BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kufareva I, Stephens BS, Holden LG, Qin L, Zhao C, Kawamura T, Abagyan R, Handel TM. Stoichiometry and geometry of the CXC chemokine receptor 4 complex with CXC ligand 12: molecular modeling and experimental validation. Proc Natl Acad Sci USA. 2014;111:E5363-E5372. [PMID: 25468967 DOI: 10.1073/pnas.1417037111] [Cited by in Crossref: 54] [Cited by in F6Publishing: 49] [Article Influence: 6.8] [Reference Citation Analysis]
Number Citing Articles
1 Gerken OJ, Artinger M, Legler DF. Shifting CCR7 towards Its Monomeric Form Augments CCL19 Binding and Uptake. Cells 2022;11:1444. [PMID: 35563750 DOI: 10.3390/cells11091444] [Reference Citation Analysis]
2 Sadri F, Rezaei Z, Fereidouni M. The significance of the SDF-1/CXCR4 signaling pathway in the normal development. Mol Biol Rep 2022. [PMID: 35067815 DOI: 10.1007/s11033-021-07069-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Gao X, Qin S, Wu Y, Chu C, Jiang B, Johnson RH, Kuang D, Zhang J, Wang X, Mehta A, Tew KD, Leone GW, Yu XZ, Wang H. Nuclear PFKP promotes CXCR4-dependent infiltration by T cell acute lymphoblastic leukemia. J Clin Invest 2021;131:143119. [PMID: 34255748 DOI: 10.1172/JCI143119] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 Lam G, Zhou Y, Wang JX, Tsui YP. Targeting mesenchymal stem cell therapy for severe pneumonia patients. World J Stem Cells 2021; 13(2): 139-154 [PMID: 33708343 DOI: 10.4252/wjsc.v13.i2.139] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
5 Işbilir A, Möller J, Arimont M, Bobkov V, Perpiñá-Viciano C, Hoffmann C, Inoue A, Heukers R, de Graaf C, Smit MJ, Annibale P, Lohse MJ. Advanced fluorescence microscopy reveals disruption of dynamic CXCR4 dimerization by subpocket-specific inverse agonists. Proc Natl Acad Sci U S A 2020;117:29144-54. [PMID: 33148803 DOI: 10.1073/pnas.2013319117] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
6 Qing R, Tao F, Chatterjee P, Yang G, Han Q, Chung H, Ni J, Suter BP, Kubicek J, Maertens B, Schubert T, Blackburn C, Zhang S. Non-full-length Water-Soluble CXCR4QTY and CCR5QTY Chemokine Receptors: Implication for Overlooked Truncated but Functional Membrane Receptors. iScience 2020;23:101670. [PMID: 33376963 DOI: 10.1016/j.isci.2020.101670] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
7 Kaiser A, Coin I. Capturing Peptide-GPCR Interactions and Their Dynamics. Molecules 2020;25:E4724. [PMID: 33076289 DOI: 10.3390/molecules25204724] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
8 Stephens BS, Ngo T, Kufareva I, Handel TM. Functional anatomy of the full-length CXCR4-CXCL12 complex systematically dissected by quantitative model-guided mutagenesis. Sci Signal 2020;13:eaay5024. [PMID: 32665413 DOI: 10.1126/scisignal.aay5024] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
9 Jaracz-Ros A, Bernadat G, Cutolo P, Gallego C, Gustavsson M, Cecon E, Baleux F, Kufareva I, Handel TM, Bachelerie F, Levoye A. Differential activity and selectivity of N-terminal modified CXCL12 chemokines at the CXCR4 and ACKR3 receptors. J Leukoc Biol 2020;107:1123-35. [PMID: 32374043 DOI: 10.1002/JLB.2MA0320-383RR] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Ngo T, Stephens BS, Gustavsson M, Holden LG, Abagyan R, Handel TM, Kufareva I. Crosslinking-guided geometry of a complete CXC receptor-chemokine complex and the basis of chemokine subfamily selectivity. PLoS Biol 2020;18:e3000656. [PMID: 32271748 DOI: 10.1371/journal.pbio.3000656] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
11 Ávila-sánchez M, Ferro-flores G, Jiménez-mancilla N, Ocampo-garcía B, Bravo-villegas G, Luna-gutiérrez M, Santos-cuevas C, Azorín-vega E, Aranda-lara L, Isaac-olivé K, Melendez-alafort L. Synthesis and preclinical evaluation of the 99mTc-/177Lu-CXCR4-L theranostic pair for in vivo chemokine-4 receptor-specific targeting. J Radioanal Nucl Chem 2020;324:21-32. [DOI: 10.1007/s10967-020-07043-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
12 Gustavsson M. New insights into the structure and function of chemokine receptor:chemokine complexes from an experimental perspective. J Leukoc Biol 2020;107:1115-22. [DOI: 10.1002/jlb.2mr1219-288r] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
13 Zhou Q, Yang D, Wu M, Guo Y, Guo W, Zhong L, Cai X, Dai A, Jang W, Shakhnovich EI, Liu ZJ, Stevens RC, Lambert NA, Babu MM, Wang MW, Zhao S. Common activation mechanism of class A GPCRs. Elife 2019;8:e50279. [PMID: 31855179 DOI: 10.7554/eLife.50279] [Cited by in Crossref: 67] [Cited by in F6Publishing: 44] [Article Influence: 22.3] [Reference Citation Analysis]
14 Shen L, Yuan Y, Guo Y, Li M, Li C, Pu X. Probing the Druggablility on the Interface of the Protein-Protein Interaction and Its Allosteric Regulation Mechanism on the Drug Screening for the CXCR4 Homodimer. Front Pharmacol 2019;10:1310. [PMID: 31787895 DOI: 10.3389/fphar.2019.01310] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
15 Adlere I, Caspar B, Arimont M, Dekkers S, Visser K, Stuijt J, de Graaf C, Stocks M, Kellam B, Briddon S, Wijtmans M, de Esch I, Hill S, Leurs R. Modulators of CXCR4 and CXCR7/ACKR3 Function. Mol Pharmacol 2019;96:737-52. [DOI: 10.1124/mol.119.117663] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 7.0] [Reference Citation Analysis]
16 Heusinkveld LE, Majumdar S, Gao JL, McDermott DH, Murphy PM. WHIM Syndrome: from Pathogenesis Towards Personalized Medicine and Cure. J Clin Immunol 2019;39:532-56. [PMID: 31313072 DOI: 10.1007/s10875-019-00665-w] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
17 Arimont M, Hoffmann C, de Graaf C, Leurs R. Chemokine Receptor Crystal Structures: What Can Be Learned from Them? Mol Pharmacol 2019;96:765-77. [PMID: 31266800 DOI: 10.1124/mol.119.117168] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
18 De Groof TW, Bobkov V, Heukers R, Smit MJ. Nanobodies: New avenues for imaging, stabilizing and modulating GPCRs. Molecular and Cellular Endocrinology 2019;484:15-24. [DOI: 10.1016/j.mce.2019.01.021] [Cited by in Crossref: 27] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
19 Seidel L, Zarzycka B, Katritch V, Coin I. Exploring Pairwise Chemical Crosslinking To Study Peptide-Receptor Interactions. Chembiochem 2019;20:683-92. [PMID: 30565820 DOI: 10.1002/cbic.201800582] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
20 Zhang X, Yuan Y, Wang L, Guo Y, Li M, Li C, Pu X. Use multiscale simulation to explore the effects of the homodimerizations between different conformation states on the activation and allosteric pathway for the μ-opioid receptor. Phys Chem Chem Phys 2018;20:13485-96. [PMID: 29726867 DOI: 10.1039/c8cp02016g] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
21 Jin W, Liang X, Brooks A, Futrega K, Liu X, Doran MR, Simpson MJ, Roberts MS, Wang H. Modelling of the SDF-1/CXCR4 regulated in vivo homing of therapeutic mesenchymal stem/stromal cells in mice. PeerJ. 2018;6:e6072. [PMID: 30564525 DOI: 10.7717/peerj.6072] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
22 Van Hout A, Klarenbeek A, Bobkov V, Doijen J, Arimont M, Zhao C, Heukers R, Rimkunas R, de Graaf C, Verrips T, van der Woning B, de Haard H, Rucker JB, Vermeire K, Handel T, Van Loy T, Smit MJ, Schols D. CXCR4-targeting nanobodies differentially inhibit CXCR4 function and HIV entry. Biochem Pharmacol 2018;158:402-12. [PMID: 30342024 DOI: 10.1016/j.bcp.2018.10.015] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
23 Hitchinson B, Eby JM, Gao X, Guite-Vinet F, Ziarek JJ, Abdelkarim H, Lee Y, Okamoto Y, Shikano S, Majetschak M, Heveker N, Volkman BF, Tarasova NI, Gaponenko V. Biased antagonism of CXCR4 avoids antagonist tolerance. Sci Signal 2018;11:eaat2214. [PMID: 30327409 DOI: 10.1126/scisignal.aat2214] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
24 Gao X, Abdelkarim H, Albee LJ, Volkman BF, Gaponenko V, Majetschak M. Partial agonist activity of α1-adrenergic receptor antagonists for chemokine (C-X-C motif) receptor 4 and atypical chemokine receptor 3. PLoS One 2018;13:e0204041. [PMID: 30248140 DOI: 10.1371/journal.pone.0204041] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
25 Szpakowska M, Meyrath M, Reynders N, Counson M, Hanson J, Steyaert J, Chevigné A. Mutational analysis of the extracellular disulphide bridges of the atypical chemokine receptor ACKR3/CXCR7 uncovers multiple binding and activation modes for its chemokine and endogenous non-chemokine agonists. Biochemical Pharmacology 2018;153:299-309. [DOI: 10.1016/j.bcp.2018.03.007] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
26 Heredia JD, Park J, Brubaker RJ, Szymanski SK, Gill KS, Procko E. Mapping Interaction Sites on Human Chemokine Receptors by Deep Mutational Scanning. J Immunol 2018;200:3825-39. [PMID: 29678950 DOI: 10.4049/jimmunol.1800343] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 8.3] [Reference Citation Analysis]
27 Szpakowska M, Nevins AM, Meyrath M, Rhainds D, D'huys T, Guité-Vinet F, Dupuis N, Gauthier PA, Counson M, Kleist A, St-Onge G, Hanson J, Schols D, Volkman BF, Heveker N, Chevigné A. Different contributions of chemokine N-terminal features attest to a different ligand binding mode and a bias towards activation of ACKR3/CXCR7 compared with CXCR4 and CXCR3. Br J Pharmacol 2018;175:1419-38. [PMID: 29272550 DOI: 10.1111/bph.14132] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 6.5] [Reference Citation Analysis]
28 Teixidó J, Martínez-Moreno M, Díaz-Martínez M, Sevilla-Movilla S. The good and bad faces of the CXCR4 chemokine receptor. Int J Biochem Cell Biol 2018;95:121-31. [PMID: 29288743 DOI: 10.1016/j.biocel.2017.12.018] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 6.8] [Reference Citation Analysis]
29 Getschman AE, Imai Y, Larsen O, Peterson FC, Wu X, Rosenkilde MM, Hwang ST, Volkman BF. Protein engineering of the chemokine CCL20 prevents psoriasiform dermatitis in an IL-23-dependent murine model. Proc Natl Acad Sci U S A 2017;114:12460-5. [PMID: 29109267 DOI: 10.1073/pnas.1704958114] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 5.4] [Reference Citation Analysis]
30 Miller MC, Mayo KH. Chemokines from a Structural Perspective. Int J Mol Sci 2017;18:E2088. [PMID: 28974038 DOI: 10.3390/ijms18102088] [Cited by in Crossref: 68] [Cited by in F6Publishing: 66] [Article Influence: 13.6] [Reference Citation Analysis]
31 Kufareva I, Gustavsson M, Zheng Y, Stephens BS, Handel TM. What Do Structures Tell Us About Chemokine Receptor Function and Antagonism? Annu Rev Biophys 2017;46:175-98. [PMID: 28532213 DOI: 10.1146/annurev-biophys-051013-022942] [Cited by in Crossref: 45] [Cited by in F6Publishing: 40] [Article Influence: 9.0] [Reference Citation Analysis]
32 Ziarek JJ, Kleist AB, London N, Raveh B, Montpas N, Bonneterre J, St-Onge G, DiCosmo-Ponticello CJ, Koplinski CA, Roy I, Stephens B, Thelen S, Veldkamp CT, Coffman FD, Cohen MC, Dwinell MB, Thelen M, Peterson FC, Heveker N, Volkman BF. Structural basis for chemokine recognition by a G protein-coupled receptor and implications for receptor activation. Sci Signal 2017;10:eaah5756. [PMID: 28325822 DOI: 10.1126/scisignal.aah5756] [Cited by in Crossref: 53] [Cited by in F6Publishing: 47] [Article Influence: 10.6] [Reference Citation Analysis]
33 Arimont M, Sun SL, Leurs R, Smit M, de Esch IJP, de Graaf C. Structural Analysis of Chemokine Receptor-Ligand Interactions. J Med Chem 2017;60:4735-79. [PMID: 28165741 DOI: 10.1021/acs.jmedchem.6b01309] [Cited by in Crossref: 57] [Cited by in F6Publishing: 52] [Article Influence: 11.4] [Reference Citation Analysis]
34 Gustavsson M, Wang L, van Gils N, Stephens BS, Zhang P, Schall TJ, Yang S, Abagyan R, Chance MR, Kufareva I, Handel TM. Structural basis of ligand interaction with atypical chemokine receptor 3. Nat Commun 2017;8:14135. [PMID: 28098154 DOI: 10.1038/ncomms14135] [Cited by in Crossref: 59] [Cited by in F6Publishing: 52] [Article Influence: 11.8] [Reference Citation Analysis]
35 Connell BJ, Sadir R, Baleux F, Laguri C, Kleman JP, Luo L, Arenzana-Seisdedos F, Lortat-Jacob H. Heparan sulfate differentially controls CXCL12α- and CXCL12γ-mediated cell migration through differential presentation to their receptor CXCR4. Sci Signal 2016;9:ra107. [PMID: 27803285 DOI: 10.1126/scisignal.aaf1839] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
36 Peng L, Damschroder MM, Cook KE, Wu H, Dall'Acqua WF. Molecular basis for the antagonistic activity of an anti-CXCR4 antibody. MAbs 2016;8:163-75. [PMID: 26514996 DOI: 10.1080/19420862.2015.1113359] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
37 Wescott MP, Kufareva I, Paes C, Goodman JR, Thaker Y, Puffer BA, Berdougo E, Rucker JB, Handel TM, Doranz BJ. Signal transmission through the CXC chemokine receptor 4 (CXCR4) transmembrane helices. Proc Natl Acad Sci U S A 2016;113:9928-33. [PMID: 27543332 DOI: 10.1073/pnas.1601278113] [Cited by in Crossref: 65] [Cited by in F6Publishing: 57] [Article Influence: 10.8] [Reference Citation Analysis]
38 Kufareva I. Chemokines and their receptors: insights from molecular modeling and crystallography. Curr Opin Pharmacol 2016;30:27-37. [PMID: 27459124 DOI: 10.1016/j.coph.2016.07.006] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 4.8] [Reference Citation Analysis]
39 Kleist AB, Getschman AE, Ziarek JJ, Nevins AM, Gauthier PA, Chevigné A, Szpakowska M, Volkman BF. New paradigms in chemokine receptor signal transduction: Moving beyond the two-site model. Biochem Pharmacol 2016;114:53-68. [PMID: 27106080 DOI: 10.1016/j.bcp.2016.04.007] [Cited by in Crossref: 65] [Cited by in F6Publishing: 58] [Article Influence: 10.8] [Reference Citation Analysis]
40 Alam F, Al-hilal TA, Park J, Choi JU, Mahmud F, Jeong J, Kim I, Kim SY, Hwang SR, Byun Y. Multi-stage inhibition in breast cancer metastasis by orally active triple conjugate, LHTD4 (low molecular weight heparin-taurocholate-tetrameric deoxycholate). Biomaterials 2016;86:56-67. [DOI: 10.1016/j.biomaterials.2016.01.058] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
41 Yin J, Babaoglu K, Brautigam CA, Clark L, Shao Z, Scheuermann TH, Harrell CM, Gotter AL, Roecker AJ, Winrow CJ, Renger JJ, Coleman PJ, Rosenbaum DM. Structure and ligand-binding mechanism of the human OX1 and OX2 orexin receptors. Nat Struct Mol Biol 2016;23:293-9. [PMID: 26950369 DOI: 10.1038/nsmb.3183] [Cited by in Crossref: 78] [Cited by in F6Publishing: 69] [Article Influence: 13.0] [Reference Citation Analysis]
42 Jiang Y, Yuan Y, Zhang X, Liang T, Guo Y, Li M, Pu X. Use of network model to explore dynamic and allosteric properties of three GPCR homodimers. RSC Adv 2016;6:106327-39. [DOI: 10.1039/c6ra18243g] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
43 Monneau Y, Arenzana-seisdedos F, Lortat-jacob H. The sweet spot: how GAGs help chemokines guide migrating cells. Journal of Leukocyte Biology 2016;99:935-53. [DOI: 10.1189/jlb.3mr0915-440r] [Cited by in Crossref: 74] [Cited by in F6Publishing: 56] [Article Influence: 10.6] [Reference Citation Analysis]
44 Pawig L, Klasen C, Weber C, Bernhagen J, Noels H. Diversity and Inter-Connections in the CXCR4 Chemokine Receptor/Ligand Family: Molecular Perspectives. Front Immunol 2015;6:429. [PMID: 26347749 DOI: 10.3389/fimmu.2015.00429] [Cited by in Crossref: 99] [Cited by in F6Publishing: 92] [Article Influence: 14.1] [Reference Citation Analysis]
45 Våbenø J, Haug BE, Rosenkilde MM. Progress toward rationally designed small-molecule peptide and peptidomimetic CXCR4 antagonists. Future Medicinal Chemistry 2015;7:1261-83. [DOI: 10.4155/fmc.15.64] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
46 Kufareva I, Salanga CL, Handel TM. Chemokine and chemokine receptor structure and interactions: implications for therapeutic strategies. Immunol Cell Biol 2015;93:372-83. [PMID: 25708536 DOI: 10.1038/icb.2015.15] [Cited by in Crossref: 114] [Cited by in F6Publishing: 98] [Article Influence: 16.3] [Reference Citation Analysis]
47 Qin L, Kufareva I, Holden LG, Wang C, Zheng Y, Zhao C, Fenalti G, Wu H, Han GW, Cherezov V, Abagyan R, Stevens RC, Handel TM. Structural biology. Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine. Science 2015;347:1117-22. [PMID: 25612609 DOI: 10.1126/science.1261064] [Cited by in Crossref: 249] [Cited by in F6Publishing: 236] [Article Influence: 35.6] [Reference Citation Analysis]