo L, Koči J, Kim D, Park Y. Invertebrate specific D1-like dopamine receptor in control of salivary glands in the black-legged tick Ixodes scapularis. J Comp Neurol 2014;522:2038-52. [PMID: 24307522 DOI: 10.1002/cne.23515] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.9] [Reference Citation Analysis]
251 Simo L, Koči J, Park Y. Receptors for the neuropeptides, myoinhibitory peptide and SIFamide, in control of the salivary glands of the blacklegged tick Ixodes scapularis. Insect Biochem Mol Biol 2013;43:376-87. [PMID: 23357681 DOI: 10.1016/j.ibmb.2013.01.002] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 4.3] [Reference Citation Analysis]
252 Bednářová A, Kodrík D, Krishnan N. Unique roles of glucagon and glucagon-like peptides: Parallels in understanding the functions of adipokinetic hormones in stress responses in insects. Comp Biochem Physiol A Mol Integr Physiol 2013;164:91-100. [PMID: 23085293 DOI: 10.1016/j.cbpa.2012.10.012] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 3.7] [Reference Citation Analysis]
253 Clynen E, Reumer A, Baggerman G, Mertens I, Schoofs L. Neuropeptide biology in Drosophila. Adv Exp Med Biol 2010;692:192-210. [PMID: 21189680 DOI: 10.1007/978-1-4419-6902-6_10] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 1.5] [Reference Citation Analysis]
254 Ahn SJ, Mc Donnell RJ, Corcoran JA, Martin RC, Choi MY. Identification and functional characterization of the first molluscan neuromedin U receptor in the slug, Deroceras reticulatum. Sci Rep 2020;10:22308. [PMID: 33339848 DOI: 10.1038/s41598-020-79047-x] [Reference Citation Analysis]
255 Gupte J, Cutler G, Chen JL, Tian H. Elucidation of signaling properties of vasopressin receptor-related receptor 1 by using the chimeric receptor approach. Proc Natl Acad Sci U S A 2004;101:1508-13. [PMID: 14757815 DOI: 10.1073/pnas.0308250100] [Cited by in Crossref: 46] [Cited by in F6Publishing: 42] [Article Influence: 2.6] [Reference Citation Analysis]
256 Gäde G, Marco HG. Peptides of the adipokinetic hormone/red pigment-concentrating hormone family with special emphasis on Caelifera: Primary sequences and functional considerations contrasting grasshoppers and locusts. General and Comparative Endocrinology 2009;162:59-68. [DOI: 10.1016/j.ygcen.2008.06.007] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 1.3] [Reference Citation Analysis]
257 Choi MY, Fuerst EJ, Rafaeli A, Jurenka R. Role of extracellular domains in PBAN/pyrokinin GPCRs from insects using chimera receptors. Insect Biochem Mol Biol 2007;37:296-306. [PMID: 17368193 DOI: 10.1016/j.ibmb.2006.12.004] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 2.0] [Reference Citation Analysis]
258 Gui S, Jiang H, Liu X, Xu L, Wang J. Molecular characterizations of natalisin and its roles in modulating mating in the oriental fruit fly, Bactrocera dorsalis (Hendel): Molecular characterizations of natalisin. Insect Mol Biol 2017;26:103-12. [DOI: 10.1111/imb.12274] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
259 Roch GJ, Busby ER, Sherwood NM. Evolution of GnRH: diving deeper. Gen Comp Endocrinol 2011;171:1-16. [PMID: 21185290 DOI: 10.1016/j.ygcen.2010.12.014] [Cited by in Crossref: 153] [Cited by in F6Publishing: 145] [Article Influence: 12.8] [Reference Citation Analysis]
260 Zitnan D, Adams M. Neuroendocrine Regulation of Insect Ecdysis. Comprehensive Molecular Insect Science. Elsevier; 2005. pp. 1-60. [DOI: 10.1016/b0-44-451924-6/00032-6] [Cited by in Crossref: 15] [Article Influence: 0.9] [Reference Citation Analysis]
261 Gäde G, Goldsworthy GJ. Insect peptide hormones: a selective review of their physiology and potential application for pest control. Pest Manag Sci 2003;59:1063-75. [PMID: 14561063 DOI: 10.1002/ps.755] [Cited by in Crossref: 151] [Cited by in F6Publishing: 137] [Article Influence: 8.4] [Reference Citation Analysis]
262 Žitňan D, Daubnerová I. Crustacean Cardioactive Peptide. Handbook of Hormones. Elsevier; 2016. pp. 442-e69-2. [DOI: 10.1016/b978-0-12-801028-0.00069-6] [Cited by in Crossref: 4] [Article Influence: 0.7] [Reference Citation Analysis]
263 Schooley D, Horodyski F, Coast G. Hormones Controlling Homeostasis in Insects. Comprehensive Molecular Insect Science. Elsevier; 2005. pp. 493-550. [DOI: 10.1016/b0-44-451924-6/00034-x] [Cited by in Crossref: 10] [Article Influence: 0.6] [Reference Citation Analysis]
264 Perry RJ, Saunders CJ, Nelson JM, Rizzo MJ, Braco JT, Johnson EC. Regulation of Metabolism by an Ensemble of Different Ion Channel Types: Excitation-Secretion Coupling Mechanisms of Adipokinetic Hormone Producing Cells in Drosophila. Front Physiol 2020;11:580618. [PMID: 33192586 DOI: 10.3389/fphys.2020.580618] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
265 Bigot L, Beets I, Dubos MP, Boudry P, Schoofs L, Favrel P. Functional characterization of a short neuropeptide F-related receptor in a lophotrochozoan, the mollusk Crassostrea gigas. J Exp Biol 2014;217:2974-82. [PMID: 24948637 DOI: 10.1242/jeb.104067] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 3.4] [Reference Citation Analysis]
266 Wat LW, Chowdhury ZS, Millington JW, Biswas P, Rideout EJ. Sex determination gene transformer regulates the male-female difference in Drosophila fat storage via the adipokinetic hormone pathway. Elife 2021;10:e72350. [PMID: 34672260 DOI: 10.7554/eLife.72350] [Reference Citation Analysis]
267 McPartland JM, Matias I, Di Marzo V, Glass M. Evolutionary origins of the endocannabinoid system. Gene 2006;370:64-74. [PMID: 16434153 DOI: 10.1016/j.gene.2005.11.004] [Cited by in Crossref: 103] [Cited by in F6Publishing: 97] [Article Influence: 6.4] [Reference Citation Analysis]
268 Cardoso JC, Vieira FA, Gomes AS, Power DM. The serendipitous origin of chordate secretin peptide family members. BMC Evol Biol 2010;10:135. [PMID: 20459630 DOI: 10.1186/1471-2148-10-135] [Cited by in Crossref: 48] [Cited by in F6Publishing: 42] [Article Influence: 4.0] [Reference Citation Analysis]
269 Yang Y, Bajracharya P, Castillo P, Nachman RJ, Pietrantonio PV. Molecular and functional characterization of the first tick CAP2b (periviscerokinin) receptor from Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Gen Comp Endocrinol 2013;194:142-51. [PMID: 24055303 DOI: 10.1016/j.ygcen.2013.09.001] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
270 Meeusen T, Mertens I, Loof AD, Schoofs L. G Protein-Coupled Receptors in Invertebrates: A State of the Art. Elsevier; 2003. pp. 189-261. [DOI: 10.1016/s0074-7696(03)30004-x] [Cited by in Crossref: 32] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]