BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mo J, Prévost SF, Blowes LM, Egertová M, Terrill NJ, Wang W, Elphick MR, Gupta HS. Interfibrillar stiffening of echinoderm mutable collagenous tissue demonstrated at the nanoscale. Proc Natl Acad Sci U S A 2016;113:E6362-71. [PMID: 27708167 DOI: 10.1073/pnas.1609341113] [Cited by in Crossref: 25] [Cited by in F6Publishing: 30] [Article Influence: 4.2] [Reference Citation Analysis]
Number Citing Articles
1 Yetiskin B, Okay O. Silk Fibroin Cryogel Building Adaptive Organohydrogels with Switching Mechanics and Viscoelasticity. ACS Appl Polym Mater . [DOI: 10.1021/acsapm.2c00741] [Reference Citation Analysis]
2 Romano G, Almeida M, Varela Coelho A, Cutignano A, Gonçalves LG, Hansen E, Khnykin D, Mass T, Ramšak A, Rocha MS, Silva TH, Sugni M, Ballarin L, Genevière AM. Biomaterials and Bioactive Natural Products from Marine Invertebrates: From Basic Research to Innovative Applications. Mar Drugs 2022;20:219. [PMID: 35447892 DOI: 10.3390/md20040219] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Zhang Y, Hollis D, Ross R, Snow T, Terrill NJ, Lu Y, Wang W, Connelly J, Tozzi G, Gupta HS. Investigating the Fibrillar Ultrastructure and Mechanics in Keloid Scars Using In Situ Synchrotron X-ray Nanomechanical Imaging. Materials (Basel) 2022;15:1836. [PMID: 35269067 DOI: 10.3390/ma15051836] [Reference Citation Analysis]
4 Zhao D, Pang B, Zhu Y, Cheng W, Cao K, Ye D, Si C, Xu G, Chen C, Yu H. A Stiffness-Switchable, Biomimetic Smart Material Enabled by Supramolecular Reconfiguration. Adv Mater 2022;34:e2107857. [PMID: 34964189 DOI: 10.1002/adma.202107857] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 12.0] [Reference Citation Analysis]
5 Bonneel M, Hennebert E, Aranko AS, Hwang DS, Lefevre M, Pommier V, Wattiez R, Delroisse J, Flammang P. Molecular mechanisms mediating stiffening in the mechanically adaptable connective tissues of sea cucumbers. Matrix Biology 2022. [DOI: 10.1016/j.matbio.2022.02.006] [Reference Citation Analysis]
6 Barbieri E, Mo J, Gupta H. Chemoviscoelasticity of the interfibrillar matrix of the dermis of the black sea cucumber Holuthuria atria. Mechanics of Materials 2022. [DOI: 10.1016/j.mechmat.2022.104252] [Reference Citation Analysis]
7 Disney CM, Mo J, Eckersley A, Bodey AJ, Hoyland JA, Sherratt MJ, Pitsillides AA, Lee PD, Bay BK. Regional variations in discrete collagen fibre mechanics within intact intervertebral disc resolved using synchrotron computed tomography and digital volume correlation. Acta Biomater 2022;138:361-74. [PMID: 34644611 DOI: 10.1016/j.actbio.2021.10.012] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
8 Ming X, Yao L, Zhu H, Zhang Q, Zhu S. Dramatic and Reversible Water‐Induced Stiffening Driven by Phase Separation within Polymer Gels. Adv Funct Materials 2022;32:2109850. [DOI: 10.1002/adfm.202109850] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
9 Ganewatta MS, Wang Z, Tang C. Chemical syntheses of bioinspired and biomimetic polymers toward biobased materials. Nat Rev Chem 2021;5:753-72. [DOI: 10.1038/s41570-021-00325-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 21] [Article Influence: 2.0] [Reference Citation Analysis]
10 Li L, Lin Q, Tang M, Tsai EHR, Ke C. An Integrated Design of a Polypseudorotaxane-Based Sea Cucumber Mimic. Angew Chem Int Ed Engl 2021;60:10186-93. [PMID: 33606898 DOI: 10.1002/anie.202017019] [Cited by in Crossref: 3] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
11 Fassini D, Wilkie IC, Pozzolini M, Ferrario C, Sugni M, Rocha MS, Giovine M, Bonasoro F, Silva TH, Reis RL. Diverse and Productive Source of Biopolymer Inspiration: Marine Collagens. Biomacromolecules 2021;22:1815-34. [PMID: 33835787 DOI: 10.1021/acs.biomac.1c00013] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
12 Li L, Lin Q, Tang M, Tsai EHR, Ke C. An Integrated Design of a Polypseudorotaxane‐Based Sea Cucumber Mimic. Angew Chem 2021;133:10274-81. [DOI: 10.1002/ange.202017019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
13 Choi A, Han H, Kim DS. A programmable powerful and ultra-fast water-driven soft actuator inspired by the mutable collagenous tissue of the sea cucumber. J Mater Chem A 2021;9:15937-47. [DOI: 10.1039/d1ta02566j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Wang Y, Tian M, Chang Y, Xue C, Li Z. Investigation of structural proteins in sea cucumber (Apostichopus japonicus) body wall. Sci Rep 2020;10:18744. [PMID: 33127976 DOI: 10.1038/s41598-020-75580-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
15 Yang Y, Liu Q, Zhao T, Ru Y, Fang R, Xu Y, Huang J, Liu M. Magnetic-programmable organohydrogels with reconfigurable network for mechanical homeostasis. Nano Res 2021;14:255-9. [DOI: 10.1007/s12274-020-3079-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Xi L, Zhang Y, Gupta H, Terrill N, Wang P, Zhao T, Fang D. A multiscale study of structural and compositional changes in a natural nanocomposite: Osteoporotic bone with chronic endogenous steroid excess. Bone 2021;143:115666. [PMID: 33007528 DOI: 10.1016/j.bone.2020.115666] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
17 Liu ZQ, Zhou DY, Liu YX, Yu MM, Liu B, Song L, Dong XP, Qi H, Shahidi F. Inhibitory effect of natural metal ion chelators on the autolysis of sea cucumber (Stichopus japonicus) and its mechanism. Food Res Int 2020;133:109205. [PMID: 32466945 DOI: 10.1016/j.foodres.2020.109205] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Hossain A, Dave D, Shahidi F. Northern Sea Cucumber (Cucumaria frondosa): A Potential Candidate for Functional Food, Nutraceutical, and Pharmaceutical Sector. Mar Drugs 2020;18:E274. [PMID: 32455954 DOI: 10.3390/md18050274] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 13.5] [Reference Citation Analysis]
19 Narayanan T, Konovalov O. Synchrotron Scattering Methods for Nanomaterials and Soft Matter Research. Materials (Basel) 2020;13:E752. [PMID: 32041363 DOI: 10.3390/ma13030752] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
20 Larson BT, Ruiz-Herrero T, Lee S, Kumar S, Mahadevan L, King N. Biophysical principles of choanoflagellate self-organization. Proc Natl Acad Sci U S A 2020;117:1303-11. [PMID: 31896587 DOI: 10.1073/pnas.1909447117] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
21 Wang Y, Zhang Y, Terrill NJ, Barbieri E, Pugno NM, Gupta HS. Matrix-induced pre-strain and mineralization-dependent interfibrillar shear transfer enable 3D fibrillar deformation in a biogenic armour. Acta Biomater 2019;100:18-28. [PMID: 31563691 DOI: 10.1016/j.actbio.2019.09.036] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
22 Lancia F, Ryabchun A, Nguindjel AD, Kwangmettatam S, Katsonis N. Mechanical adaptability of artificial muscles from nanoscale molecular action. Nat Commun 2019;10:4819. [PMID: 31645565 DOI: 10.1038/s41467-019-12786-2] [Cited by in Crossref: 24] [Cited by in F6Publishing: 33] [Article Influence: 8.0] [Reference Citation Analysis]
23 Inamdar SR, Barbieri E, Terrill NJ, Knight MM, Gupta HS. Proteoglycan degradation mimics static compression by altering the natural gradients in fibrillar organisation in cartilage. Acta Biomater 2019;97:437-50. [PMID: 31374336 DOI: 10.1016/j.actbio.2019.07.055] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
24 Andriotis OG, Desissaire S, Thurner PJ. Collagen Fibrils: Nature's Highly Tunable Nonlinear Springs. ACS Nano 2018;12:3671-80. [PMID: 29529373 DOI: 10.1021/acsnano.8b00837] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 7.5] [Reference Citation Analysis]
25 Dolmatov IY, Afanasyev SV, Boyko AV. Molecular mechanisms of fission in echinoderms: Transcriptome analysis. PLoS One 2018;13:e0195836. [PMID: 29649336 DOI: 10.1371/journal.pone.0195836] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
26 Zhao Z, Xu Y, Fang R, Liu M. Bioinspired Adaptive Gel Materials with Synergistic Heterostructures. Chin J Polym Sci 2018;36:683-96. [DOI: 10.1007/s10118-018-2105-z] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
27 Wells HC, Sizeland KH, Kelly SJ, Kirby N, Hawley A, Mudie S, Haverkamp RG. Collagen Fibril Intermolecular Spacing Changes with 2-Propanol: A Mechanism for Tissue Stiffness. ACS Biomater Sci Eng 2017;3:2524-32. [DOI: 10.1021/acsbiomaterials.7b00418] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
28 Blowes LM, Egertová M, Liu Y, Davis GR, Terrill NJ, Gupta HS, Elphick MR. Body wall structure in the starfish Asterias rubens. J Anat 2017;231:325-41. [PMID: 28714118 DOI: 10.1111/joa.12646] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 4.4] [Reference Citation Analysis]
29 Goh KL, Holmes DF. Collagenous Extracellular Matrix Biomaterials for Tissue Engineering: Lessons from the Common Sea Urchin Tissue. Int J Mol Sci 2017;18:E901. [PMID: 28441344 DOI: 10.3390/ijms18050901] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 4.6] [Reference Citation Analysis]
30 Demeuldre M, Hennebert E, Bonneel M, Lengerer B, Van Dyck S, Wattiez R, Ladurner P, Flammang P. Mechanical adaptability of sea cucumber Cuvierian tubules involves a mutable collagenous tissue. J Exp Biol 2017;220:2108-19. [PMID: 28373597 DOI: 10.1242/jeb.145706] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]