BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Fenk LA, de Bono M. Memory of recent oxygen experience switches pheromone valence in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2017;114:4195-200. [PMID: 28373553 DOI: 10.1073/pnas.1618934114] [Cited by in Crossref: 33] [Cited by in F6Publishing: 22] [Article Influence: 6.6] [Reference Citation Analysis]
Number Citing Articles
1 Okahata M, Wei AD, Ohta A, Kuhara A. Cold acclimation via the KQT-2 potassium channel is modulated by oxygen in Caenorhabditis elegans. Sci Adv 2019;5:eaav3631. [PMID: 30775442 DOI: 10.1126/sciadv.aav3631] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
2 Zhao Y, Long L, Xu W, Campbell RF, Large EE, Greene JS, McGrath PT. Changes to social feeding behaviors are not sufficient for fitness gains of the Caenorhabditis elegans N2 reference strain. Elife 2018;7:e38675. [PMID: 30328811 DOI: 10.7554/eLife.38675] [Cited by in Crossref: 27] [Cited by in F6Publishing: 17] [Article Influence: 6.8] [Reference Citation Analysis]
3 Banerjee N, Hallem EA. Decoding Inter-individual Variability in Experience-Dependent Behavioral Plasticity. Neuron 2020;105:7-9. [PMID: 31951528 DOI: 10.1016/j.neuron.2019.12.012] [Reference Citation Analysis]
4 Okahata M, Motomura H, Ohta A, Kuhara A. Molecular physiology regulating cold tolerance and acclimation of Caenorhabditis elegans. Proc Jpn Acad Ser B Phys Biol Sci 2022;98:126-39. [PMID: 35283408 DOI: 10.2183/pjab.98.009] [Reference Citation Analysis]
5 Rengarajan S, Yankura KA, Guillermin ML, Fung W, Hallem EA. Feeding state sculpts a circuit for sensory valence in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2019;116:1776-81. [PMID: 30651312 DOI: 10.1073/pnas.1807454116] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 7.3] [Reference Citation Analysis]
6 McGrath PT, Ruvinsky I. A primer on pheromone signaling in Caenorhabditis elegans for systems biologists. Curr Opin Syst Biol 2019;13:23-30. [PMID: 30984890 DOI: 10.1016/j.coisb.2018.08.012] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
7 Luo J, Portman DS. Sex-specific, pdfr-1-dependent modulation of pheromone avoidance by food abundance enables flexibility in C. elegans foraging behavior. Curr Biol 2021;31:4449-4461.e4. [PMID: 34437843 DOI: 10.1016/j.cub.2021.07.069] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Fagan KA, Luo J, Lagoy RC, Schroeder FC, Albrecht DR, Portman DS. A Single-Neuron Chemosensory Switch Determines the Valence of a Sexually Dimorphic Sensory Behavior. Curr Biol 2018;28:902-914.e5. [PMID: 29526590 DOI: 10.1016/j.cub.2018.02.029] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]
9 Abergel Z, Shaked M, Shukla V, Wu ZX, Gross E. The phosphatidylinositol transfer protein PITP-1 facilitates fast recovery of eating behavior after hypoxia in the nematode Caenorhabditis elegans. FASEB J 2021;35:e21202. [PMID: 33368638 DOI: 10.1096/fj.202000704R] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Rouse T, Aubry G, Cho Y, Zimmer M, Lu H. A programmable platform for sub-second multichemical dynamic stimulation and neuronal functional imaging in C. elegans. Lab Chip 2018;18:505-13. [PMID: 29313542 DOI: 10.1039/c7lc01116d] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
11 Li Q, Marcu DC, Palazzo O, Turner F, King D, Spires-Jones TL, Stefan MI, Busch KE. High neural activity accelerates the decline of cognitive plasticity with age in Caenorhabditis elegans. Elife 2020;9:e59711. [PMID: 33228848 DOI: 10.7554/eLife.59711] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
12 Vitale KR. Tools for Managing Feline Problem Behaviors: Pheromone therapy. J Feline Med Surg 2018;20:1024-32. [PMID: 30375946 DOI: 10.1177/1098612X18806759] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
13 Barr MM, García LR, Portman DS. Sexual Dimorphism and Sex Differences in Caenorhabditis elegans Neuronal Development and Behavior. Genetics 2018;208:909-35. [PMID: 29487147 DOI: 10.1534/genetics.117.300294] [Cited by in Crossref: 38] [Cited by in F6Publishing: 31] [Article Influence: 9.5] [Reference Citation Analysis]
14 Beets I, Zhang G, Fenk LA, Chen C, Nelson GM, Félix MA, de Bono M. Natural Variation in a Dendritic Scaffold Protein Remodels Experience-Dependent Plasticity by Altering Neuropeptide Expression. Neuron 2020;105:106-121.e10. [PMID: 31757604 DOI: 10.1016/j.neuron.2019.10.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
15 Portman DS. Social and sexual behaviors in C. elegans: the first fifty years. J Neurogenet 2020;34:389-94. [PMID: 33146579 DOI: 10.1080/01677063.2020.1838512] [Reference Citation Analysis]
16 Tataridas-Pallas N, Thompson MA, Howard A, Brown I, Ezcurra M, Wu Z, Silva IG, Saunter CD, Kuerten T, Weinkove D, Blackwell TK, Tullet JMA. Neuronal SKN-1B modulates nutritional signalling pathways and mitochondrial networks to control satiety. PLoS Genet 2021;17:e1009358. [PMID: 33661901 DOI: 10.1371/journal.pgen.1009358] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Ferkey DM, Sengupta P, L'Etoile ND. Chemosensory signal transduction in Caenorhabditis elegans. Genetics 2021;217:iyab004. [PMID: 33693646 DOI: 10.1093/genetics/iyab004] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Cheon Y, Hwang H, Kim K. Plasticity of pheromone-mediated avoidance behavior in C. elegans. J Neurogenet 2020;34:420-6. [PMID: 32811242 DOI: 10.1080/01677063.2020.1802723] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
19 Valperga G, de Bono M. Impairing one sensory modality enhances another by reconfiguring peptidergic signalling in Caenorhabditis elegans. Elife 2022;11:e68040. [PMID: 35201977 DOI: 10.7554/eLife.68040] [Reference Citation Analysis]
20 Guo M, Ge M, Berberoglu MA, Zhou J, Ma L, Yang J, Dong Q, Feng Y, Wu Z, Dong Z. Dissecting Molecular and Circuit Mechanisms for Inhibition and Delayed Response of ASI Neurons during Nociceptive Stimulus. Cell Rep 2018;25:1885-1897.e9. [PMID: 30428355 DOI: 10.1016/j.celrep.2018.10.065] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
21 Takeishi A, Takagaki N, Kuhara A. Temperature signaling underlying thermotaxis and cold tolerance in Caenorhabditis elegans. Journal of Neurogenetics 2020;34:351-62. [DOI: 10.1080/01677063.2020.1734001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
22 Park JY, Joo HJ, Park S, Paik YK. Ascaroside Pheromones: Chemical Biology and Pleiotropic Neuronal Functions. Int J Mol Sci 2019;20:E3898. [PMID: 31405082 DOI: 10.3390/ijms20163898] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
23 Dal Bello M, Pérez-Escudero A, Schroeder FC, Gore J. Inversion of pheromone preference optimizes foraging in C. elegans. Elife 2021;10:e58144. [PMID: 34227470 DOI: 10.7554/eLife.58144] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Banerjee N, Hallem EA. The role of carbon dioxide in nematode behaviour and physiology. Parasitology 2020;147:841-54. [PMID: 31601281 DOI: 10.1017/S0031182019001422] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
25 Reilly DK, McGlame EJ, Vandewyer E, Robidoux AN, Muirhead CS, Northcott HT, Joyce W, Alkema MJ, Gegear RJ, Beets I, Srinivasan J. Distinct neuropeptide-receptor modules regulate a sex-specific behavioral response to a pheromone. Commun Biol 2021;4:1018. [PMID: 34465863 DOI: 10.1038/s42003-021-02547-7] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]