BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ma-Lauer Y, Carbajo-Lozoya J, Hein MY, Müller MA, Deng W, Lei J, Meyer B, Kusov Y, von Brunn B, Bairad DR, Hünten S, Drosten C, Hermeking H, Leonhardt H, Mann M, Hilgenfeld R, von Brunn A. p53 down-regulates SARS coronavirus replication and is targeted by the SARS-unique domain and PLpro via E3 ubiquitin ligase RCHY1. Proc Natl Acad Sci U S A 2016;113:E5192-201. [PMID: 27519799 DOI: 10.1073/pnas.1603435113] [Cited by in Crossref: 77] [Cited by in F6Publishing: 81] [Article Influence: 12.8] [Reference Citation Analysis]
Number Citing Articles
1 Simabuco FM, Tamura RE, Pavan ICB, Morale MG, Ventura AM. Molecular mechanisms and pharmacological interventions in the replication cycle of human coronaviruses. Genet Mol Biol 2020;44:e20200212. [PMID: 33237152 DOI: 10.1590/1678-4685-GMB-2020-0212] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
2 Sfera A, Osorio C, Maguire G, Rahman L, Afzaal J, Cummings M, Maldonado JC. COVID-19, ferrosenescence and neurodegeneration, a mini-review. Prog Neuropsychopharmacol Biol Psychiatry 2021;109:110230. [PMID: 33373681 DOI: 10.1016/j.pnpbp.2020.110230] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
3 Chang YS, Ko BH, Ju JC, Chang HH, Huang SH, Lin CW. SARS Unique Domain (SUD) of Severe Acute Respiratory Syndrome Coronavirus Induces NLRP3 Inflammasome-Dependent CXCL10-Mediated Pulmonary Inflammation. Int J Mol Sci 2020;21:E3179. [PMID: 32365944 DOI: 10.3390/ijms21093179] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 14.5] [Reference Citation Analysis]
4 Dubey AR, Jagtap YA, Kumar P, Patwa SM, Kinger S, Kumar A, Singh S, Prasad A, Jana NR, Mishra A. Biochemical strategies of E3 ubiquitin ligases target viruses in critical diseases. J Cell Biochem 2021. [PMID: 34520596 DOI: 10.1002/jcb.30143] [Reference Citation Analysis]
5 Qian L, Tcw J. Human iPSC-Based Modeling of Central Nerve System Disorders for Drug Discovery. Int J Mol Sci 2021;22:1203. [PMID: 33530458 DOI: 10.3390/ijms22031203] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
6 Dong Y, Dai T, Liu J, Zhang L, Zhou F. Coronavirus in Continuous Flux: From SARS-CoV to SARS-CoV-2. Adv Sci (Weinh) 2020;7:2001474. [PMID: 32837848 DOI: 10.1002/advs.202001474] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
7 Yan S, Wu G. Spatial and temporal roles of SARS-CoV PLpro -A snapshot. FASEB J 2021;35:e21197. [PMID: 33368679 DOI: 10.1096/fj.202002271] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
8 Uddin MA, Barabutis N. P53 in the impaired lungs. DNA Repair (Amst) 2020;95:102952. [PMID: 32846356 DOI: 10.1016/j.dnarep.2020.102952] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
9 Mishra A, Chanchal S, Ashraf MZ. Host-Viral Interactions Revealed among Shared Transcriptomics Signatures of ARDS and Thrombosis: A Clue into COVID-19 Pathogenesis. TH Open 2020;4:e403-12. [PMID: 33354650 DOI: 10.1055/s-0040-1721706] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Yan S, Wu G. Is lymphopenia different between SARS and COVID-19 patients? FASEB J 2021;35:e21245. [PMID: 33495994 DOI: 10.1096/fj.202002512] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Salimi S, Hamlyn JM. COVID-19 and Crosstalk With the Hallmarks of Aging. J Gerontol A Biol Sci Med Sci 2020;75:e34-41. [PMID: 32544216 DOI: 10.1093/gerona/glaa149] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 16.0] [Reference Citation Analysis]
12 Alpalhão M, Ferreira JA, Filipe P. Persistent SARS-CoV-2 infection and the risk for cancer. Med Hypotheses 2020;143:109882. [PMID: 32485314 DOI: 10.1016/j.mehy.2020.109882] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
13 Liu Y, Zhou Y, Jiang C, Liu J, Chen D. Prevention, treatment and potential mechanism of herbal medicine for Corona viruses: A review. Bioengineered 2022;13:5480-508. [DOI: 10.1080/21655979.2022.2036521] [Reference Citation Analysis]
14 Cano I, Santos EM, Moore K, Farbos A, van Aerle R. Evidence of Transcriptional Shutoff by Pathogenic Viral Haemorrhagic Septicaemia Virus in Rainbow Trout. Viruses 2021;13:1129. [PMID: 34208332 DOI: 10.3390/v13061129] [Reference Citation Analysis]
15 Wong NA, Saier MH Jr. The SARS-Coronavirus Infection Cycle: A Survey of Viral Membrane Proteins, Their Functional Interactions and Pathogenesis. Int J Mol Sci 2021;22:1308. [PMID: 33525632 DOI: 10.3390/ijms22031308] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
16 Francés-Monerris A, Hognon C, Miclot T, García-Iriepa C, Iriepa I, Terenzi A, Grandemange S, Barone G, Marazzi M, Monari A. Molecular Basis of SARS-CoV-2 Infection and Rational Design of Potential Antiviral Agents: Modeling and Simulation Approaches. J Proteome Res 2020;19:4291-315. [PMID: 33119313 DOI: 10.1021/acs.jproteome.0c00779] [Cited by in Crossref: 22] [Cited by in F6Publishing: 14] [Article Influence: 11.0] [Reference Citation Analysis]
17 Kifle ZD. Bruton tyrosine kinase inhibitors as potential therapeutic agents for COVID-19: A review. Metabol Open 2021;11:100116. [PMID: 34345815 DOI: 10.1016/j.metop.2021.100116] [Reference Citation Analysis]
18 Mechteridis K, Lauber M, Baumbach J, List M. KeyPathwayMineR: De Novo Pathway Enrichment in the R Ecosystem. Front Genet 2021;12:812853. [PMID: 35173764 DOI: 10.3389/fgene.2021.812853] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Wang X, Wu Z, Li Y, Yang Y, Xiao C, Liu X, Xiang X, Wei J, Shao D, Liu K, Deng X, Wu J, Qiu Y, Li B, Ma Z. p53 promotes ZDHHC1-mediated IFITM3 palmitoylation to inhibit Japanese encephalitis virus replication. PLoS Pathog 2020;16:e1009035. [PMID: 33108395 DOI: 10.1371/journal.ppat.1009035] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Ma-Lauer Y, Zheng Y, Malešević M, von Brunn B, Fischer G, von Brunn A. Influences of cyclosporin A and non-immunosuppressive derivatives on cellular cyclophilins and viral nucleocapsid protein during human coronavirus 229E replication. Antiviral Res 2020;173:104620. [PMID: 31634494 DOI: 10.1016/j.antiviral.2019.104620] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 11.7] [Reference Citation Analysis]
21 Goldstein ME, Scull MA. Modeling Innate Antiviral Immunity in Physiological Context. J Mol Biol 2021;:167374. [PMID: 34863779 DOI: 10.1016/j.jmb.2021.167374] [Reference Citation Analysis]
22 Saha S, Halder AK, Bandyopadhyay SS, Chatterjee P, Nasipuri M, Bose D, Basu S. Drug repurposing for COVID-19 using computational screening: Is Fostamatinib/R406 a potential candidate? Methods 2021:S1046-2023(21)00205-X. [PMID: 34455072 DOI: 10.1016/j.ymeth.2021.08.007] [Reference Citation Analysis]
23 Voth LS, O'Connor JJ, Kerr CM, Doerger E, Schwarting N, Sperstad P, Johnson DK, Fehr AR. Unique Mutations in the Murine Hepatitis Virus Macrodomain Differentially Attenuate Virus Replication, Indicating Multiple Roles for the Macrodomain in Coronavirus Replication. J Virol 2021;95:e0076621. [PMID: 34011547 DOI: 10.1128/JVI.00766-21] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Lavigne M, Helynck O, Rigolet P, Boudria-Souilah R, Nowakowski M, Baron B, Brülé S, Hoos S, Raynal B, Guittat L, Beauvineau C, Petres S, Granzhan A, Guillon J, Pratviel G, Teulade-Fichou MP, England P, Mergny JL, Munier-Lehmann H. SARS-CoV-2 Nsp3 unique domain SUD interacts with guanine quadruplexes and G4-ligands inhibit this interaction. Nucleic Acids Res 2021;49:7695-712. [PMID: 34232992 DOI: 10.1093/nar/gkab571] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
25 Ahmad T, Chaudhuri R, Joshi MC, Almatroudi A, Rahmani AH, Ali SM. COVID-19: The Emerging Immunopathological Determinants for Recovery or Death. Front Microbiol 2020;11:588409. [PMID: 33335518 DOI: 10.3389/fmicb.2020.588409] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
26 Rohaim MA, El Naggar RF, Clayton E, Munir M. Structural and functional insights into non-structural proteins of coronaviruses. Microb Pathog 2021;150:104641. [PMID: 33242646 DOI: 10.1016/j.micpath.2020.104641] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
27 Fung TS, Liu DX. Post-translational modifications of coronavirus proteins: roles and function. Future Virol 2018;13:405-30. [PMID: 32201497 DOI: 10.2217/fvl-2018-0008] [Cited by in Crossref: 91] [Cited by in F6Publishing: 77] [Article Influence: 22.8] [Reference Citation Analysis]
28 Krześniak M, Zajkowicz A, Gdowicz-Kłosok A, Głowala-Kosińska M, Łasut-Szyszka B, Rusin M. Synergistic activation of p53 by actinomycin D and nutlin-3a is associated with the upregulation of crucial regulators and effectors of innate immunity. Cell Signal 2020;69:109552. [PMID: 32032660 DOI: 10.1016/j.cellsig.2020.109552] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
29 Harford JB, Kim SS, Pirollo KF, Chang EH. TP53 Gene Therapy as a Potential Treatment for Patients with COVID-19. Viruses 2022;14:739. [DOI: 10.3390/v14040739] [Reference Citation Analysis]
30 Ahluwalia P, Ahluwalia M, Vaibhav K, Mondal A, Sahajpal N, Islam S, Fulzele S, Kota V, Dhandapani K, Baban B, Rojiani AM, Kolhe R. Infections of the lung: a predictive, preventive and personalized perspective through the lens of evolution, the emergence of SARS-CoV-2 and its pathogenesis. EPMA J 2020;:1-21. [PMID: 33204369 DOI: 10.1007/s13167-020-00230-1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
31 Chen W, Wang Z, Wang Y, Li Y. Natural Bioactive Molecules as Potential Agents Against SARS-CoV-2. Front Pharmacol 2021;12:702472. [PMID: 34483904 DOI: 10.3389/fphar.2021.702472] [Reference Citation Analysis]
32 Perrin-Cocon L, Diaz O, Jacquemin C, Barthel V, Ogire E, Ramière C, André P, Lotteau V, Vidalain PO. The current landscape of coronavirus-host protein-protein interactions. J Transl Med 2020;18:319. [PMID: 32811513 DOI: 10.1186/s12967-020-02480-z] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 10.5] [Reference Citation Analysis]
33 Gil C, Ginex T, Maestro I, Nozal V, Barrado-Gil L, Cuesta-Geijo MÁ, Urquiza J, Ramírez D, Alonso C, Campillo NE, Martinez A. COVID-19: Drug Targets and Potential Treatments. J Med Chem 2020;63:12359-86. [PMID: 32511912 DOI: 10.1021/acs.jmedchem.0c00606] [Cited by in Crossref: 119] [Cited by in F6Publishing: 97] [Article Influence: 59.5] [Reference Citation Analysis]
34 Lei J, Hilgenfeld R. RNA-virus proteases counteracting host innate immunity. FEBS Lett 2017;591:3190-210. [PMID: 28850669 DOI: 10.1002/1873-3468.12827] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 6.6] [Reference Citation Analysis]
35 Duan Y, Cao L, Yuan C, Suo X, Kong X, Gao Y, Li X, Zheng H, Wang X, Wang Q. Novel Function of Avian p53 in Binding to ALV-J LTR Contributes to Its Antiviral Roles. mBio 2022;:e0328721. [PMID: 35038897 DOI: 10.1128/mbio.03287-21] [Reference Citation Analysis]
36 Doboszewska U, Wlaź P, Nowak G, Młyniec K. Targeting zinc metalloenzymes in coronavirus disease 2019.Br J Pharmacol. 2020;177:4887-4898. [PMID: 32671829 DOI: 10.1111/bph.15199] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
37 Marjot T, Webb GJ, Barritt AS 4th, Moon AM, Stamataki Z, Wong VW, Barnes E. COVID-19 and liver disease: mechanistic and clinical perspectives. Nat Rev Gastroenterol Hepatol 2021;18:348-64. [PMID: 33692570 DOI: 10.1038/s41575-021-00426-4] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 27.0] [Reference Citation Analysis]
38 Zhou H, Fang Y, Xu T, Ni WJ, Shen AZ, Meng XM. Potential therapeutic targets and promising drugs for combating SARS-CoV-2. Br J Pharmacol 2020;177:3147-61. [PMID: 32368792 DOI: 10.1111/bph.15092] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 16.5] [Reference Citation Analysis]
39 Lei J, Ma-Lauer Y, Han Y, Thoms M, Buschauer R, Jores J, Thiel V, Beckmann R, Deng W, Leonhardt H, Hilgenfeld R, von Brunn A. The SARS-unique domain (SUD) of SARS-CoV and SARS-CoV-2 interacts with human Paip1 to enhance viral RNA translation. EMBO J 2021;40:e102277. [PMID: 33876849 DOI: 10.15252/embj.2019102277] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
40 Yang L, Han Y, Nilsson-Payant BE, Gupta V, Wang P, Duan X, Tang X, Zhu J, Zhao Z, Jaffré F, Zhang T, Kim TW, Harschnitz O, Redmond D, Houghton S, Liu C, Naji A, Ciceri G, Guttikonda S, Bram Y, Nguyen DT, Cioffi M, Chandar V, Hoagland DA, Huang Y, Xiang J, Wang H, Lyden D, Borczuk A, Chen HJ, Studer L, Pan FC, Ho DD, tenOever BR, Evans T, Schwartz RE, Chen S. A Human Pluripotent Stem Cell-based Platform to Study SARS-CoV-2 Tropism and Model Virus Infection in Human Cells and Organoids. Cell Stem Cell 2020;27:125-136.e7. [PMID: 32579880 DOI: 10.1016/j.stem.2020.06.015] [Cited by in Crossref: 225] [Cited by in F6Publishing: 235] [Article Influence: 112.5] [Reference Citation Analysis]
41 Ding J, Lugo-Martinez J, Yuan Y, Kotton DN, Bar-Joseph Z. Reconstructing SARS-CoV-2 response signaling and regulatory networks. bioRxiv 2020:2020. [PMID: 33083801 DOI: 10.1101/2020.06.01.127589] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
42 Milani D, Caruso L, Zauli E, Al Owaifeer AM, Secchiero P, Zauli G, Gemmati D, Tisato V. p53/NF-kB Balance in SARS-CoV-2 Infection: From OMICs, Genomics and Pharmacogenomics Insights to Tailored Therapeutic Perspectives (COVIDomics). Front Pharmacol 2022;13:871583. [DOI: 10.3389/fphar.2022.871583] [Reference Citation Analysis]
43 Cardozo CM, Hainaut P. Viral strategies for circumventing p53: the case of severe acute respiratory syndrome coronavirus. Curr Opin Oncol 2021;33:149-58. [PMID: 33405482 DOI: 10.1097/CCO.0000000000000713] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
44 Gomez Marti JL, Wells A, Brufsky AM. Dysregulation of the mevalonate pathway during SARS-CoV-2 infection: An in silico study. J Med Virol 2021;93:2396-405. [PMID: 33331649 DOI: 10.1002/jmv.26743] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
45 Gassen NC, Papies J, Bajaj T, Emanuel J, Dethloff F, Chua RL, Trimpert J, Heinemann N, Niemeyer C, Weege F, Hönzke K, Aschman T, Heinz DE, Weckmann K, Ebert T, Zellner A, Lennarz M, Wyler E, Schroeder S, Richter A, Niemeyer D, Hoffmann K, Meyer TF, Heppner FL, Corman VM, Landthaler M, Hocke AC, Morkel M, Osterrieder N, Conrad C, Eils R, Radbruch H, Giavalisco P, Drosten C, Müller MA. SARS-CoV-2-mediated dysregulation of metabolism and autophagy uncovers host-targeting antivirals. Nat Commun 2021;12:3818. [PMID: 34155207 DOI: 10.1038/s41467-021-24007-w] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
46 Stingi A, Cirillo L. SARS-CoV-2 infection and cancer: Evidence for and against a role of SARS-CoV-2 in cancer onset. Bioessays 2021;43:e2000289. [PMID: 34081334 DOI: 10.1002/bies.202000289] [Reference Citation Analysis]
47 Jacob F, Pather SR, Huang WK, Wong SZH, Zhou H, Zhang F, Cubitt B, Chen CZ, Xu M, Pradhan M, Zhang DY, Zheng W, Bang AG, Song H, de A Torre JC, Ming GL. Human Pluripotent Stem Cell-Derived Neural Cells and Brain Organoids Reveal SARS-CoV-2 Neurotropism. bioRxiv 2020:2020. [PMID: 32766575 DOI: 10.1101/2020.07.28.225151] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
48 Armstrong LA, Lange SM, Dee Cesare V, Matthews SP, Nirujogi RS, Cole I, Hope A, Cunningham F, Toth R, Mukherjee R, Bojkova D, Gruber F, Gray D, Wyatt PG, Cinatl J, Dikic I, Davies P, Kulathu Y. Biochemical characterization of protease activity of Nsp3 from SARS-CoV-2 and its inhibition by nanobodies. PLoS One 2021;16:e0253364. [PMID: 34270554 DOI: 10.1371/journal.pone.0253364] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
49 Cheng F, Huang J, Tang P, Li Y, Hu Z, Cui B, Xie X, Chen Q, Tian J, Gu H, Yue C, Zhang J, Zhang Y, Chen G. SlCHYR1, a RING and CHY zinc finger domain-containing protein, promotes tomato fruit ripening by reprograming abscisic acid and ethylene signaling. Scientia Horticulturae 2022;296:110900. [DOI: 10.1016/j.scienta.2022.110900] [Reference Citation Analysis]
50 Kouidou S, Malousi A, Andreou AZ. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection: Triggering a Lethal Fight to Keep Control of the Ten-Eleven Translocase (TET)-Associated DNA Demethylation? Pathogens 2020;9:E1006. [PMID: 33266135 DOI: 10.3390/pathogens9121006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
51 de Wilde AH, Snijder EJ, Kikkert M, van Hemert MJ. Host Factors in Coronavirus Replication. Curr Top Microbiol Immunol. 2018;419:1-42. [PMID: 28643204 DOI: 10.1007/82_2017_25] [Cited by in Crossref: 106] [Cited by in F6Publishing: 144] [Article Influence: 35.3] [Reference Citation Analysis]
52 Parthasarathi KTS, Munjal NS, Dey G, Kumar A, Pandey A, Balakrishnan L, Sharma J. A pathway map of signaling events triggered upon SARS-CoV infection. J Cell Commun Signal 2021. [PMID: 34487344 DOI: 10.1007/s12079-021-00642-2] [Reference Citation Analysis]
53 Wong KZ, Chu JJH. The Interplay of Viral and Host Factors in Chikungunya Virus Infection: Targets for Antiviral Strategies. Viruses 2018;10:E294. [PMID: 29849008 DOI: 10.3390/v10060294] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 5.3] [Reference Citation Analysis]
54 Mehta S, Campbell H, Drummond CJ, Li K, Murray K, Slatter T, Bourdon JC, Braithwaite AW. Adaptive homeostasis and the p53 isoform network. EMBO Rep 2021;22:e53085. [PMID: 34779563 DOI: 10.15252/embr.202153085] [Reference Citation Analysis]
55 Su M, Shi D, Xing X, Qi S, Yang D, Zhang J, Han Y, Zhu Q, Sun H, Wang X, Wu H, Wang M, Wei S, Li C, Guo D, Feng L, Sun D. Coronavirus Porcine Epidemic Diarrhea Virus Nucleocapsid Protein Interacts with p53 To Induce Cell Cycle Arrest in S-Phase and Promotes Viral Replication. J Virol 2021;95:e0018721. [PMID: 34037422 DOI: 10.1128/JVI.00187-21] [Reference Citation Analysis]
56 Lei J, Kusov Y, Hilgenfeld R. Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein. Antiviral Res. 2018;149:58-74. [PMID: 29128390 DOI: 10.1016/j.antiviral.2017.11.001] [Cited by in Crossref: 257] [Cited by in F6Publishing: 215] [Article Influence: 51.4] [Reference Citation Analysis]
57 Tanda ML, Ippolito S, Gallo D, Baj A, Novazzi F, Genoni A, Annoni M, Mancini N, Clementi N, Finzi G, Piantanida E, Premoli P, Lai A, Dalla Gasperina D, Maggi F, Uccella S. SARS-CoV-2 detection in primary thyroid sarcoma: coincidence or interaction? J Endocrinol Invest 2022. [PMID: 34984625 DOI: 10.1007/s40618-021-01722-1] [Reference Citation Analysis]
58 Trujillo-Uscanga A, Gutiérrez-Escolano AL. Host cell p53 associates with the feline calicivirus major viral capsid protein VP1, the protease-polymerase NS6/7, and the double-stranded RNA playing a role in virus replication. Virology 2020;550:78-88. [PMID: 32890980 DOI: 10.1016/j.virol.2020.08.008] [Reference Citation Analysis]
59 Sun P, Wu H, Huang J, Xu Y, Yang F, Zhang Q, Xu X. Porcine epidemic diarrhea virus through p53-dependent pathway causes cell cycle arrest in the G0/G1 phase. Virus Res 2018;253:1-11. [PMID: 29800601 DOI: 10.1016/j.virusres.2018.05.019] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
60 Zauli G, Tisato V, Secchiero P. Rationale for Considering Oral Idasanutlin as a Therapeutic Option for COVID-19 Patients. Front Pharmacol 2020;11:1156. [PMID: 32848765 DOI: 10.3389/fphar.2020.01156] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
61 Hemmat N, Asadzadeh Z, Ahangar NK, Alemohammad H, Najafzadeh B, Derakhshani A, Baghbanzadeh A, Baghi HB, Javadrashid D, Najafi S, Ar Gouilh M, Baradaran B. The roles of signaling pathways in SARS-CoV-2 infection; lessons learned from SARS-CoV and MERS-CoV. Arch Virol 2021;166:675-96. [PMID: 33462671 DOI: 10.1007/s00705-021-04958-7] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 20.0] [Reference Citation Analysis]
62 Jacob F, Pather SR, Huang WK, Zhang F, Wong SZH, Zhou H, Cubitt B, Fan W, Chen CZ, Xu M, Pradhan M, Zhang DY, Zheng W, Bang AG, Song H, Carlos de la Torre J, Ming GL. Human Pluripotent Stem Cell-Derived Neural Cells and Brain Organoids Reveal SARS-CoV-2 Neurotropism Predominates in Choroid Plexus Epithelium. Cell Stem Cell 2020;27:937-950.e9. [PMID: 33010822 DOI: 10.1016/j.stem.2020.09.016] [Cited by in Crossref: 76] [Cited by in F6Publishing: 85] [Article Influence: 38.0] [Reference Citation Analysis]
63 Moustaqil M, Ollivier E, Chiu HP, Van Tol S, Rudolffi-Soto P, Stevens C, Bhumkar A, Hunter DJB, Freiberg AN, Jacques D, Lee B, Sierecki E, Gambin Y. SARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across species. Emerg Microbes Infect 2021;10:178-95. [PMID: 33372854 DOI: 10.1080/22221751.2020.1870414] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 14.0] [Reference Citation Analysis]
64 Zhu L, Fung SY, Xie G, Wong LR, Jin DY, Cai Z. Identification of Lysine Acetylation Sites on MERS-CoV Replicase pp1ab. Mol Cell Proteomics 2020;19:1303-9. [PMID: 32424026 DOI: 10.1074/mcp.RA119.001897] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
65 Bai C, Zhong Q, Gao GF. Overview of SARS-CoV-2 genome-encoded proteins. Sci China Life Sci 2021. [PMID: 34387838 DOI: 10.1007/s11427-021-1964-4] [Reference Citation Analysis]
66 Staup AJ, De Silva IU, Catt JT, Tan X, Hammond RG, Johnson MA. Structure of the SARS-Unique Domain C From the Bat Coronavirus HKU4. Nat Prod Commun 2019;14:1934578X19849202. [PMID: 32395093 DOI: 10.1177/1934578X19849202] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
67 Mesri EA, Lampidis TJ. 2-Deoxy-d-glucose exploits increased glucose metabolism in cancer and viral-infected cells: Relevance to its use in India against SARS-CoV-2. IUBMB Life 2021;73:1198-204. [PMID: 34418270 DOI: 10.1002/iub.2546] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
68 Kgatle MM, Lawal IO, Mashabela G, Boshomane TMG, Koatale PC, Mahasha PW, Ndlovu H, Vorster M, Rodrigues HG, Zeevaart JR, Gordon S, Moura-Alves P, Sathekge MM. COVID-19 Is a Multi-Organ Aggressor: Epigenetic and Clinical Marks. Front Immunol 2021;12:752380. [PMID: 34691068 DOI: 10.3389/fimmu.2021.752380] [Reference Citation Analysis]
69 Ramaiah MJ. mTOR inhibition and p53 activation, microRNAs: The possible therapy against pandemic COVID-19. Gene Rep 2020;20:100765. [PMID: 32835132 DOI: 10.1016/j.genrep.2020.100765] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 11.0] [Reference Citation Analysis]
70 Minakshi R, Jan AT, Rahman S, Kim J. A Testimony of the Surgent SARS-CoV-2 in the Immunological Panorama of the Human Host. Front Cell Infect Microbiol 2020;10:575404. [PMID: 33262955 DOI: 10.3389/fcimb.2020.575404] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
71 Zhang Y, Niu G, Flisikowska T, Schnieke A, Flisikowski K. A tissue- and gender-specific regulation of the SARS-CoV-2 receptor ACE2 by p53 in pigs. Biochem Biophys Res Commun 2021;553:25-9. [PMID: 33756342 DOI: 10.1016/j.bbrc.2021.03.068] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
72 Hekman RM, Hume AJ, Goel RK, Abo KM, Huang J, Blum BC, Werder RB, Suder EL, Paul I, Phanse S, Youssef A, Alysandratos KD, Padhorny D, Ojha S, Mora-Martin A, Kretov D, Ash PEA, Verma M, Zhao J, Patten JJ, Villacorta-Martin C, Bolzan D, Perea-Resa C, Bullitt E, Hinds A, Tilston-Lunel A, Varelas X, Farhangmehr S, Braunschweig U, Kwan JH, McComb M, Basu A, Saeed M, Perissi V, Burks EJ, Layne MD, Connor JH, Davey R, Cheng JX, Wolozin BL, Blencowe BJ, Wuchty S, Lyons SM, Kozakov D, Cifuentes D, Blower M, Kotton DN, Wilson AA, Mühlberger E, Emili A. Actionable Cytopathogenic Host Responses of Human Alveolar Type 2 Cells to SARS-CoV-2. Mol Cell 2020;80:1104-1122.e9. [PMID: 33259812 DOI: 10.1016/j.molcel.2020.11.028] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 10.0] [Reference Citation Analysis]
73 Guo J, Gao X, Liu B, Li Y, Liu W, Lu J, Liu C, Xue R, Li X. Mouse adaptation of the H9N2 avian influenza virus causes the downregulation of genes related to innate immune responses and ubiquitin-mediated proteolysis in mice. Med Microbiol Immunol 2020;209:151-61. [PMID: 31982962 DOI: 10.1007/s00430-020-00656-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
74 Saini G, Aneja R. Cancer as a prospective sequela of long COVID-19. Bioessays 2021;43:e2000331. [PMID: 33914346 DOI: 10.1002/bies.202000331] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
75 Alzhanova D, Corcoran K, Bailey AG, Long K, Taft-Benz S, Graham RL, Broussard GS, Heise M, Neumann G, Halfmann P, Kawaoka Y, Baric RS, Damania B, Dittmer DP. Novel modulators of p53-signaling encoded by unknown genes of emerging viruses. PLoS Pathog 2021;17:e1009033. [PMID: 33411764 DOI: 10.1371/journal.ppat.1009033] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
76 Kumar A, Grams TR, Bloom DC, Toth Z. Signaling Pathway Reporter Screen with SARS-CoV-2 Proteins Identifies nsp5 as a Repressor of p53 Activity. Viruses 2022;14:1039. [DOI: 10.3390/v14051039] [Reference Citation Analysis]
77 Hare D, Collins S, Cuddington B, Mossman K. The Importance of Physiologically Relevant Cell Lines for Studying Virus-Host Interactions. Viruses 2016;8:E297. [PMID: 27809273 DOI: 10.3390/v8110297] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
78 Robson B. COVID-19 Coronavirus spike protein analysis for synthetic vaccines, a peptidomimetic antagonist, and therapeutic drugs, and analysis of a proposed achilles' heel conserved region to minimize probability of escape mutations and drug resistance. Comput Biol Med 2020;121:103749. [PMID: 32568687 DOI: 10.1016/j.compbiomed.2020.103749] [Cited by in Crossref: 66] [Cited by in F6Publishing: 49] [Article Influence: 33.0] [Reference Citation Analysis]
79 Su M, Chen Y, Qi S, Shi D, Feng L, Sun D. A Mini-Review on Cell Cycle Regulation of Coronavirus Infection. Front Vet Sci 2020;7:586826. [PMID: 33251267 DOI: 10.3389/fvets.2020.586826] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
80 Asghari A, Naseri M, Safari H, Saboory E, Parsamanesh N. The Novel Insight of SARS-CoV-2 Molecular Biology and Pathogenesis and Therapeutic Options. DNA Cell Biol 2020;39:1741-53. [PMID: 32716648 DOI: 10.1089/dna.2020.5703] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
81 Hussain I, Pervaiz N, Khan A, Saleem S, Shireen H, Wei DQ, Labrie V, Bao Y, Abbasi AA. Evolutionary and structural analysis of SARS-CoV-2 specific evasion of host immunity. Genes Immun 2020;21:409-19. [PMID: 33273723 DOI: 10.1038/s41435-020-00120-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
82 Kikkert M. Innate Immune Evasion by Human Respiratory RNA Viruses. J Innate Immun. 2020;12:4-20. [PMID: 31610541 DOI: 10.1159/000503030] [Cited by in Crossref: 122] [Cited by in F6Publishing: 115] [Article Influence: 40.7] [Reference Citation Analysis]
83 Geisslinger F, Vollmar AM, Bartel K. Cancer Patients Have a Higher Risk Regarding COVID-19 - and Vice Versa? Pharmaceuticals (Basel) 2020;13:E143. [PMID: 32640723 DOI: 10.3390/ph13070143] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
84 Brady PN, Goel A, Johnson MA. Poly(ADP-Ribose) Polymerases in Host-Pathogen Interactions, Inflammation, and Immunity. Microbiol Mol Biol Rev 2019;83:e00038-18. [PMID: 30567936 DOI: 10.1128/MMBR.00038-18] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
85 Armengaud J, Delaunay-Moisan A, Thuret JY, van Anken E, Acosta-Alvear D, Aragón T, Arias C, Blondel M, Braakman I, Collet JF, Courcol R, Danchin A, Deleuze JF, Lavigne JP, Lucas S, Michiels T, Moore ERB, Nixon-Abell J, Rossello-Mora R, Shi ZL, Siccardi AG, Sitia R, Tillett D, Timmis KN, Toledano MB, van der Sluijs P, Vicenzi E. The importance of naturally attenuated SARS-CoV-2in the fight against COVID-19. Environ Microbiol 2020;22:1997-2000. [PMID: 32342578 DOI: 10.1111/1462-2920.15039] [Cited by in Crossref: 33] [Cited by in F6Publishing: 23] [Article Influence: 16.5] [Reference Citation Analysis]
86 Hammond RG, Tan X, Johnson MA. SARS-unique fold in the Rousettus bat coronavirus HKU9. Protein Sci 2017;26:1726-37. [PMID: 28580734 DOI: 10.1002/pro.3208] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
87 Cárdenas G, Fragoso G, Sciutto E. Neuroinflammation in SARS-CoV2 infection: Pathogenesis and clinical manifestations. Current Opinion in Pharmacology 2021. [DOI: 10.1016/j.coph.2021.12.008] [Reference Citation Analysis]
88 Gallo A, Tsika AC, Fourkiotis NK, Cantini F, Banci L, Sreeramulu S, Schwalbe H, Spyroulias GA. 1H,13C and 15N chemical shift assignments of the SUD domains of SARS-CoV-2 non-structural protein 3c: "The SUD-M and SUD-C domains". Biomol NMR Assign 2021;15:165-71. [PMID: 33423172 DOI: 10.1007/s12104-020-10000-9] [Reference Citation Analysis]
89 Clemente V, D'Arcy P, Bazzaro M. Deubiquitinating Enzymes in Coronaviruses and Possible Therapeutic Opportunities for COVID-19. Int J Mol Sci 2020;21:E3492. [PMID: 32429099 DOI: 10.3390/ijms21103492] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 9.0] [Reference Citation Analysis]
90 Luo Y, Zhang M, Chen Y, Chen Y, Zhu D. Application of Human Induced Pluripotent Stem Cell-Derived Cellular and Organoid Models for COVID-19 Research. Front Cell Dev Biol 2021;9:720099. [PMID: 34552930 DOI: 10.3389/fcell.2021.720099] [Reference Citation Analysis]
91 Cui D, Qu R, Liu D, Xiong X, Liang T, Zhao Y. The Cross Talk Between p53 and mTOR Pathways in Response to Physiological and Genotoxic Stresses. Front Cell Dev Biol 2021;9:775507. [PMID: 34869377 DOI: 10.3389/fcell.2021.775507] [Reference Citation Analysis]
92 Voth LS, O'Connor JJ, Kerr CM, Doerger E, Schwarting N, Sperstad P, Johnson DK, Fehr AR. An MHV macrodomain mutant predicted to lack ADP-ribose binding activity is severely attenuated, indicating multiple roles for the macrodomain in coronavirus replication. bioRxiv 2021:2021. [PMID: 33821264 DOI: 10.1101/2021.03.30.437796] [Reference Citation Analysis]
93 Mori M, Capasso C, Carta F, Donald WA, Supuran CT. A deadly spillover: SARS-CoV-2 outbreak. Expert Opin Ther Pat 2020;30:481-5. [PMID: 32321324 DOI: 10.1080/13543776.2020.1760838] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
94 Badolo A, Burt F, Daniel S, Fearns R, Gudo ES, Kielian M, Lescar J, Shi Y, von Brunn A, Weiss SR, Hilgenfeld R. Third Tofo Advanced Study Week on Emerging and Re-emerging Viruses, 2018. Antiviral Res 2019;162:142-50. [PMID: 30597184 DOI: 10.1016/j.antiviral.2018.12.015] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]