BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Vazey EM, Aston-Jones G. Designer receptor manipulations reveal a role of the locus coeruleus noradrenergic system in isoflurane general anesthesia. Proc Natl Acad Sci USA. 2014;111:3859-3864. [PMID: 24567395 DOI: 10.1073/pnas.1310025111] [Cited by in Crossref: 137] [Cited by in F6Publishing: 127] [Article Influence: 17.1] [Reference Citation Analysis]
Number Citing Articles
1 Van Someren EJW. Brain mechanisms of insomnia: new perspectives on causes and consequences. Physiol Rev 2021;101:995-1046. [PMID: 32790576 DOI: 10.1152/physrev.00046.2019] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
2 Liu C, Shi F, Fu B, Luo T, Zhang L, Zhang Y, Zhang Y, Yu S, Yu T. GABAA receptors in the basal forebrain mediates emergence from propofol anaesthesia in rats. Int J Neurosci 2020;:1-13. [PMID: 33174773 DOI: 10.1080/00207454.2020.1840375] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Smith KS, Bucci DJ, Luikart BW, Mahler SV. DREADDS: Use and application in behavioral neuroscience. Behav Neurosci 2016;130:137-55. [PMID: 26913540 DOI: 10.1037/bne0000135] [Cited by in Crossref: 121] [Cited by in F6Publishing: 106] [Article Influence: 20.2] [Reference Citation Analysis]
4 Stevens L, Vonck K, Larsen LE, Van Lysebettens W, Germonpré C, Baekelandt V, Van den Haute C, Carrette E, Wadman WJ, Boon P, Raedt R. A Feasibility Study to Investigate Chemogenetic Modulation of the Locus Coeruleus by Means of Single Unit Activity. Front Neurosci 2020;14:162. [PMID: 32210746 DOI: 10.3389/fnins.2020.00162] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Weinshenker D. Long Road to Ruin: Noradrenergic Dysfunction in Neurodegenerative Disease. Trends Neurosci 2018;41:211-23. [PMID: 29475564 DOI: 10.1016/j.tins.2018.01.010] [Cited by in Crossref: 91] [Cited by in F6Publishing: 76] [Article Influence: 22.8] [Reference Citation Analysis]
6 Chander D, García PS, MacColl JN, Illing S, Sleigh JW. Electroencephalographic variation during end maintenance and emergence from surgical anesthesia. PLoS One 2014;9:e106291. [PMID: 25264892 DOI: 10.1371/journal.pone.0106291] [Cited by in Crossref: 58] [Cited by in F6Publishing: 51] [Article Influence: 7.3] [Reference Citation Analysis]
7 Herrera CG, Ponomarenko A, Korotkova T, Burdakov D, Adamantidis A. Sleep & metabolism: The multitasking ability of lateral hypothalamic inhibitory circuitries. Front Neuroendocrinol 2017;44:27-34. [PMID: 27884682 DOI: 10.1016/j.yfrne.2016.11.002] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 5.2] [Reference Citation Analysis]
8 Burnett CJ, Krashes MJ. Resolving Behavioral Output via Chemogenetic Designer Receptors Exclusively Activated by Designer Drugs. J Neurosci 2016;36:9268-82. [PMID: 27605603 DOI: 10.1523/JNEUROSCI.1333-16.2016] [Cited by in Crossref: 24] [Cited by in F6Publishing: 15] [Article Influence: 4.8] [Reference Citation Analysis]
9 Johnston R, Snyder AC, Khanna SB, Issar D, Smith MA. The Eyes Reflect an Internal Cognitive State Hidden in the Population Activity of Cortical Neurons. Cereb Cortex 2021:bhab418. [PMID: 34963140 DOI: 10.1093/cercor/bhab418] [Reference Citation Analysis]
10 Gompf HS, Budygin EA, Fuller PM, Bass CE. Targeted genetic manipulations of neuronal subtypes using promoter-specific combinatorial AAVs in wild-type animals. Front Behav Neurosci 2015;9:152. [PMID: 26190981 DOI: 10.3389/fnbeh.2015.00152] [Cited by in Crossref: 44] [Cited by in F6Publishing: 43] [Article Influence: 6.3] [Reference Citation Analysis]
11 Borodovitsyna O, Flamini M, Chandler D. Noradrenergic Modulation of Cognition in Health and Disease. Neural Plast 2017;2017:6031478. [PMID: 28596922 DOI: 10.1155/2017/6031478] [Cited by in Crossref: 72] [Cited by in F6Publishing: 68] [Article Influence: 14.4] [Reference Citation Analysis]
12 Melonakos ED, Moody OA, Nikolaeva K, Kato R, Nehs CJ, Solt K. Manipulating Neural Circuits in Anesthesia Research. Anesthesiology 2020;133:19-30. [PMID: 32349073 DOI: 10.1097/ALN.0000000000003279] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
13 Salgado H, Treviño M, Atzori M. Layer- and area-specific actions of norepinephrine on cortical synaptic transmission. Brain Res 2016;1641:163-76. [PMID: 26820639 DOI: 10.1016/j.brainres.2016.01.033] [Cited by in Crossref: 43] [Cited by in F6Publishing: 37] [Article Influence: 7.2] [Reference Citation Analysis]
14 Venner A, Todd WD, Fraigne J, Bowrey H, Eban-Rothschild A, Kaur S, Anaclet C. Newly identified sleep-wake and circadian circuits as potential therapeutic targets. Sleep 2019;42:zsz023. [PMID: 30722061 DOI: 10.1093/sleep/zsz023] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
15 Megemont M, McBurney-Lin J, Yang H. Pupil diameter is not an accurate real-time readout of locus coeruleus activity. Elife 2022;11:e70510. [PMID: 35107419 DOI: 10.7554/eLife.70510] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
16 Jiang J, Morgan DA, Cui H, Rahmouni K. Activation of hypothalamic AgRP and POMC neurons evokes disparate sympathetic and cardiovascular responses. Am J Physiol Heart Circ Physiol 2020;319:H1069-77. [PMID: 32946297 DOI: 10.1152/ajpheart.00411.2020] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
17 Zhou W, Cheung K, Kyu S, Wang L, Guan Z, Kurien PA, Bickler PE, Jan LY. Activation of orexin system facilitates anesthesia emergence and pain control. Proc Natl Acad Sci U S A 2018;115:E10740-7. [PMID: 30348769 DOI: 10.1073/pnas.1808622115] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
18 Vazey EM, Moorman DE, Aston-Jones G. Phasic locus coeruleus activity regulates cortical encoding of salience information. Proc Natl Acad Sci U S A 2018;115:E9439-48. [PMID: 30232259 DOI: 10.1073/pnas.1803716115] [Cited by in Crossref: 58] [Cited by in F6Publishing: 44] [Article Influence: 14.5] [Reference Citation Analysis]
19 Schriver BJ, Perkins SM, Sajda P, Wang Q. Interplay between components of pupil-linked phasic arousal and its role in driving behavioral choice in Go/No-Go perceptual decision-making. Psychophysiology 2020;57:e13565. [PMID: 32227366 DOI: 10.1111/psyp.13565] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
20 Mather M, Clewett D, Sakaki M, Harley CW. Norepinephrine ignites local hotspots of neuronal excitation: How arousal amplifies selectivity in perception and memory. Behav Brain Sci 2016;39:e200. [PMID: 26126507 DOI: 10.1017/S0140525X15000667] [Cited by in Crossref: 221] [Cited by in F6Publishing: 123] [Article Influence: 31.6] [Reference Citation Analysis]
21 Zhang Y, Yu T, Yuan J, Yu B. The ventrolateral preoptic nucleus is required for propofol-induced inhibition of locus coeruleus neuronal activity. Neurol Sci 2015;36:2177-84. [DOI: 10.1007/s10072-015-2292-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
22 Li S, Franken P, Vassalli A. Bidirectional and context-dependent changes in theta and gamma oscillatory brain activity in noradrenergic cell-specific Hypocretin/Orexin receptor 1-KO mice. Sci Rep 2018;8:15474. [PMID: 30341359 DOI: 10.1038/s41598-018-33069-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
23 Luppi AI, Spindler LRB, Menon DK, Stamatakis EA. The Inert Brain: Explaining Neural Inertia as Post-anaesthetic Sleep Inertia. Front Neurosci 2021;15:643871. [PMID: 33737863 DOI: 10.3389/fnins.2021.643871] [Reference Citation Analysis]
24 Manohar A, Curtis AL, Zderic SA, Valentino RJ. Brainstem network dynamics underlying the encoding of bladder information. Elife 2017;6:e29917. [PMID: 29199948 DOI: 10.7554/eLife.29917] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 2.4] [Reference Citation Analysis]
25 Neves RM, van Keulen S, Yang M, Logothetis NK, Eschenko O. Locus coeruleus phasic discharge is essential for stimulus-induced gamma oscillations in the prefrontal cortex. J Neurophysiol 2018;119:904-20. [PMID: 29093170 DOI: 10.1152/jn.00552.2017] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 4.6] [Reference Citation Analysis]
26 Borodovitsyna O, Duffy BC, Pickering AE, Chandler DJ. Anatomically and functionally distinct locus coeruleus efferents mediate opposing effects on anxiety-like behavior. Neurobiol Stress 2020;13:100284. [PMID: 33344735 DOI: 10.1016/j.ynstr.2020.100284] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
27 Giustino TF, Fitzgerald PJ, Ressler RL, Maren S. Locus coeruleus toggles reciprocal prefrontal firing to reinstate fear. Proc Natl Acad Sci U S A 2019;116:8570-5. [PMID: 30971490 DOI: 10.1073/pnas.1814278116] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 4.7] [Reference Citation Analysis]
28 Campese VD, Soroeta JM, Vazey EM, Aston-Jones G, LeDoux JE, Sears RM. Noradrenergic Regulation of Central Amygdala in Aversive Pavlovian-to-Instrumental Transfer. eNeuro 2017;4:ENEURO. [PMID: 29071299 DOI: 10.1523/ENEURO.0224-17.2017] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
29 David M, Malhotra PA. New approaches for the quantification and targeting of noradrenergic dysfunction in Alzheimer's disease. Ann Clin Transl Neurol 2022. [PMID: 35293158 DOI: 10.1002/acn3.51539] [Reference Citation Analysis]
30 Calderon DP, Schiff ND. Objective and graded calibration of recovery of consciousness in experimental models. Curr Opin Neurol 2021;34:142-9. [PMID: 33278146 DOI: 10.1097/WCO.0000000000000895] [Reference Citation Analysis]
31 Gardner B, Strus E, Meng QC, Coradetti T, Naidoo NN, Kelz MB, Williams JA. Sleep Homeostasis and General Anesthesia: Are Fruit Flies Well Rested after Emergence from Propofol? Anesthesiology 2016;124:404-16. [PMID: 26556728 DOI: 10.1097/ALN.0000000000000939] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Adapa R. Consciousness and Anesthesia. In: Absalom AR, Mason KP, editors. Total Intravenous Anesthesia and Target Controlled Infusions. Cham: Springer International Publishing; 2017. pp. 63-78. [DOI: 10.1007/978-3-319-47609-4_4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
33 Xu W, Wang L, Yuan XS, Wang TX, Li WX, Qu WM, Hong ZY, Huang ZL. Sevoflurane depresses neurons in the medial parabrachial nucleus by potentiating postsynaptic GABAA receptors and background potassium channels. Neuropharmacology 2020;181:108249. [PMID: 32931816 DOI: 10.1016/j.neuropharm.2020.108249] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
34 Wagatsuma A, Okuyama T, Sun C, Smith LM, Abe K, Tonegawa S. Locus coeruleus input to hippocampal CA3 drives single-trial learning of a novel context. Proc Natl Acad Sci U S A 2018;115:E310-6. [PMID: 29279390 DOI: 10.1073/pnas.1714082115] [Cited by in Crossref: 85] [Cited by in F6Publishing: 70] [Article Influence: 17.0] [Reference Citation Analysis]
35 Mashour GA. Consciousness. Anesth Analg 2022;134:1118-25. [PMID: 35595688 DOI: 10.1213/ANE.0000000000005983] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
36 Fazlali Z, Ranjbar-Slamloo Y, Adibi M, Arabzadeh E. Correlation between Cortical State and Locus Coeruleus Activity: Implications for Sensory Coding in Rat Barrel Cortex. Front Neural Circuits 2016;10:14. [PMID: 27047339 DOI: 10.3389/fncir.2016.00014] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 4.2] [Reference Citation Analysis]
37 Pina MM, Cunningham CL. Ethanol-seeking behavior is expressed directly through an extended amygdala to midbrain neural circuit. Neurobiol Learn Mem 2017;137:83-91. [PMID: 27866960 DOI: 10.1016/j.nlm.2016.11.013] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
38 Gao S, Proekt A, Renier N, Calderon DP, Pfaff DW. Activating an anterior nucleus gigantocellularis subpopulation triggers emergence from pharmacologically-induced coma in rodents. Nat Commun 2019;10:2897. [PMID: 31263107 DOI: 10.1038/s41467-019-10797-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
39 Vazey EM, Aston-Jones G. Designer receptors: therapeutic adjuncts to cell replacement therapy in Parkinson's disease. J Clin Invest 2014;124:2858-60. [PMID: 24937425 DOI: 10.1172/JCI76833] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
40 Kang SS, Ahn EH, Ye K. Delta-secretase cleavage of Tau mediates its pathology and propagation in Alzheimer's disease. Exp Mol Med 2020;52:1275-87. [PMID: 32859953 DOI: 10.1038/s12276-020-00494-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
41 McCall JG, Al-Hasani R, Siuda ER, Hong DY, Norris AJ, Ford CP, Bruchas MR. CRH Engagement of the Locus Coeruleus Noradrenergic System Mediates Stress-Induced Anxiety. Neuron 2015;87:605-20. [PMID: 26212712 DOI: 10.1016/j.neuron.2015.07.002] [Cited by in Crossref: 243] [Cited by in F6Publishing: 218] [Article Influence: 34.7] [Reference Citation Analysis]
42 [DOI: 10.1101/539502] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
43 Zhang K, Pan J, Yu Y. Regulation of Neural Circuitry under General Anesthesia: New Methods and Findings. Biomolecules 2022;12:898. [DOI: 10.3390/biom12070898] [Reference Citation Analysis]
44 Du WJ, Zhang RW, Li J, Zhang BB, Peng XL, Cao S, Yuan J, Yuan CD, Yu T, Du JL. The Locus Coeruleus Modulates Intravenous General Anesthesia of Zebrafish via a Cooperative Mechanism. Cell Rep 2018;24:3146-3155.e3. [PMID: 30231998 DOI: 10.1016/j.celrep.2018.08.046] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
45 Juri T, Fujimoto Y, Suehiro K, Nishikawa K, Mori T. Participation of the descending noradrenergic inhibitory system in the anti-hyperalgesic effect of acetaminophen in a rat model of inflammation. Life Sci 2021;286:120030. [PMID: 34627774 DOI: 10.1016/j.lfs.2021.120030] [Reference Citation Analysis]
46 Pignataro D, Sucunza D, Rico AJ, Dopeso-Reyes IG, Roda E, Rodríguez-Perez AI, Labandeira-Garcia JL, Broccoli V, Kato S, Kobayashi K, Lanciego JL. Gene therapy approaches in the non-human primate model of Parkinson's disease. J Neural Transm (Vienna) 2018;125:575-89. [PMID: 28130586 DOI: 10.1007/s00702-017-1681-3] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
47 Yu X, Franks NP, Wisden W. Sleep and Sedative States Induced by Targeting the Histamine and Noradrenergic Systems. Front Neural Circuits 2018;12:4. [PMID: 29434539 DOI: 10.3389/fncir.2018.00004] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 6.8] [Reference Citation Analysis]
48 Venkatakrishnan AJ, Flock T, Prado DE, Oates ME, Gough J, Madan Babu M. Structured and disordered facets of the GPCR fold. Curr Opin Struct Biol 2014;27:129-37. [PMID: 25198166 DOI: 10.1016/j.sbi.2014.08.002] [Cited by in Crossref: 47] [Cited by in F6Publishing: 41] [Article Influence: 5.9] [Reference Citation Analysis]
49 McBurney-Lin J, Lu J, Zuo Y, Yang H. Locus coeruleus-norepinephrine modulation of sensory processing and perception: A focused review. Neurosci Biobehav Rev 2019;105:190-9. [PMID: 31260703 DOI: 10.1016/j.neubiorev.2019.06.009] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
50 Kelberman M, Keilholz S, Weinshenker D. What's That (Blue) Spot on my MRI? Multimodal Neuroimaging of the Locus Coeruleus in Neurodegenerative Disease. Front Neurosci 2020;14:583421. [PMID: 33122996 DOI: 10.3389/fnins.2020.583421] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
51 Aldrin-Kirk P, Björklund T. Practical Considerations for the Use of DREADD and Other Chemogenetic Receptors to Regulate Neuronal Activity in the Mammalian Brain. Methods Mol Biol 2019;1937:59-87. [PMID: 30706390 DOI: 10.1007/978-1-4939-9065-8_4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
52 Li Y, Hickey L, Perrins R, Werlen E, Patel AA, Hirschberg S, Jones MW, Salinas S, Kremer EJ, Pickering AE. Retrograde optogenetic characterization of the pontospinal module of the locus coeruleus with a canine adenoviral vector. Brain Res 2016;1641:274-90. [PMID: 26903420 DOI: 10.1016/j.brainres.2016.02.023] [Cited by in Crossref: 40] [Cited by in F6Publishing: 38] [Article Influence: 6.7] [Reference Citation Analysis]
53 Hayat H, Regev N, Matosevich N, Sales A, Paredes-Rodriguez E, Krom AJ, Bergman L, Li Y, Lavigne M, Kremer EJ, Yizhar O, Pickering AE, Nir Y. Locus coeruleus norepinephrine activity mediates sensory-evoked awakenings from sleep. Sci Adv 2020;6:eaaz4232. [PMID: 32285002 DOI: 10.1126/sciadv.aaz4232] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 13.0] [Reference Citation Analysis]
54 Hamlett ED, Ledreux A, Gilmore A, Vazey EM, Aston-Jones G, Boger HA, Paredes D, Granholm AE. Inhibitory designer receptors aggravate memory loss in a mouse model of down syndrome. Neurobiol Dis 2020;134:104616. [PMID: 31678403 DOI: 10.1016/j.nbd.2019.104616] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
55 Pal D, Jones JM, Wisidagamage S, Meisler MH, Mashour GA. Reduced Nav1.6 Sodium Channel Activity in Mice Increases In Vivo Sensitivity to Volatile Anesthetics. PLoS One 2015;10:e0134960. [PMID: 26252017 DOI: 10.1371/journal.pone.0134960] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
56 Vertes RP, Linley SB. No cognitive processing in the unconscious, anesthetic‐like , state of sleep. J Comp Neurol 2021;529:524-38. [DOI: 10.1002/cne.24963] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
57 Duggan MR, Joshi S, Strupp J, Parikh V. Chemogenetic inhibition of prefrontal projection neurons constrains top-down control of attention in young but not aged rats. Brain Struct Funct 2021;226:2357-73. [PMID: 34247267 DOI: 10.1007/s00429-021-02336-2] [Reference Citation Analysis]
58 Phillips WA, Larkum ME, Harley CW, Silverstein SM. The effects of arousal on apical amplification and conscious state. Neurosci Conscious 2016;2016:niw015. [PMID: 29877512 DOI: 10.1093/nc/niw015] [Cited by in Crossref: 24] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
59 Shen G, Shi WX. Amphetamine Promotes Cortical Up State in Part Via Dopamine Receptors. Front Pharmacol 2021;12:728729. [PMID: 34489713 DOI: 10.3389/fphar.2021.728729] [Reference Citation Analysis]
60 Giustino TF, Ramanathan KR, Totty MS, Miles OW, Maren S. Locus Coeruleus Norepinephrine Drives Stress-Induced Increases in Basolateral Amygdala Firing and Impairs Extinction Learning. J Neurosci 2020;40:907-16. [PMID: 31801809 DOI: 10.1523/JNEUROSCI.1092-19.2019] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.7] [Reference Citation Analysis]
61 Wang D, Huang Y, Wang X, Chen X, Li J, Zhang S, Wu J, Liu D, Ma D, Mei W. Circadian differences in emergence from volatile anaesthesia in mice: involvement of the locus coeruleus noradrenergic system. Br J Anaesth 2020;125:548-59. [PMID: 32807382 DOI: 10.1016/j.bja.2020.07.012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
62 Lőrincz ML, Adamantidis AR. Monoaminergic control of brain states and sensory processing: Existing knowledge and recent insights obtained with optogenetics. Prog Neurobiol 2017;151:237-53. [PMID: 27634227 DOI: 10.1016/j.pneurobio.2016.09.003] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 3.7] [Reference Citation Analysis]
63 Zhang Y, Fu B, Liu C, Yu S, Luo T, Zhang L, Zhou W, Yu T. Activation of noradrenergic terminals in the reticular thalamus delays arousal from propofol anesthesia in mice. FASEB j 2019;33:7252-60. [DOI: 10.1096/fj.201802164rr] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
64 Keren NI, Taheri S, Vazey EM, Morgan PS, Granholm AC, Aston-Jones GS, Eckert MA. Histologic validation of locus coeruleus MRI contrast in post-mortem tissue. Neuroimage 2015;113:235-45. [PMID: 25791783 DOI: 10.1016/j.neuroimage.2015.03.020] [Cited by in Crossref: 81] [Cited by in F6Publishing: 75] [Article Influence: 11.6] [Reference Citation Analysis]
65 Wang H, Yu L, Qin YJ, Chen M, Wang X, Luo HQ, Cong PL, Wang XL, Cai HM, Zhang AL, Juan-Guo, Sun XH, Li Z, Xue M, Sun N, Wang QX, Hu J. Restoring VTA DA neurons excitability accelerates emergence from sevoflurane general anesthesia of anxiety state. Biochem Biophys Res Commun 2021;565:21-8. [PMID: 34090206 DOI: 10.1016/j.bbrc.2021.05.079] [Reference Citation Analysis]
66 Fu B, Yu T, Yuan J, Gong X, Zhang M. Noradrenergic transmission in the central medial thalamic nucleus modulates the electroencephalographic activity and emergence from propofol anesthesia in rats. J Neurochem 2017;140:862-73. [DOI: 10.1111/jnc.13939] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 4.4] [Reference Citation Analysis]
67 Pal D, Dean JG, Liu T, Li D, Watson CJ, Hudetz AG, Mashour GA. Differential Role of Prefrontal and Parietal Cortices in Controlling Level of Consciousness. Curr Biol 2018;28:2145-2152.e5. [PMID: 29937348 DOI: 10.1016/j.cub.2018.05.025] [Cited by in Crossref: 55] [Cited by in F6Publishing: 50] [Article Influence: 13.8] [Reference Citation Analysis]
68 Van Lysebettens W, Vonck K, Larsen LE, Stevens L, Bouckaert C, Germonpré C, Sprengers M, Carrette E, Delbeke J, Wadman WJ, Boon P, Raedt R. Identification of vagus nerve stimulation parameters affecting rat hippocampal electrophysiology without temperature effects. Brain Stimul 2020;13:1198-206. [PMID: 32454214 DOI: 10.1016/j.brs.2020.05.011] [Reference Citation Analysis]
69 Rorabaugh JM, Chalermpalanupap T, Botz-Zapp CA, Fu VM, Lembeck NA, Cohen RM, Weinshenker D. Chemogenetic locus coeruleus activation restores reversal learning in a rat model of Alzheimer's disease. Brain 2017;140:3023-38. [PMID: 29053824 DOI: 10.1093/brain/awx232] [Cited by in Crossref: 62] [Cited by in F6Publishing: 59] [Article Influence: 20.7] [Reference Citation Analysis]
70 Bowrey HE, James MH, Aston-Jones G. New directions for the treatment of depression: Targeting the photic regulation of arousal and mood (PRAM) pathway. Depress Anxiety 2017;34:588-95. [PMID: 28489327 DOI: 10.1002/da.22635] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 3.2] [Reference Citation Analysis]
71 Pina MM, Young EA, Ryabinin AE, Cunningham CL. The bed nucleus of the stria terminalis regulates ethanol-seeking behavior in mice. Neuropharmacology 2015;99:627-38. [PMID: 26302652 DOI: 10.1016/j.neuropharm.2015.08.033] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 4.0] [Reference Citation Analysis]
72 Frank E, Benabou M, Bentzley B, Bianchi M, Goldstein T, Konopka G, Maywood E, Pritchett D, Sheaves B, Thomas J. Influencing circadian and sleep-wake regulation for prevention and intervention in mood and anxiety disorders: what makes a good homeostat? Ann N Y Acad Sci 2014;1334:1-25. [PMID: 25532787 DOI: 10.1111/nyas.12600] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
73 Chalermpalanupap T, Weinshenker D, Rorabaugh JM. Down but Not Out: The Consequences of Pretangle Tau in the Locus Coeruleus. Neural Plast 2017;2017:7829507. [PMID: 29038736 DOI: 10.1155/2017/7829507] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 3.6] [Reference Citation Analysis]
74 Ortiz S, Latsko MS, Fouty JL, Dutta S, Adkins JM, Jasnow AM. Anterior Cingulate Cortex and Ventral Hippocampal Inputs to the Basolateral Amygdala Selectively Control Generalized Fear. J Neurosci 2019;39:6526-39. [PMID: 31209172 DOI: 10.1523/JNEUROSCI.0810-19.2019] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
75 Varin C, Bonnavion P. Pharmacosynthetic Deconstruction of Sleep-Wake Circuits in the Brain. Handb Exp Pharmacol 2019;253:153-206. [PMID: 30689084 DOI: 10.1007/164_2018_183] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
76 Llorca-Torralba M, Pilar-Cuéllar F, Bravo L, Bruzos-Cidon C, Torrecilla M, Mico JA, Ugedo L, Garro-Martínez E, Berrocoso E. Opioid Activity in the Locus Coeruleus Is Modulated by Chronic Neuropathic Pain. Mol Neurobiol 2019;56:4135-50. [PMID: 30284123 DOI: 10.1007/s12035-018-1361-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
77 Waterhouse BD, Navarra RL. The locus coeruleus-norepinephrine system and sensory signal processing: A historical review and current perspectives. Brain Research 2019;1709:1-15. [DOI: 10.1016/j.brainres.2018.08.032] [Cited by in Crossref: 32] [Cited by in F6Publishing: 19] [Article Influence: 10.7] [Reference Citation Analysis]
78 Whissell PD, Tohyama S, Martin LJ. The Use of DREADDs to Deconstruct Behavior. Front Genet 2016;7:70. [PMID: 27242888 DOI: 10.3389/fgene.2016.00070] [Cited by in Crossref: 54] [Cited by in F6Publishing: 52] [Article Influence: 9.0] [Reference Citation Analysis]
79 de Lecea L. Optogenetic control of hypocretin (orexin) neurons and arousal circuits. Curr Top Behav Neurosci 2015;25:367-78. [PMID: 25502546 DOI: 10.1007/7854_2014_364] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 4.3] [Reference Citation Analysis]
80 Oyarzabal EA, Hsu LM, Das M, Chao TH, Zhou J, Song S, Zhang W, Smith KG, Sciolino NR, Evsyukova IY, Yuan H, Lee SH, Cui G, Jensen P, Shih YI. Chemogenetic stimulation of tonic locus coeruleus activity strengthens the default mode network. Sci Adv 2022;8:eabm9898. [PMID: 35486721 DOI: 10.1126/sciadv.abm9898] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
81 Liang Y, Shi W, Xiang A, Hu D, Wang L, Zhang L. The NAergic locus coeruleus-ventrolateral preoptic area neural circuit mediates rapid arousal from sleep. Curr Biol 2021:S0960-9822(21)00826-5. [PMID: 34270948 DOI: 10.1016/j.cub.2021.06.031] [Reference Citation Analysis]
82 Wang T, Xiong B, Xu W, Wei H, Qu W, Hong Z, Huang Z. Activation of Parabrachial Nucleus Glutamatergic Neurons Accelerates Reanimation from Sevoflurane Anesthesia in Mice. Anesthesiology 2019;130:106-18. [DOI: 10.1097/aln.0000000000002475] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 6.3] [Reference Citation Analysis]
83 Gu Y, Piper WT, Branigan LA, Vazey EM, Aston-Jones G, Lin L, LeDoux JE, Sears RM. A brainstem-central amygdala circuit underlies defensive responses to learned threats. Mol Psychiatry 2020;25:640-54. [PMID: 31758092 DOI: 10.1038/s41380-019-0599-6] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
84 Taylor NE, Van Dort CJ, Kenny JD, Pei J, Guidera JA, Vlasov KY, Lee JT, Boyden ES, Brown EN, Solt K. Optogenetic activation of dopamine neurons in the ventral tegmental area induces reanimation from general anesthesia. Proc Natl Acad Sci USA. 2016;113:12826-12831. [PMID: 27791160 DOI: 10.1073/pnas.1614340113] [Cited by in Crossref: 113] [Cited by in F6Publishing: 101] [Article Influence: 18.8] [Reference Citation Analysis]
85 Roth BL. DREADDs for Neuroscientists. Neuron 2016;89:683-94. [PMID: 26889809 DOI: 10.1016/j.neuron.2016.01.040] [Cited by in Crossref: 627] [Cited by in F6Publishing: 559] [Article Influence: 104.5] [Reference Citation Analysis]
86 Huels ER, Groenhout T, Fields CW, Liu T, Mashour GA, Pal D. Inactivation of Prefrontal Cortex Delays Emergence From Sevoflurane Anesthesia. Front Syst Neurosci 2021;15:690717. [PMID: 34305541 DOI: 10.3389/fnsys.2021.690717] [Reference Citation Analysis]
87 Luo T, Yu S, Cai S, Zhang Y, Jiao Y, Yu T, Yu W. Parabrachial Neurons Promote Behavior and Electroencephalographic Arousal From General Anesthesia. Front Mol Neurosci 2018;11:420. [PMID: 30564094 DOI: 10.3389/fnmol.2018.00420] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
88 Calderon DP, Kilinc M, Maritan A, Banavar JR, Pfaff D. Generalized CNS arousal: An elementary force within the vertebrate nervous system. Neurosci Biobehav Rev 2016;68:167-76. [PMID: 27216213 DOI: 10.1016/j.neubiorev.2016.05.014] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 4.2] [Reference Citation Analysis]
89 van Alst TM, Wachsmuth L, Datunashvili M, Albers F, Just N, Budde T, Faber C. Anesthesia differentially modulates neuronal and vascular contributions to the BOLD signal. NeuroImage 2019;195:89-103. [DOI: 10.1016/j.neuroimage.2019.03.057] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
90 Wang Y, Xu L, Liu MZ, Hu DD, Fang F, Xu DJ, Zhang R, Hua XX, Li JB, Zhang L, Huang LN, Mu D. Norepinephrine modulates wakefulness via α1 adrenoceptors in paraventricular thalamic nucleus. iScience 2021;24:103015. [PMID: 34522858 DOI: 10.1016/j.isci.2021.103015] [Reference Citation Analysis]
91 Privitera M, Ferrari KD, von Ziegler LM, Sturman O, Duss SN, Floriou-Servou A, Germain PL, Vermeiren Y, Wyss MT, De Deyn PP, Weber B, Bohacek J. A complete pupillometry toolbox for real-time monitoring of locus coeruleus activity in rodents. Nat Protoc 2020;15:2301-20. [PMID: 32632319 DOI: 10.1038/s41596-020-0324-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
92 McKinstry-Wu AR, Wasilczuk AZ, Harrison BA, Bedell VM, Sridharan MJ, Breig JJ, Pack M, Kelz MB, Proekt A. Analysis of stochastic fluctuations in responsiveness is a critical step toward personalized anesthesia. Elife 2019;8:e50143. [PMID: 31793434 DOI: 10.7554/eLife.50143] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
93 Bao WW, Xu W, Pan GJ, Wang TX, Han Y, Qu WM, Li WX, Huang ZL. Nucleus accumbens neurons expressing dopamine D1 receptors modulate states of consciousness in sevoflurane anesthesia. Curr Biol 2021;31:1893-1902.e5. [PMID: 33705720 DOI: 10.1016/j.cub.2021.02.011] [Reference Citation Analysis]
94 Llorca-torralba M, Suárez-pereira I, Bravo L, Camarena-delgado C, Garcia-partida JA, Mico JA, Berrocoso E. Chemogenetic Silencing of the Locus Coeruleus–Basolateral Amygdala Pathway Abolishes Pain-Induced Anxiety and Enhanced Aversive Learning in Rats. Biological Psychiatry 2019;85:1021-35. [DOI: 10.1016/j.biopsych.2019.02.018] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
95 Wang D, Guo Y, Li H, Li J, Ran M, Guo J, Yin L, Zhao S, Yang Q, Dong H. Selective optogenetic activation of orexinergic terminals in the basal forebrain and locus coeruleus promotes emergence from isoflurane anaesthesia in rats. Br J Anaesth 2021;126:279-92. [PMID: 33131759 DOI: 10.1016/j.bja.2020.09.037] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
96 Cascella M, Bimonte S, Muzio MR. Towards a better understanding of anesthesia emergence mechanisms: Research and clinical implications. World J Methodol 2018; 8(2): 9-16 [PMID: 30345225 DOI: 10.5662/wjm.v8.i2.9] [Cited by in CrossRef: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
97 Giorgi FS, Galgani A, Puglisi-Allegra S, Limanaqi F, Busceti CL, Fornai F. Locus Coeruleus and neurovascular unit: From its role in physiology to its potential role in Alzheimer's disease pathogenesis. J Neurosci Res 2020;98:2406-34. [PMID: 32875628 DOI: 10.1002/jnr.24718] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
98 Wu RN, Kuo CC, Min MY, Chen RF, Yang HW. Extracellular Signal-Regulated Kinases Mediate an Autoregulation of GABAB-Receptor-Activated Whole-Cell Current in Locus Coeruleus Neurons. Sci Rep 2020;10:7869. [PMID: 32398643 DOI: 10.1038/s41598-020-64292-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
99 Heshmati M, Bruchas MR. Historical and Modern Evidence for the Role of Reward Circuitry in Emergence. Anesthesiology 2022. [PMID: 35362070 DOI: 10.1097/ALN.0000000000004148] [Reference Citation Analysis]
100 Dahl MJ, Mather M, Sander MC, Werkle-Bergner M. Noradrenergic Responsiveness Supports Selective Attention across the Adult Lifespan. J Neurosci 2020;40:4372-90. [PMID: 32317388 DOI: 10.1523/JNEUROSCI.0398-19.2020] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
101 Ao Y, Yang B, Zhang C, Wu B, Zhang X, Xing D, Xu H. Locus Coeruleus to Paraventricular Thalamus Projections Facilitate Emergence From Isoflurane Anesthesia in Mice. Front Pharmacol 2021;12:643172. [PMID: 33986675 DOI: 10.3389/fphar.2021.643172] [Reference Citation Analysis]
102 Kenny JD, Taylor NE, Brown EN, Solt K. Dextroamphetamine (but Not Atomoxetine) Induces Reanimation from General Anesthesia: Implications for the Roles of Dopamine and Norepinephrine in Active Emergence. PLoS One 2015;10:e0131914. [PMID: 26148114 DOI: 10.1371/journal.pone.0131914] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 5.6] [Reference Citation Analysis]
103 Kang SS, Liu X, Ahn EH, Xiang J, Manfredsson FP, Yang X, Luo HR, Liles LC, Weinshenker D, Ye K. Norepinephrine metabolite DOPEGAL activates AEP and pathological Tau aggregation in locus coeruleus. J Clin Invest 2020;130:422-37. [PMID: 31793911 DOI: 10.1172/JCI130513] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 12.5] [Reference Citation Analysis]
104 Morse AK, Leung BK, Heath E, Bertran-gonzalez J, Pepin E, Chieng BC, Balleine BW, Laurent V. Basolateral Amygdala Drives a GPCR-Mediated Striatal Memory Necessary for Predictive Learning to Influence Choice. Neuron 2020;106:855-869.e8. [DOI: 10.1016/j.neuron.2020.03.007] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
105 Goossens MG, Larsen LE, Vergaelen M, Wadman W, Van den Haute C, Brackx W, Proesmans S, Desloovere J, Christiaen E, Craey E, Vanhove C, Vonck K, Boon P, Raedt R. Level of hM4D(Gi) DREADD Expression Determines Inhibitory and Neurotoxic Effects in the Hippocampus. eNeuro 2021;8:ENEURO. [PMID: 34620623 DOI: 10.1523/ENEURO.0105-21.2021] [Reference Citation Analysis]
106 Ao Y, Yang B, Zhang C, Li S, Xu H. Application of quinpirole in the paraventricular thalamus facilitates emergence from isoflurane anesthesia in mice. Brain Behav 2021;11:e01903. [PMID: 33128305 DOI: 10.1002/brb3.1903] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
107 Omura J, Fuchikami M, Araki M, Miyagi T, Okamoto Y, Morinobu S. Chemogenetic activation of the mPFC alleviates impaired fear memory extinction in an animal model of PTSD. Prog Neuropsychopharmacol Biol Psychiatry 2021;108:110090. [PMID: 32896603 DOI: 10.1016/j.pnpbp.2020.110090] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
108 Melonakos ED, Siegmann MJ, Rey C, O'Brien C, Nikolaeva KK, Solt K, Nehs CJ. Excitation of Putative Glutamatergic Neurons in the Rat Parabrachial Nucleus Region Reduces Delta Power during Dexmedetomidine but not Ketamine Anesthesia. Anesthesiology 2021. [PMID: 34270686 DOI: 10.1097/ALN.0000000000003883] [Reference Citation Analysis]
109 Liu Y, Rodenkirch C, Moskowitz N, Schriver B, Wang Q. Dynamic Lateralization of Pupil Dilation Evoked by Locus Coeruleus Activation Results from Sympathetic, Not Parasympathetic, Contributions. Cell Rep 2017;20:3099-112. [PMID: 28954227 DOI: 10.1016/j.celrep.2017.08.094] [Cited by in Crossref: 59] [Cited by in F6Publishing: 51] [Article Influence: 14.8] [Reference Citation Analysis]
110 Hemmings HC Jr, Riegelhaupt PM, Kelz MB, Solt K, Eckenhoff RG, Orser BA, Goldstein PA. Towards a Comprehensive Understanding of Anesthetic Mechanisms of Action: A Decade of Discovery. Trends Pharmacol Sci 2019;40:464-81. [PMID: 31147199 DOI: 10.1016/j.tips.2019.05.001] [Cited by in Crossref: 58] [Cited by in F6Publishing: 52] [Article Influence: 19.3] [Reference Citation Analysis]
111 Ikeda MZ, Jeon SD, Cowell RA, Remage-Healey L. Norepinephrine Modulates Coding of Complex Vocalizations in the Songbird Auditory Cortex Independent of Local Neuroestrogen Synthesis. J Neurosci 2015;35:9356-68. [PMID: 26109659 DOI: 10.1523/JNEUROSCI.4445-14.2015] [Cited by in Crossref: 39] [Cited by in F6Publishing: 21] [Article Influence: 5.6] [Reference Citation Analysis]
112 Glennon E, Carcea I, Martins ARO, Multani J, Shehu I, Svirsky MA, Froemke RC. Locus coeruleus activation accelerates perceptual learning. Brain Res 2019;1709:39-49. [PMID: 29859972 DOI: 10.1016/j.brainres.2018.05.048] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
113 Ramadasan-Nair R, Hui J, Itsara LS, Morgan PG, Sedensky MM. Mitochondrial Function in Astrocytes Is Essential for Normal Emergence from Anesthesia in Mice. Anesthesiology 2019;130:423-34. [PMID: 30707122 DOI: 10.1097/ALN.0000000000002528] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
114 Reimann HM, Niendorf T. The (Un)Conscious Mouse as a Model for Human Brain Functions: Key Principles of Anesthesia and Their Impact on Translational Neuroimaging. Front Syst Neurosci 2020;14:8. [PMID: 32508601 DOI: 10.3389/fnsys.2020.00008] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
115 Ye L, Orynbayev M, Zhu X, Lim EY, Dereddi RR, Agarwal A, Bergles DE, Bhat MA, Paukert M. Ethanol abolishes vigilance-dependent astroglia network activation in mice by inhibiting norepinephrine release. Nat Commun 2020;11:6157. [PMID: 33268792 DOI: 10.1038/s41467-020-19475-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
116 Kelz MB, García PS, Mashour GA, Solt K. Escape From Oblivion: Neural Mechanisms of Emergence From General Anesthesia. Anesth Analg 2019;128:726-36. [PMID: 30883418 DOI: 10.1213/ANE.0000000000004006] [Cited by in Crossref: 22] [Cited by in F6Publishing: 9] [Article Influence: 7.3] [Reference Citation Analysis]
117 Fitzgerald PJ, Watson BO. In vivo electrophysiological recordings of the effects of antidepressant drugs. Exp Brain Res 2019;237:1593-614. [PMID: 31079238 DOI: 10.1007/s00221-019-05556-5] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 5.7] [Reference Citation Analysis]
118 Uselman TW, Medina CS, Gray HB, Jacobs RE, Bearer EL. Longitudinal manganese‐enhanced magnetic resonance imaging of neural projections and activity. NMR in Biomedicine. [DOI: 10.1002/nbm.4675] [Reference Citation Analysis]
119 Fortress AM, Hamlett ED, Vazey EM, Aston-Jones G, Cass WA, Boger HA, Granholm AC. Designer receptors enhance memory in a mouse model of Down syndrome. J Neurosci 2015;35:1343-53. [PMID: 25632113 DOI: 10.1523/JNEUROSCI.2658-14.2015] [Cited by in Crossref: 38] [Cited by in F6Publishing: 22] [Article Influence: 5.4] [Reference Citation Analysis]
120 McCarren HS, Chalifoux MR, Han B, Moore JT, Meng QC, Baron-Hionis N, Sedigh-Sarvestani M, Contreras D, Beck SG, Kelz MB. α2-Adrenergic stimulation of the ventrolateral preoptic nucleus destabilizes the anesthetic state. J Neurosci 2014;34:16385-96. [PMID: 25471576 DOI: 10.1523/JNEUROSCI.1135-14.2014] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 3.6] [Reference Citation Analysis]
121 Weinshenker D, Holmes PV. Regulation of neurological and neuropsychiatric phenotypes by locus coeruleus-derived galanin. Brain Res 2016;1641:320-37. [PMID: 26607256 DOI: 10.1016/j.brainres.2015.11.025] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 3.9] [Reference Citation Analysis]
122 Hirschberg S, Li Y, Randall A, Kremer EJ, Pickering AE. Functional dichotomy in spinal- vs prefrontal-projecting locus coeruleus modules splits descending noradrenergic analgesia from ascending aversion and anxiety in rats. Elife 2017;6:e29808. [PMID: 29027903 DOI: 10.7554/eLife.29808] [Cited by in Crossref: 74] [Cited by in F6Publishing: 53] [Article Influence: 14.8] [Reference Citation Analysis]
123 Li J, Yu T, Shi F, Zhang Y, Duan Z, Fu B, Zhang Y. Involvement of Ventral Periaqueductal Gray Dopaminergic Neurons in Propofol Anesthesia. Neurochem Res 2018;43:838-47. [PMID: 29417470 DOI: 10.1007/s11064-018-2486-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
124 Moody OA, Zhang ER, Vincent KF, Kato R, Melonakos ED, Nehs CJ, Solt K. The Neural Circuits Underlying General Anesthesia and Sleep. Anesth Analg 2021;132:1254-64. [PMID: 33857967 DOI: 10.1213/ANE.0000000000005361] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
125 Kelz MB, Mashour GA. The Biology of General Anesthesia from Paramecium to Primate. Curr Biol 2019;29:R1199-210. [PMID: 31743680 DOI: 10.1016/j.cub.2019.09.071] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 12.0] [Reference Citation Analysis]
126 Lee C, Lavoie A, Liu J, Chen SX, Liu BH. Light Up the Brain: The Application of Optogenetics in Cell-Type Specific Dissection of Mouse Brain Circuits. Front Neural Circuits 2020;14:18. [PMID: 32390806 DOI: 10.3389/fncir.2020.00018] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
127 Hung WC, Chu YL, Tsai ML, Wong SB, Min MY, Chen RF, Yang HW. GABAB receptor-mediated tonic inhibition of locus coeruleus neurons plays a role in deep anesthesia induced by isoflurane. Neuroreport 2020;31:557-64. [PMID: 32282581 DOI: 10.1097/WNR.0000000000001450] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
128 Butkovich LM, Houser MC, Chalermpalanupap T, Porter-Stransky KA, Iannitelli AF, Boles JS, Lloyd GM, Coomes AS, Eidson LN, De Sousa Rodrigues ME, Oliver DL, Kelly SD, Chang J, Bengoa-Vergniory N, Wade-Martins R, Giasson BI, Joers V, Weinshenker D, Tansey MG. Transgenic Mice Expressing Human α-Synuclein in Noradrenergic Neurons Develop Locus Ceruleus Pathology and Nonmotor Features of Parkinson's Disease. J Neurosci 2020;40:7559-76. [PMID: 32868457 DOI: 10.1523/JNEUROSCI.1468-19.2020] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
129 Sclocco R, Beissner F, Bianciardi M, Polimeni JR, Napadow V. Challenges and opportunities for brainstem neuroimaging with ultrahigh field MRI. Neuroimage 2018;168:412-26. [PMID: 28232189 DOI: 10.1016/j.neuroimage.2017.02.052] [Cited by in Crossref: 50] [Cited by in F6Publishing: 46] [Article Influence: 10.0] [Reference Citation Analysis]
130 Park SI, Shin G, McCall JG, Al-Hasani R, Norris A, Xia L, Brenner DS, Noh KN, Bang SY, Bhatti DL, Jang KI, Kang SK, Mickle AD, Dussor G, Price TJ, Gereau RW 4th, Bruchas MR, Rogers JA. Stretchable multichannel antennas in soft wireless optoelectronic implants for optogenetics. Proc Natl Acad Sci U S A 2016;113:E8169-77. [PMID: 27911798 DOI: 10.1073/pnas.1611769113] [Cited by in Crossref: 70] [Cited by in F6Publishing: 57] [Article Influence: 11.7] [Reference Citation Analysis]
131 Sarno E, Robison AJ. Emerging role of viral vectors for circuit-specific gene interrogation and manipulation in rodent brain. Pharmacol Biochem Behav 2018;174:2-8. [PMID: 29709585 DOI: 10.1016/j.pbb.2018.04.008] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.8] [Reference Citation Analysis]
132 Cope ZA, Vazey EM, Floresco SB, Aston Jones GS. DREADD-mediated modulation of locus coeruleus inputs to mPFC improves strategy set-shifting. Neurobiology of Learning and Memory 2019;161:1-11. [DOI: 10.1016/j.nlm.2019.02.009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
133 Sleigh J, Warnaby CE. Finding the starter motor for the engine of consciousness. Br J Anaesth 2019;123:259-61. [PMID: 31256917 DOI: 10.1016/j.bja.2019.06.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
134 Vlasov K, Van Dort CJ, Solt K. Optogenetics and Chemogenetics. Methods Enzymol 2018;603:181-96. [PMID: 29673525 DOI: 10.1016/bs.mie.2018.01.022] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
135 Stevens L, Larsen LE, Van Lysebettens W, Carrette E, Boon P, Raedt R, Vonck K. Optimized Parameters for Transducing the Locus Coeruleus Using Canine Adenovirus Type 2 (CAV2) Vector in Rats for Chemogenetic Modulation Research. Front Neurosci 2021;15:663337. [PMID: 33927593 DOI: 10.3389/fnins.2021.663337] [Reference Citation Analysis]
136 Ackels T, Jordan R, Schaefer AT, Fukunaga I. Respiration-Locking of Olfactory Receptor and Projection Neurons in the Mouse Olfactory Bulb and Its Modulation by Brain State. Front Cell Neurosci 2020;14:220. [PMID: 32765224 DOI: 10.3389/fncel.2020.00220] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
137 Kane GA, Vazey EM, Wilson RC, Shenhav A, Daw ND, Aston-Jones G, Cohen JD. Increased locus coeruleus tonic activity causes disengagement from a patch-foraging task. Cogn Affect Behav Neurosci 2017;17:1073-83. [PMID: 28900892 DOI: 10.3758/s13415-017-0531-y] [Cited by in Crossref: 47] [Cited by in F6Publishing: 33] [Article Influence: 11.8] [Reference Citation Analysis]
138 Leung LS, Luo T, Ma J, Herrick I. Brain areas that influence general anesthesia. Prog Neurobiol 2014;122:24-44. [PMID: 25172271 DOI: 10.1016/j.pneurobio.2014.08.001] [Cited by in Crossref: 59] [Cited by in F6Publishing: 60] [Article Influence: 7.4] [Reference Citation Analysis]