BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hasegawa E, Maejima T, Yoshida T, Masseck OA, Herlitze S, Yoshioka M, Sakurai T, Mieda M. Serotonin neurons in the dorsal raphe mediate the anticataplectic action of orexin neurons by reducing amygdala activity. Proc Natl Acad Sci U S A 2017;114:E3526-35. [PMID: 28396432 DOI: 10.1073/pnas.1614552114] [Cited by in Crossref: 43] [Cited by in F6Publishing: 38] [Article Influence: 8.6] [Reference Citation Analysis]
Number Citing Articles
1 Tsuneki H, Wada T, Sasaoka T. Chronopathophysiological implications of orexin in sleep disturbances and lifestyle-related disorders. Pharmacology & Therapeutics 2018;186:25-44. [DOI: 10.1016/j.pharmthera.2017.12.010] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
2 Chazalon M, Dumas S, Bernard JF, Sahly I, Tronche F, de Kerchove d'Exaerde A, Hamon M, Adrien J, Fabre V, Bonnavion P. The GABAergic Gudden's dorsal tegmental nucleus: A new relay for serotonergic regulation of sleep-wake behavior in the mouse. Neuropharmacology 2018;138:315-30. [PMID: 29908240 DOI: 10.1016/j.neuropharm.2018.06.014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
3 Nevárez N, de Lecea L. Hypocretin and the Regulation of Sleep-Wake Transitions. Handbook of Sleep Research. Elsevier; 2019. pp. 89-99. [DOI: 10.1016/b978-0-12-813743-7.00006-2] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
4 Sun Y, Blanco-Centurion C, Zou B, Bendell E, Shiromani PJ, Liu M. Amygdala GABA Neurons Project To vlPAG And mPFC. IBRO Rep 2019;6:132-6. [PMID: 31193158 DOI: 10.1016/j.ibror.2019.03.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
5 Mori I. The olfactory bulb: A link between environmental agents and narcolepsy. Med Hypotheses 2019;126:66-8. [PMID: 31010502 DOI: 10.1016/j.mehy.2019.03.017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
6 Li S, Franken P, Vassalli A. Bidirectional and context-dependent changes in theta and gamma oscillatory brain activity in noradrenergic cell-specific Hypocretin/Orexin receptor 1-KO mice. Sci Rep 2018;8:15474. [PMID: 30341359 DOI: 10.1038/s41598-018-33069-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
7 Khodabande F, Akbari E, Ardeshiri MR. The modulation of the spatial reference memory by the orexinergic system of the dorsal raphe nucleus. Life Sci 2021;265:118777. [PMID: 33220293 DOI: 10.1016/j.lfs.2020.118777] [Reference Citation Analysis]
8 Szabo ST, Thorpy MJ, Mayer G, Peever JH, Kilduff TS. Neurobiological and immunogenetic aspects of narcolepsy: Implications for pharmacotherapy. Sleep Med Rev 2019;43:23-36. [PMID: 30503715 DOI: 10.1016/j.smrv.2018.09.006] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 7.5] [Reference Citation Analysis]
9 Seifinejad A, Vassalli A, Tafti M. Neurobiology of cataplexy. Sleep Med Rev 2021;60:101546. [PMID: 34607185 DOI: 10.1016/j.smrv.2021.101546] [Reference Citation Analysis]
10 Sun Y, Blanco-Centurion C, Bendell E, Vidal-Ortiz A, Luo S, Liu M. Activity dynamics of amygdala GABAergic neurons during cataplexy of narcolepsy. Elife 2019;8:e48311. [PMID: 31411561 DOI: 10.7554/eLife.48311] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
11 Kranz GS, Hahn A, Kraus C, Spies M, Pichler V, Jungwirth J, Mitterhauser M, Wadsak W, Windischberger C, Kasper S, Lanzenberger R. Probing the association between serotonin-1A autoreceptor binding and amygdala reactivity in healthy volunteers. NeuroImage 2018;171:1-5. [DOI: 10.1016/j.neuroimage.2017.12.092] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
12 Gołyszny M, Obuchowicz E. Are neuropeptides relevant for the mechanism of action of SSRIs? Neuropeptides 2019;75:1-17. [DOI: 10.1016/j.npep.2019.02.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
13 Varin C, Bonnavion P. Pharmacosynthetic Deconstruction of Sleep-Wake Circuits in the Brain. Handb Exp Pharmacol 2019;253:153-206. [PMID: 30689084 DOI: 10.1007/164_2018_183] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
14 Seifinejad A, Li S, Possovre ML, Vassalli A, Tafti M. Hypocretinergic interactions with the serotonergic system regulate REM sleep and cataplexy. Nat Commun 2020;11:6034. [PMID: 33247179 DOI: 10.1038/s41467-020-19862-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Kuwaki T, Kanno K. Sexual excitation induces courtship ultrasonic vocalizations and cataplexy-like behavior in orexin neuron-ablated male mice. Commun Biol 2021;4:165. [PMID: 33547399 DOI: 10.1038/s42003-021-01696-z] [Reference Citation Analysis]
16 Song J, Patel RV, Sharif M, Ashokan A, Michaelides M. Chemogenetics as a neuromodulatory approach to treating neuropsychiatric diseases and disorders. Mol Ther 2021:S1525-0016(21)00636-5. [PMID: 34861415 DOI: 10.1016/j.ymthe.2021.11.019] [Reference Citation Analysis]
17 Soya S, Sakurai T. Orexin as a modulator of fear-related behavior: Hypothalamic control of noradrenaline circuit. Brain Res 2020;1731:146037. [PMID: 30481504 DOI: 10.1016/j.brainres.2018.11.032] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
18 Peever J, Fuller PM. Neuroscience: A Distributed Neural Network Controls REM Sleep. Curr Biol 2016;26:R34-5. [PMID: 26766231 DOI: 10.1016/j.cub.2015.11.011] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 3.2] [Reference Citation Analysis]
19 Sieminski M, Szypenbejl J, Partinen E. Orexins, Sleep, and Blood Pressure. Curr Hypertens Rep. 2018;20:79. [PMID: 29992504 DOI: 10.1007/s11906-018-0879-6] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
20 Hung CJ, Ono D, Kilduff TS, Yamanaka A. Dual orexin and MCH neuron-ablated mice display severe sleep attacks and cataplexy. Elife 2020;9:e54275. [PMID: 32314734 DOI: 10.7554/eLife.54275] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
21 Schwartz MD, Canales JJ, Zucchi R, Espinoza S, Sukhanov I, Gainetdinov RR. Trace amine-associated receptor 1: a multimodal therapeutic target for neuropsychiatric diseases. Expert Opinion on Therapeutic Targets 2018;22:513-26. [DOI: 10.1080/14728222.2018.1480723] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 6.5] [Reference Citation Analysis]
22 Messina A, Bitetti I, Precenzano F, Iacono D, Messina G, Roccella M, Parisi L, Salerno M, Valenzano A, Maltese A, Salerno M, Sessa F, Albano GD, Marotta R, Villano I, Marsala G, Zammit C, Lavano F, Monda M, Cibelli G, Lavano SM, Gallai B, Toraldo R, Monda V, Carotenuto M. Non-Rapid Eye Movement Sleep Parasomnias and Migraine: A Role of Orexinergic Projections. Front Neurol 2018;9:95. [PMID: 29541053 DOI: 10.3389/fneur.2018.00095] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
23 Zhou S, Yamashita A, Su J, Zhang Y, Wang W, Hao L, Yamanaka A, Kuwaki T. Activity of putative orexin neurons during cataplexy. Mol Brain 2022;15:21. [PMID: 35246205 DOI: 10.1186/s13041-022-00907-w] [Reference Citation Analysis]
24 Imanishi A, Kawazoe T, Hamada Y, Kumagai T, Tsutsui K, Sakai N, Eto K, Noguchi A, Shimizu T, Takahashi T, Han G, Mishima K, Kanbayashi T, Kondo H. Early detection of Niemann-pick disease type C with cataplexy and orexin levels: continuous observation with and without Miglustat. Orphanet J Rare Dis 2020;15:269. [PMID: 32993765 DOI: 10.1186/s13023-020-01531-4] [Reference Citation Analysis]
25 Torontali ZA, Fraigne JJ, Sanghera P, Horner R, Peever J. The Sublaterodorsal Tegmental Nucleus Functions to Couple Brain State and Motor Activity during REM Sleep and Wakefulness. Curr Biol 2019;29:3803-3813.e5. [PMID: 31679942 DOI: 10.1016/j.cub.2019.09.026] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
26 Maejima T, Tsuno Y, Miyazaki S, Tsuneoka Y, Hasegawa E, Islam MT, Enoki R, Nakamura TJ, Mieda M. GABA from vasopressin neurons regulates the time at which suprachiasmatic nucleus molecular clocks enable circadian behavior. Proc Natl Acad Sci U S A 2021;118:e2010168118. [PMID: 33526663 DOI: 10.1073/pnas.2010168118] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Kaneko Y, Inoue Y, Fujiki N, Han G, Nishino S, Shimizu T, Kanbayashi T, Kondo H. The anticataplectic and REM suppression effect of milnacipran, an SNRI, on human and canine narcolepsy. Sleep Biol Rhythms 2021;19:137-43. [DOI: 10.1007/s41105-020-00298-2] [Reference Citation Analysis]
28 Li SB, de Lecea L. The hypocretin (orexin) system: from a neural circuitry perspective. Neuropharmacology 2020;167:107993. [PMID: 32135427 DOI: 10.1016/j.neuropharm.2020.107993] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 14.5] [Reference Citation Analysis]
29 Pintwala SK, Peever J. Brain Circuits Underlying Narcolepsy. Neuroscientist 2021;:10738584211052263. [PMID: 34704497 DOI: 10.1177/10738584211052263] [Reference Citation Analysis]
30 Khairuddin S, Aquili L, Heng BC, Hoo TLC, Wong KH, Lim LW. Dysregulation of the orexinergic system: A potential neuropeptide target in depression. Neuroscience & Biobehavioral Reviews 2020;118:384-96. [DOI: 10.1016/j.neubiorev.2020.07.040] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
31 Saito YC, Tsujino N, Abe M, Yamazaki M, Sakimura K, Sakurai T. Serotonergic Input to Orexin Neurons Plays a Role in Maintaining Wakefulness and REM Sleep Architecture. Front Neurosci 2018;12:892. [PMID: 30555297 DOI: 10.3389/fnins.2018.00892] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
32 Kondziella D, Dreier JP, Olsen MH. Prevalence of near-death experiences in people with and without REM sleep intrusion. PeerJ 2019;7:e7585. [PMID: 31523519 DOI: 10.7717/peerj.7585] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
33 Thorpy MJ, Bogan RK. Update on the pharmacologic management of narcolepsy: mechanisms of action and clinical implications. Sleep Med 2020;68:97-109. [PMID: 32032921 DOI: 10.1016/j.sleep.2019.09.001] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
34 Uchida S, Soya S, Saito YC, Hirano A, Koga K, Tsuda M, Abe M, Sakimura K, Sakurai T. A Discrete Glycinergic Neuronal Population in the Ventromedial Medulla That Induces Muscle Atonia during REM Sleep and Cataplexy in Mice. J Neurosci 2021;41:1582-96. [PMID: 33372061 DOI: 10.1523/JNEUROSCI.0688-20.2020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
35 Morikawa S, Katori K, Takeuchi H, Ikegaya Y. Brain-wide mapping of presynaptic inputs to basolateral amygdala neurons. J Comp Neurol 2021;529:3062-75. [PMID: 33797073 DOI: 10.1002/cne.25149] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Eickelbeck D, Karapinar R, Jack A, Suess ST, Barzan R, Azimi Z, Surdin T, Grömmke M, Mark MD, Gerwert K, Jancke D, Wahle P, Spoida K, Herlitze S. CaMello-XR enables visualization and optogenetic control of Gq/11 signals and receptor trafficking in GPCR-specific domains. Commun Biol 2019;2:60. [PMID: 30793039 DOI: 10.1038/s42003-019-0292-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
37 Hu F, Liang W, Zhang L, Wang H, Li Z, Zhou Y. Hyperactivity of basolateral amygdala mediates behavioral deficits in mice following exposure to bisphenol A and its analogue alternative. Chemosphere 2022;287:132044. [PMID: 34474391 DOI: 10.1016/j.chemosphere.2021.132044] [Reference Citation Analysis]
38 Meskill GJ, Kallweit U, Zarycranski D, Caussé C, Finance O, Ligneau X, Davis CW. Pitolisant for the treatment of cataplexy in adults with narcolepsy. Expert Opinion on Orphan Drugs. [DOI: 10.1080/21678707.2021.2022472] [Reference Citation Analysis]
39 Kaushik MK, Aritake K, Cherasse Y, Imanishi A, Kanbayashi T, Urade Y, Yanagisawa M. Induction of narcolepsy-like symptoms by orexin receptor antagonists in mice. Sleep 2021:zsab043. [PMID: 33609365 DOI: 10.1093/sleep/zsab043] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Su J, Li Z, Yamashita A, Kusumoto-Yoshida I, Isomichi T, Hao L, Kuwaki T. Involvement of the Nucleus Accumbens in Chocolate-induced Cataplexy. Sci Rep 2020;10:4958. [PMID: 32188934 DOI: 10.1038/s41598-020-61823-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
41 Peever J, Fuller PM. The Biology of REM Sleep. Current Biology 2017;27:R1237-48. [DOI: 10.1016/j.cub.2017.10.026] [Cited by in Crossref: 103] [Cited by in F6Publishing: 87] [Article Influence: 20.6] [Reference Citation Analysis]
42 Mahoney CE, Cogswell A, Koralnik IJ, Scammell TE. The neurobiological basis of narcolepsy. Nat Rev Neurosci 2019;20:83-93. [PMID: 30546103 DOI: 10.1038/s41583-018-0097-x] [Cited by in Crossref: 56] [Cited by in F6Publishing: 48] [Article Influence: 18.7] [Reference Citation Analysis]
43 Wiegert JS, Mahn M, Prigge M, Printz Y, Yizhar O. Silencing Neurons: Tools, Applications, and Experimental Constraints. Neuron 2017;95:504-29. [PMID: 28772120 DOI: 10.1016/j.neuron.2017.06.050] [Cited by in Crossref: 129] [Cited by in F6Publishing: 111] [Article Influence: 25.8] [Reference Citation Analysis]
44 Nevárez N, de Lecea L. Recent advances in understanding the roles of hypocretin/orexin in arousal, affect, and motivation. F1000Res 2018;7:F1000 Faculty Rev-1421. [PMID: 30254737 DOI: 10.12688/f1000research.15097.1] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 5.8] [Reference Citation Analysis]
45 Ferraro S, Nigri A, Bruzzone MG, Brivio L, Proietti Cecchini A, Verri M, Chiapparini L, Leone M. Defective functional connectivity between posterior hypothalamus and regions of the diencephalic-mesencephalic junction in chronic cluster headache. Cephalalgia 2018;38:1910-8. [PMID: 29517304 DOI: 10.1177/0333102418761048] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
46 Hasegawa E, Miyasaka A, Sakurai K, Cherasse Y, Li Y, Sakurai T. Rapid eye movement sleep is initiated by basolateral amygdala dopamine signaling in mice. Science 2022;375:994-1000. [PMID: 35239361 DOI: 10.1126/science.abl6618] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Saito YC, Tsujino N, Abe M, Yamazaki M, Sakimura K, Sakurai T. Serotonergic Input to Orexin Neurons Plays a Role in Maintaining Wakefulness and REM Sleep Architecture. Front Neurosci 2018;12:892. [PMID: 30555297 DOI: 10.3389/fnins.2018.00892] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
48 Arrigoni E, Fuller PM. Addicted to dreaming. Science 2022;375:972-3. [PMID: 35239395 DOI: 10.1126/science.abo1987] [Reference Citation Analysis]