BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Rolls A, Colas D, Adamantidis A, Carter M, Lanre-Amos T, Heller HC, de Lecea L. Optogenetic disruption of sleep continuity impairs memory consolidation. Proc Natl Acad Sci U S A 2011;108:13305-10. [PMID: 21788501 DOI: 10.1073/pnas.1015633108] [Cited by in Crossref: 124] [Cited by in F6Publishing: 116] [Article Influence: 11.3] [Reference Citation Analysis]
Number Citing Articles
1 Heise I, Fisher SP, Banks GT, Wells S, Peirson SN, Foster RG, Nolan PM. Sleep-like behavior and 24-h rhythm disruption in the Tc1 mouse model of Down syndrome. Genes Brain Behav 2015;14:209-16. [PMID: 25558895 DOI: 10.1111/gbb.12198] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
2 Meng X, Murali S, Cheng YF, Lu J, Hight AE, Kanumuri VV, Brown MC, Holt JR, Lee DJ, Edge ASB. Increasing the expression level of ChR2 enhances the optogenetic excitability of cochlear neurons. J Neurophysiol 2019;122:1962-74. [PMID: 31533018 DOI: 10.1152/jn.00828.2018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
3 Daurat A, Sarhane M, Tiberge M. Syndrome d’apnées obstructives du sommeil et cognition : une revue. Neurophysiologie Clinique/Clinical Neurophysiology 2016;46:201-15. [DOI: 10.1016/j.neucli.2016.04.002] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
4 Van Someren EJW. Brain mechanisms of insomnia: new perspectives on causes and consequences. Physiol Rev 2021;101:995-1046. [PMID: 32790576 DOI: 10.1152/physrev.00046.2019] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
5 Pickersgill JW, Turco CV, Ramdeo K, Rehsi RS, Foglia SD, Nelson AJ. The Combined Influences of Exercise, Diet and Sleep on Neuroplasticity. Front Psychol 2022;13:831819. [PMID: 35558719 DOI: 10.3389/fpsyg.2022.831819] [Reference Citation Analysis]
6 Pereira de Vasconcelos A, Cassel JC. The nonspecific thalamus: A place in a wedding bed for making memories last? Neurosci Biobehav Rev 2015;54:175-96. [PMID: 25451763 DOI: 10.1016/j.neubiorev.2014.10.021] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 4.3] [Reference Citation Analysis]
7 Yaeger JD, Krupp KT, Gale JJ, Summers CH. Counterbalanced microcircuits for Orx1 and Orx2 regulation of stress reactivity. Medicine in Drug Discovery 2020;8:100059. [DOI: 10.1016/j.medidd.2020.100059] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
8 Fan X, Zhong Y, Zhang L, Li J, Xie F, Zhang Z, Zhong J. Abdominal Obesity: An Independent Influencing Factor of Visuospatial and Executive/Language Ability and the Serum Levels of Aβ40/Aβ42/Tau Protein. Disease Markers 2022;2022:1-13. [DOI: 10.1155/2022/3622149] [Reference Citation Analysis]
9 Eban-Rothschild A, Giardino WJ, de Lecea L. To sleep or not to sleep: neuronal and ecological insights. Curr Opin Neurobiol 2017;44:132-8. [PMID: 28500869 DOI: 10.1016/j.conb.2017.04.010] [Cited by in Crossref: 42] [Cited by in F6Publishing: 28] [Article Influence: 8.4] [Reference Citation Analysis]
10 Navarro-Sanchis C, Brock O, Winsky-Sommerer R, Thuret S. Modulation of Adult Hippocampal Neurogenesis by Sleep: Impact on Mental Health. Front Neural Circuits 2017;11:74. [PMID: 29075182 DOI: 10.3389/fncir.2017.00074] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
11 Sargin D. The role of the orexin system in stress response. Neuropharmacology 2019;154:68-78. [PMID: 30266600 DOI: 10.1016/j.neuropharm.2018.09.034] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 6.5] [Reference Citation Analysis]
12 Fogel SM, Ray LB, Binnie L, Owen AM. How to become an expert: A new perspective on the role of sleep in the mastery of procedural skills. Neurobiol Learn Mem 2015;125:236-48. [PMID: 26477835 DOI: 10.1016/j.nlm.2015.10.004] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 4.0] [Reference Citation Analysis]
13 Freret T, Bouet V, Quiedeville A, Nee G, Dallemagne P, Rochais C, Boulouard M. Synergistic effect of acetylcholinesterase inhibition (donepezil) and 5-HT(4) receptor activation (RS67333) on object recognition in mice. Behav Brain Res 2012;230:304-8. [PMID: 22348892 DOI: 10.1016/j.bbr.2012.02.012] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 2.8] [Reference Citation Analysis]
14 Havekes R, Meerlo P, Abel T. Animal Studies on the Role of Sleep in Memory: From Behavioral Performance to Molecular Mechanisms. In: Meerlo P, Benca RM, Abel T, editors. Sleep, Neuronal Plasticity and Brain Function. Berlin: Springer Berlin Heidelberg; 2015. pp. 183-206. [DOI: 10.1007/7854_2015_369] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 6.0] [Reference Citation Analysis]
15 Cerasuolo M, Conte F, Giganti F, Ficca G. Sleep changes following intensive cognitive activity. Sleep Med 2020;66:148-58. [PMID: 31877506 DOI: 10.1016/j.sleep.2019.08.016] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
16 Miyamoto D. Optical imaging and manipulation of sleeping-brain dynamics in memory processing. Neuroscience Research 2022. [DOI: 10.1016/j.neures.2022.04.005] [Reference Citation Analysis]
17 Calder A, White KG. In search of consolidation of short-term memory in nonhuman animals. Learn Behav 2014;42:83-92. [DOI: 10.3758/s13420-013-0127-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
18 Yeo V, Phillips NL, Bogdanov S, Brookes N, Epps A, Teng A, Naismith SL, Lah S. The persistence of sleep disturbance and its correlates in children with moderate to severe traumatic brain injury: A longitudinal study. Sleep Med 2021;81:387-93. [PMID: 33819841 DOI: 10.1016/j.sleep.2021.03.013] [Reference Citation Analysis]
19 Payette WI, Hodinka BL, Pullum KB, Richter MM, Ashley NT. An anti-narcolepsy drug reveals behavioral and fitness costs of extreme activity cycles in arctic-breeding songbirds. J Exp Biol 2021;224:jeb237198. [PMID: 34424984 DOI: 10.1242/jeb.237198] [Reference Citation Analysis]
20 Hita-Yañez E, Atienza M, Cantero JL. Polysomnographic and subjective sleep markers of mild cognitive impairment. Sleep 2013;36:1327-34. [PMID: 23997365 DOI: 10.5665/sleep.2956] [Cited by in Crossref: 74] [Cited by in F6Publishing: 72] [Article Influence: 8.2] [Reference Citation Analysis]
21 Oonk M, Krueger JM, Davis CJ. Voluntary Sleep Loss in Rats. Sleep 2016;39:1467-79. [PMID: 27166236 DOI: 10.5665/sleep.5984] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
22 Faville R, Kottler B, Goodhill GJ, Shaw PJ, van Swinderen B. How deeply does your mutant sleep? Probing arousal to better understand sleep defects in Drosophila. Sci Rep 2015;5:8454. [PMID: 25677943 DOI: 10.1038/srep08454] [Cited by in Crossref: 86] [Cited by in F6Publishing: 69] [Article Influence: 12.3] [Reference Citation Analysis]
23 Frazer MA, Cabrera Y, Guthrie RS, Poe GR. Shining a Light on the Mechanisms of Sleep for Memory Consolidation. Curr Sleep Medicine Rep 2021;7:221-31. [DOI: 10.1007/s40675-021-00204-3] [Reference Citation Analysis]
24 Eban-Rothschild A, de Lecea L. Neuronal substrates for initiation, maintenance, and structural organization of sleep/wake states. F1000Res 2017;6:212. [PMID: 28357049 DOI: 10.12688/f1000research.9677.1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
25 Hodinka BL, Ashley NT. Effect of sleep loss on executive function and plasma corticosterone levels in an arctic-breeding songbird, the Lapland longspur (Calcarius lapponicus). Horm Behav 2020;122:104764. [PMID: 32380084 DOI: 10.1016/j.yhbeh.2020.104764] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
26 Arzilli C, Cerasuolo M, Conte F, Bittoni V, Gatteschi C, Albinni B, Giganti F, Ficca G. The Effect of Cognitive Activity on Sleep Maintenance in a Subsequent Daytime Nap. Behavioral Sleep Medicine 2018;17:552-60. [DOI: 10.1080/15402002.2018.1425870] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
27 Lam JC, Koriakin TA, Scharf SM, Mason TBA, Mahone EM. Does Increased Consolidated Nighttime Sleep Facilitate Attentional Control? A Pilot Study of Nap Restriction in Preschoolers. J Atten Disord 2019;23:333-40. [PMID: 25646024 DOI: 10.1177/1087054715569281] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
28 Bian WJ, Brewer CL, Kauer JA, de Lecea L. Adolescent sleep shapes social novelty preference in mice. Nat Neurosci 2022. [PMID: 35618950 DOI: 10.1038/s41593-022-01076-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Kozin ED, Darrow KN, Hight AE, Lehmann AE, Kaplan AB, Brown MC, Lee DJ. Direct visualization of the murine dorsal cochlear nucleus for optogenetic stimulation of the auditory pathway. J Vis Exp 2015;:52426. [PMID: 25650555 DOI: 10.3791/52426] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.1] [Reference Citation Analysis]
30 Pistono C, Zimmermann A, Morel C, Herbeaux K, Héraud C, Dumont-Kientzy S, Pevet P, Felder-Schmittbuhl MP, Mathis C. Major role of MT2 receptors in the beneficial effect of melatonin on long-term recognition memory in C57BL/6J male mice. Horm Behav 2021;136:105076. [PMID: 34634697 DOI: 10.1016/j.yhbeh.2021.105076] [Reference Citation Analysis]
31 Couvineau A, Voisin T, Nicole P, Gratio V, Abad C, Tan YV. Orexins as Novel Therapeutic Targets in Inflammatory and Neurodegenerative Diseases. Front Endocrinol (Lausanne) 2019;10:709. [PMID: 31695678 DOI: 10.3389/fendo.2019.00709] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
32 Djonlagic I, Saboisky J, Carusona A, Stickgold R, Malhotra A. Increased sleep fragmentation leads to impaired off-line consolidation of motor memories in humans. PLoS One 2012;7:e34106. [PMID: 22470524 DOI: 10.1371/journal.pone.0034106] [Cited by in Crossref: 66] [Cited by in F6Publishing: 65] [Article Influence: 6.6] [Reference Citation Analysis]
33 Conte F, Ficca G. Caveats on psychological models of sleep and memory: A compass in an overgrown scenario. Sleep Medicine Reviews 2013;17:105-21. [DOI: 10.1016/j.smrv.2012.04.001] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 3.4] [Reference Citation Analysis]
34 Havekes R, Vecsey CG, Abel T. The impact of sleep deprivation on neuronal and glial signaling pathways important for memory and synaptic plasticity. Cell Signal 2012;24:1251-60. [PMID: 22570866 DOI: 10.1016/j.cellsig.2012.02.010] [Cited by in Crossref: 103] [Cited by in F6Publishing: 94] [Article Influence: 10.3] [Reference Citation Analysis]
35 Viviani D, Haegler P, Jenck F, Steiner MA. Orexin neuropeptides contribute to the development and persistence of generalized avoidance behavior in the rat. Psychopharmacology (Berl) 2015;232:1383-93. [PMID: 25319964 DOI: 10.1007/s00213-014-3769-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.5] [Reference Citation Analysis]
36 Hong J, Ha GE, Kwak H, Lee Y, Jeong H, Suh PG, Cheong E. Destabilization of light NREM sleep by thalamic PLCβ4 deletion impairs sleep-dependent memory consolidation. Sci Rep 2020;10:8813. [PMID: 32483199 DOI: 10.1038/s41598-020-64377-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
37 Colavito V, Fabene PF, Grassi-Zucconi G, Pifferi F, Lamberty Y, Bentivoglio M, Bertini G. Experimental sleep deprivation as a tool to test memory deficits in rodents. Front Syst Neurosci 2013;7:106. [PMID: 24379759 DOI: 10.3389/fnsys.2013.00106] [Cited by in Crossref: 53] [Cited by in F6Publishing: 43] [Article Influence: 5.9] [Reference Citation Analysis]
38 Adamantidis A, Lüthi A. Optogenetic Dissection of Sleep-Wake States In Vitro and In Vivo. Handb Exp Pharmacol 2019;253:125-51. [PMID: 29687163 DOI: 10.1007/164_2018_94] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
39 Zhang K, Lian N, Ding R, Guo C, Dong X, Li Y, Wei S, Jiao Q, Yu Y, Shen H. Sleep Deprivation Aggravates Cognitive Impairment by the Alteration of Hippocampal Neuronal Activity and the Density of Dendritic Spine in Isoflurane-Exposed Mice. Front Behav Neurosci 2020;14:589176. [PMID: 33328920 DOI: 10.3389/fnbeh.2020.589176] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
40 Chen B, Wang Y, Liu X, Liu Z, Dong Y, Huang YH. Sleep Regulates Incubation of Cocaine Craving. J Neurosci 2015;35:13300-10. [PMID: 26424879 DOI: 10.1523/JNEUROSCI.1065-15.2015] [Cited by in Crossref: 30] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
41 Chen Q, Zeng Z, Hu Z. Optogenetics in neuroscience: what we gain from studies in mammals. Neurosci Bull 2012;28:423-34. [PMID: 22833040 DOI: 10.1007/s12264-012-1250-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
42 Darrow KN, Slama MC, Kozin ED, Owoc M, Hancock K, Kempfle J, Edge A, Lacour S, Boyden E, Polley D, Brown MC, Lee DJ. Optogenetic stimulation of the cochlear nucleus using channelrhodopsin-2 evokes activity in the central auditory pathways. Brain Res 2015;1599:44-56. [PMID: 25481416 DOI: 10.1016/j.brainres.2014.11.044] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
43 Tabuchi M, Coates KE, Bautista OB, Zukowski LH. Light/Clock Influences Membrane Potential Dynamics to Regulate Sleep States. Front Neurol 2021;12:625369. [PMID: 33854471 DOI: 10.3389/fneur.2021.625369] [Reference Citation Analysis]
44 Heller HC, Ruby NF, Rolls A, Makam M, Colas D. Adaptive and pathological inhibition of neuroplasticity associated with circadian rhythms and sleep. Behav Neurosci 2014;128:273-82. [PMID: 24886189 DOI: 10.1037/a0036689] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
45 Abel T, Havekes R, Saletin JM, Walker MP. Sleep, plasticity and memory from molecules to whole-brain networks. Curr Biol. 2013;23:R774-R788. [PMID: 24028961 DOI: 10.1016/j.cub.2013.07.025] [Cited by in Crossref: 243] [Cited by in F6Publishing: 221] [Article Influence: 30.4] [Reference Citation Analysis]
46 Adamantidis AR. Sleep: the sound of a local alarm clock. Curr Biol 2015;25:R49-51. [PMID: 25562304 DOI: 10.1016/j.cub.2014.11.022] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
47 Goldstein N, Levine BJ, Loy KA, Duke WL, Meyerson OS, Jamnik AA, Carter ME. Hypothalamic Neurons that Regulate Feeding Can Influence Sleep/Wake States Based on Homeostatic Need. Curr Biol 2018;28:3736-3747.e3. [PMID: 30471995 DOI: 10.1016/j.cub.2018.09.055] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 5.8] [Reference Citation Analysis]
48 Al-Sharman A, Siengsukon CF. Sleep enhances learning of a functional motor task in young adults. Phys Ther 2013;93:1625-35. [PMID: 23907080 DOI: 10.2522/ptj.20120502] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 2.8] [Reference Citation Analysis]
49 Nollet M, Leman S. Role of Orexin in the Pathophysiology of Depression: Potential for Pharmacological Intervention. CNS Drugs 2013;27:411-22. [DOI: 10.1007/s40263-013-0064-z] [Cited by in Crossref: 53] [Cited by in F6Publishing: 46] [Article Influence: 5.9] [Reference Citation Analysis]
50 Hunter AS. REM deprivation but not sleep fragmentation produces a sex-specific impairment in extinction. Physiol Behav 2018;196:84-94. [PMID: 30144468 DOI: 10.1016/j.physbeh.2018.08.008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
51 Berndt C, Diekelmann S, Alexander N, Pustal A, Kirschbaum C. Sleep fragmentation and false memories during pregnancy and motherhood. Behav Brain Res 2014;266:52-7. [PMID: 24589545 DOI: 10.1016/j.bbr.2014.02.030] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
52 Kim B, Hwang E, Strecker RE, Choi JH, Kim Y. Differential modulation of NREM sleep regulation and EEG topography by chronic sleep restriction in mice. Sci Rep 2020;10:18. [PMID: 31924847 DOI: 10.1038/s41598-019-54790-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
53 Lesku JA, Rattenborg NC, Valcu M, Vyssotski AL, Kuhn S, Kuemmeth F, Heidrich W, Kempenaers B. Adaptive sleep loss in polygynous pectoral sandpipers. Science 2012;337:1654-8. [PMID: 22878501 DOI: 10.1126/science.1220939] [Cited by in Crossref: 139] [Cited by in F6Publishing: 111] [Article Influence: 13.9] [Reference Citation Analysis]
54 Pittaras E, Colas D, Chuluun B, Allocca G, Heller C. Enhancing sleep after training improves memory in Down syndrome model mice. Sleep 2021:zsab247. [PMID: 34618890 DOI: 10.1093/sleep/zsab247] [Reference Citation Analysis]
55 Bertrand SJ, Zhang Z, Patel R, O'Ferrell C, Punjabi NM, Kudchadkar SR, Kannan S. Transient neonatal sleep fragmentation results in long-term neuroinflammation and cognitive impairment in a rabbit model. Exp Neurol 2020;327:113212. [PMID: 31987835 DOI: 10.1016/j.expneurol.2020.113212] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
56 Gosselin N, De Beaumont L, Gagnon K, Baril AA, Mongrain V, Blais H, Montplaisir J, Gagnon JF, Pelleieux S, Poirier J, Carrier J. BDNF Val66Met Polymorphism Interacts with Sleep Consolidation to Predict Ability to Create New Declarative Memories. J Neurosci 2016;36:8390-8. [PMID: 27511011 DOI: 10.1523/JNEUROSCI.4432-15.2016] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 3.4] [Reference Citation Analysis]
57 Varin C, Bonnavion P. Pharmacosynthetic Deconstruction of Sleep-Wake Circuits in the Brain. Handb Exp Pharmacol 2019;253:153-206. [PMID: 30689084 DOI: 10.1007/164_2018_183] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
58 Lyst SJ, Davis K, Gigg J, Hager R. Effects of increased spatial complexity on behavioural development and task performance in Lister Hooded rats. PLoS One 2012;7:e47640. [PMID: 23091636 DOI: 10.1371/journal.pone.0047640] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
59 Scudeller L, Del Fante C, Perotti C, Pavesi CF, Coscia D, Scotti V, Tinelli C. N of 1, two contemporary arm, randomised controlled clinical trial for bilateral epicondylitis: a new study design. BMJ 2011;343:d7653. [PMID: 22187187 DOI: 10.1136/bmj.d7653] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
60 Scullin MK, Bliwise DL. Sleep, cognition, and normal aging: integrating a half century of multidisciplinary research. Perspect Psychol Sci 2015;10:97-137. [PMID: 25620997 DOI: 10.1177/1745691614556680] [Cited by in Crossref: 220] [Cited by in F6Publishing: 183] [Article Influence: 31.4] [Reference Citation Analysis]
61 Barnes AK, Smith SB, Datta S. Beyond Emotional and Spatial Processes: Cognitive Dysfunction in a Depressive Phenotype Produced by Long Photoperiod Exposure. PLoS One 2017;12:e0170032. [PMID: 28060930 DOI: 10.1371/journal.pone.0170032] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.4] [Reference Citation Analysis]
62 Bassetti CL, Ferini-strambi L, Brown S, Adamantidis A, Benedetti F, Bruni O, Cajochen C, Dolenc-groselj L, Ferri R, Gais S, Huber R, Khatami R, Lammers GJ, Luppi PH, Manconi M, Nissen C, Nobili L, Peigneux P, Pollmächer T, Randerath W, Riemann D, Santamaria J, Schindler K, Tafti M, Van Someren E, Wetter TC. Neurology and psychiatry: waking up to opportunities of sleep. : State of the art and clinical/research priorities for the next decade. Eur J Neurol 2015;22:1337-54. [DOI: 10.1111/ene.12781] [Cited by in Crossref: 33] [Cited by in F6Publishing: 19] [Article Influence: 4.7] [Reference Citation Analysis]
63 Yüzgeç Ö, Prsa M, Zimmermann R, Huber D. Pupil Size Coupling to Cortical States Protects the Stability of Deep Sleep via Parasympathetic Modulation. Curr Biol 2018;28:392-400.e3. [PMID: 29358069 DOI: 10.1016/j.cub.2017.12.049] [Cited by in Crossref: 47] [Cited by in F6Publishing: 37] [Article Influence: 11.8] [Reference Citation Analysis]
64 Bonnavion P, Jackson AC, Carter ME, de Lecea L. Antagonistic interplay between hypocretin and leptin in the lateral hypothalamus regulates stress responses. Nat Commun 2015;6:6266. [PMID: 25695914 DOI: 10.1038/ncomms7266] [Cited by in Crossref: 91] [Cited by in F6Publishing: 86] [Article Influence: 13.0] [Reference Citation Analysis]
65 Schmidt FM, Kratzsch J, Gertz HJ, Tittmann M, Jahn I, Pietsch UC, Kaisers UX, Thiery J, Hegerl U, Schönknecht P. Cerebrospinal fluid melanin-concentrating hormone (MCH) and hypocretin-1 (HCRT-1, orexin-A) in Alzheimer's disease. PLoS One 2013;8:e63136. [PMID: 23667582 DOI: 10.1371/journal.pone.0063136] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 4.3] [Reference Citation Analysis]
66 Bonnavion P, Mickelsen LE, Fujita A, de Lecea L, Jackson AC. Hubs and spokes of the lateral hypothalamus: cell types, circuits and behaviour. J Physiol 2016;594:6443-62. [PMID: 27302606 DOI: 10.1113/JP271946] [Cited by in Crossref: 95] [Cited by in F6Publishing: 53] [Article Influence: 15.8] [Reference Citation Analysis]
67 Weber FD. Sleep: Eye-Opener Highlights Sleep's Organization. Curr Biol 2018;28:R217-20. [PMID: 29510110 DOI: 10.1016/j.cub.2018.01.054] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
68 Van Someren EJW, Oosterman JM, Van Harten B, Vogels RL, Gouw AA, Weinstein HC, Poggesi A, Scheltens P, Scherder EJA. Medial temporal lobe atrophy relates more strongly to sleep-wake rhythm fragmentation than to age or any other known risk. Neurobiol Learn Mem 2019;160:132-8. [PMID: 29864525 DOI: 10.1016/j.nlm.2018.05.017] [Cited by in Crossref: 24] [Cited by in F6Publishing: 23] [Article Influence: 6.0] [Reference Citation Analysis]
69 Vyazovskiy VV, Cui N, Rodriguez AV, Funk C, Cirelli C, Tononi G. The dynamics of cortical neuronal activity in the first minutes after spontaneous awakening in rats and mice. Sleep 2014;37:1337-47. [PMID: 25083014 DOI: 10.5665/sleep.3926] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 3.5] [Reference Citation Analysis]
70 Aquili L. The causal role between phasic midbrain dopamine signals and learning. Front Behav Neurosci 2014;8:139. [PMID: 24795588 DOI: 10.3389/fnbeh.2014.00139] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
71 Castro DC, Terry RA, Berridge KC. Orexin in Rostral Hotspot of Nucleus Accumbens Enhances Sucrose 'Liking' and Intake but Scopolamine in Caudal Shell Shifts 'Liking' Toward 'Disgust' and 'Fear'. Neuropsychopharmacology 2016;41:2101-11. [PMID: 26787120 DOI: 10.1038/npp.2016.10] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 7.0] [Reference Citation Analysis]
72 de Lecea L. Optogenetic control of hypocretin (orexin) neurons and arousal circuits. Curr Top Behav Neurosci 2015;25:367-78. [PMID: 25502546 DOI: 10.1007/7854_2014_364] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 4.3] [Reference Citation Analysis]
73 Beck B, Pourié G. Ghrelin, neuropeptide Y, and other feeding-regulatory peptides active in the hippocampus: role in learning and memory. Nutr Rev 2013;71:541-61. [PMID: 23865799 DOI: 10.1111/nure.12045] [Cited by in Crossref: 45] [Cited by in F6Publishing: 40] [Article Influence: 5.0] [Reference Citation Analysis]
74 Tam SKE, Brown LA, Wilson TS, Tir S, Fisk AS, Pothecary CA, van der Vinne V, Foster RG, Vyazovskiy VV, Bannerman DM, Harrington ME, Peirson SN. Dim light in the evening causes coordinated realignment of circadian rhythms, sleep, and short-term memory. Proc Natl Acad Sci U S A 2021;118:e2101591118. [PMID: 34556572 DOI: 10.1073/pnas.2101591118] [Reference Citation Analysis]
75 Lim AS, Kowgier M, Yu L, Buchman AS, Bennett DA. Sleep Fragmentation and the Risk of Incident Alzheimer's Disease and Cognitive Decline in Older Persons. Sleep 2013;36:1027-32. [PMID: 23814339 DOI: 10.5665/sleep.2802] [Cited by in Crossref: 334] [Cited by in F6Publishing: 304] [Article Influence: 37.1] [Reference Citation Analysis]
76 Towne C, Thompson KR. Overview on Research and Clinical Applications of Optogenetics. Current Protocols in Pharmacology 2016;75. [DOI: 10.1002/cpph.13] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
77 Zha X, Xu X. Dissecting the hypothalamic pathways that underlie innate behaviors. Neurosci Bull 2015;31:629-48. [PMID: 26552801 DOI: 10.1007/s12264-015-1564-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
78 Blackwell T, Yaffe K, Laffan A, Ancoli-Israel S, Redline S, Ensrud KE, Song Y, Stone KL; Osteoporotic Fractures in Men (MrOS) Study Group. Associations of objectively and subjectively measured sleep quality with subsequent cognitive decline in older community-dwelling men: the MrOS sleep study. Sleep 2014;37:655-63. [PMID: 24899757 DOI: 10.5665/sleep.3562] [Cited by in Crossref: 93] [Cited by in F6Publishing: 92] [Article Influence: 11.6] [Reference Citation Analysis]
79 Conte F, Carobbi G, Errico BM, Ficca G. The effects of pre-sleep learning on sleep continuity, stability, and organization in elderly individuals. Front Neurol 2012;3:109. [PMID: 22798956 DOI: 10.3389/fneur.2012.00109] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 0.7] [Reference Citation Analysis]
80 Stroh A, Adelsberger H, Groh A, Rühlmann C, Fischer S, Schierloh A, Deisseroth K, Konnerth A. Making waves: initiation and propagation of corticothalamic Ca2+ waves in vivo. Neuron 2013;77:1136-50. [PMID: 23522048 DOI: 10.1016/j.neuron.2013.01.031] [Cited by in Crossref: 144] [Cited by in F6Publishing: 123] [Article Influence: 16.0] [Reference Citation Analysis]
81 Rolls A. Hypothalamic Control of Sleep in Aging. Neuromol Med 2012;14:139-53. [DOI: 10.1007/s12017-012-8175-0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
82 Song J, Kim E, Kim CH, Song HT, Lee JE. The role of orexin in post-stroke inflammation, cognitive decline, and depression. Mol Brain 2015;8:16. [PMID: 25884812 DOI: 10.1186/s13041-015-0106-1] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 2.6] [Reference Citation Analysis]
83 Stettner GM, Lei Y, Benincasa Herr K, Kubin L. Evidence that adrenergic ventrolateral medullary cells are activated whereas precerebellar lateral reticular nucleus neurons are suppressed during REM sleep. PLoS One 2013;8:e62410. [PMID: 23630631 DOI: 10.1371/journal.pone.0062410] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.2] [Reference Citation Analysis]
84 Stucynski JA, Schott AL, Baik J, Chung S, Weber F. Regulation of REM sleep by inhibitory neurons in the dorsomedial medulla. Curr Biol 2021:S0960-9822(21)01419-6. [PMID: 34735794 DOI: 10.1016/j.cub.2021.10.030] [Reference Citation Analysis]
85 Binder S, Baier PC, Mölle M, Inostroza M, Born J, Marshall L. Sleep enhances memory consolidation in the hippocampus-dependent object-place recognition task in rats. Neurobiology of Learning and Memory 2012;97:213-9. [DOI: 10.1016/j.nlm.2011.12.004] [Cited by in Crossref: 49] [Cited by in F6Publishing: 48] [Article Influence: 4.9] [Reference Citation Analysis]
86 Park DS, Yoon DW, Yoo WB, Lee SK, Yun C, Kim SJ, Kim JK, Shin C. Sleep fragmentation induces reduction of synapsin II in rat hippocampus: Sleep fragmentation reduces synapsin II. Sleep and Biological Rhythms 2014;12:135-44. [DOI: 10.1111/sbr.12052] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
87 Irmak SO, de Lecea L. Basal forebrain cholinergic modulation of sleep transitions. Sleep 2014;37:1941-51. [PMID: 25325504 DOI: 10.5665/sleep.4246] [Cited by in Crossref: 76] [Cited by in F6Publishing: 69] [Article Influence: 9.5] [Reference Citation Analysis]
88 Li SB, Giardino WJ, de Lecea L. Hypocretins and Arousal. Curr Top Behav Neurosci 2017;33:93-104. [PMID: 28012091 DOI: 10.1007/7854_2016_58] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 3.4] [Reference Citation Analysis]
89 Liu C, Meng Z, Wiggin TD, Yu J, Reed ML, Guo F, Zhang Y, Rosbash M, Griffith LC. A Serotonin-Modulated Circuit Controls Sleep Architecture to Regulate Cognitive Function Independent of Total Sleep in Drosophila. Curr Biol 2019;29:3635-3646.e5. [PMID: 31668619 DOI: 10.1016/j.cub.2019.08.079] [Cited by in Crossref: 30] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
90 Brown JA, Woodworth HL, Leinninger GM. To ingest or rest? Specialized roles of lateral hypothalamic area neurons in coordinating energy balance. Front Syst Neurosci 2015;9:9. [PMID: 25741247 DOI: 10.3389/fnsys.2015.00009] [Cited by in Crossref: 47] [Cited by in F6Publishing: 51] [Article Influence: 6.7] [Reference Citation Analysis]
91 Li Y, Panossian LA, Zhang J, Zhu Y, Zhan G, Chou YT, Fenik P, Bhatnagar S, Piel DA, Beck SG, Veasey S. Effects of chronic sleep fragmentation on wake-active neurons and the hypercapnic arousal response. Sleep 2014;37:51-64. [PMID: 24470695 DOI: 10.5665/sleep.3306] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 4.1] [Reference Citation Analysis]
92 Honda T, Takata Y, Cherasse Y, Mizuno S, Sugiyama F, Takahashi S, Funato H, Yanagisawa M, Lazarus M, Oishi Y. Ablation of Ventral Midbrain/Pons GABA Neurons Induces Mania-like Behaviors with Altered Sleep Homeostasis and Dopamine D2R-mediated Sleep Reduction. iScience 2020;23:101240. [PMID: 32563157 DOI: 10.1016/j.isci.2020.101240] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
93 Huang F, Tang B, Jiang H. Optogenetic Investigation of Neuropsychiatric Diseases. International Journal of Neuroscience 2012;123:7-16. [DOI: 10.3109/00207454.2012.728651] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
94 Li SB, Nevárez N, Giardino WJ, de Lecea L. Optical probing of orexin/hypocretin receptor antagonists. Sleep 2018;41. [PMID: 30060151 DOI: 10.1093/sleep/zsy141] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
95 Vacas S, Degos V, Maze M. Fragmented Sleep Enhances Postoperative Neuroinflammation but Not Cognitive Dysfunction: . Anesthesia & Analgesia 2017;124:270-6. [DOI: 10.1213/ane.0000000000001675] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
96 Zhang Q, Yao J, Guang Y, Liang S, Guan J, Qin H, Liao X, Jin W, Zhang J, Pan J, Jia H, Yan J, Feng Z, Li W, Chen X. Locomotion-Related Population Cortical Ca2+ Transients in Freely Behaving Mice. Front Neural Circuits 2017;11:24. [PMID: 28439229 DOI: 10.3389/fncir.2017.00024] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
97 Chopra S, Polotsky VY, Jun JC. Sleep Apnea Research in Animals. Past, Present, and Future. Am J Respir Cell Mol Biol 2016;54:299-305. [PMID: 26448201 DOI: 10.1165/rcmb.2015-0218TR] [Cited by in Crossref: 31] [Cited by in F6Publishing: 19] [Article Influence: 5.2] [Reference Citation Analysis]
98 de Lecea L, Carter ME, Adamantidis A. Shining light on wakefulness and arousal. Biol Psychiatry 2012;71:1046-52. [PMID: 22440618 DOI: 10.1016/j.biopsych.2012.01.032] [Cited by in Crossref: 54] [Cited by in F6Publishing: 46] [Article Influence: 5.4] [Reference Citation Analysis]
99 Brynychová K, Šálek ME, Vozabulová E, Sládeček M. Daily Rhythms of Female Self-maintenance Correlate with Predation Risk and Male Nest Attendance in a Biparental Wader. J Biol Rhythms 2020;35:489-500. [PMID: 32677476 DOI: 10.1177/0748730420940465] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
100 Touriño C, Eban-Rothschild A, de Lecea L. Optogenetics in psychiatric diseases. Curr Opin Neurobiol 2013;23:430-5. [PMID: 23642859 DOI: 10.1016/j.conb.2013.03.007] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 2.1] [Reference Citation Analysis]
101 Miyamoto D, Murayama M. The fiber-optic imaging and manipulation of neural activity during animal behavior. Neurosci Res 2016;103:1-9. [PMID: 26427958 DOI: 10.1016/j.neures.2015.09.004] [Cited by in Crossref: 38] [Cited by in F6Publishing: 22] [Article Influence: 5.4] [Reference Citation Analysis]
102 Eban-Rothschild A, Appelbaum L, de Lecea L. Neuronal Mechanisms for Sleep/Wake Regulation and Modulatory Drive. Neuropsychopharmacology 2018;43:937-52. [PMID: 29206811 DOI: 10.1038/npp.2017.294] [Cited by in Crossref: 68] [Cited by in F6Publishing: 51] [Article Influence: 13.6] [Reference Citation Analysis]
103 Rattenborg NC. Sleeping on the wing. Interface Focus 2017;7:20160082. [PMID: 28163874 DOI: 10.1098/rsfs.2016.0082] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
104 Mensen A, Pigorini A, Facchin L, Schöne C, D'Ambrosio S, Jendoubi J, Jaramillo V, Chiffi K, Eberhard-Moscicka AK, Sarasso S, Adamantidis A, Müri RM, Huber R, Massimini M, Bassetti C. Sleep as a model to understand neuroplasticity and recovery after stroke: Observational, perturbational and interventional approaches. J Neurosci Methods 2019;313:37-43. [PMID: 30571989 DOI: 10.1016/j.jneumeth.2018.12.011] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
105 Miyamoto D, Hirai D, Fung CCA, Inutsuka A, Odagawa M, Suzuki T, Boehringer R, Adaikkan C, Matsubara C, Matsuki N, Fukai T, Mchugh TJ, Yamanaka A, Murayama M. Top-down cortical input during NREM sleep consolidates perceptual memory. Science 2016;352:1315-8. [DOI: 10.1126/science.aaf0902] [Cited by in Crossref: 74] [Cited by in F6Publishing: 56] [Article Influence: 12.3] [Reference Citation Analysis]
106 Prince TM, Wimmer M, Choi J, Havekes R, Aton S, Abel T. Sleep deprivation during a specific 3-hour time window post-training impairs hippocampal synaptic plasticity and memory. Neurobiol Learn Mem 2014;109:122-30. [PMID: 24380868 DOI: 10.1016/j.nlm.2013.11.021] [Cited by in Crossref: 65] [Cited by in F6Publishing: 61] [Article Influence: 7.2] [Reference Citation Analysis]
107 Boyce R, Williams S, Adamantidis A. REM sleep and memory. Current Opinion in Neurobiology 2017;44:167-77. [DOI: 10.1016/j.conb.2017.05.001] [Cited by in Crossref: 49] [Cited by in F6Publishing: 40] [Article Influence: 9.8] [Reference Citation Analysis]
108 Oyanedel CN, Binder S, Kelemen E, Petersen K, Born J, Inostroza M. Role of slow oscillatory activity and slow wave sleep in consolidation of episodic-like memory in rats. Behavioural Brain Research 2014;275:126-30. [DOI: 10.1016/j.bbr.2014.09.008] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
109 Phan TX, Malkani RG. Sleep and circadian rhythm disruption and stress intersect in Alzheimer's disease. Neurobiol Stress 2019;10:100133. [PMID: 30937343 DOI: 10.1016/j.ynstr.2018.10.001] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
110 Xie YF, Jackson MF, Macdonald JF. Optogenetics and synaptic plasticity. Acta Pharmacol Sin 2013;34:1381-5. [PMID: 24162508 DOI: 10.1038/aps.2013.150] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
111 Fisk AS, Tam SKE, Brown LA, Vyazovskiy VV, Bannerman DM, Peirson SN. Light and Cognition: Roles for Circadian Rhythms, Sleep, and Arousal. Front Neurol 2018;9:56. [PMID: 29479335 DOI: 10.3389/fneur.2018.00056] [Cited by in Crossref: 61] [Cited by in F6Publishing: 40] [Article Influence: 15.3] [Reference Citation Analysis]
112 Havekes R, Aton SJ. Impacts of Sleep Loss versus Waking Experience on Brain Plasticity: Parallel or Orthogonal? Trends Neurosci 2020;43:385-93. [PMID: 32459991 DOI: 10.1016/j.tins.2020.03.010] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
113 Riday TT, Fish EW, Robinson JE, Jarrett TM, McGuigan MM, Malanga CJ. Orexin-1 receptor antagonism does not reduce the rewarding potency of cocaine in Swiss-Webster mice. Brain Res 2012;1431:53-61. [PMID: 22133306 DOI: 10.1016/j.brainres.2011.11.003] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 1.1] [Reference Citation Analysis]
114 Duffy CM, Hofmeister JJ, Nixon JP, Butterick TA. High fat diet increases cognitive decline and neuroinflammation in a model of orexin loss. Neurobiol Learn Mem 2019;157:41-7. [PMID: 30471346 DOI: 10.1016/j.nlm.2018.11.008] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 9.8] [Reference Citation Analysis]
115 Campos-beltrán D, Marshall L. Electric Stimulation to Improve Memory Consolidation During Sleep. In: Axmacher N, Rasch B, editors. Cognitive Neuroscience of Memory Consolidation. Cham: Springer International Publishing; 2017. pp. 301-12. [DOI: 10.1007/978-3-319-45066-7_18] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
116 Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW. Control of sleep and wakefulness. Physiol Rev 2012;92:1087-187. [PMID: 22811426 DOI: 10.1152/physrev.00032.2011] [Cited by in Crossref: 700] [Cited by in F6Publishing: 590] [Article Influence: 70.0] [Reference Citation Analysis]
117 Rasch B, Born J. About sleep's role in memory. Physiol Rev 2013;93:681-766. [PMID: 23589831 DOI: 10.1152/physrev.00032.2012] [Cited by in Crossref: 1170] [Cited by in F6Publishing: 990] [Article Influence: 130.0] [Reference Citation Analysis]
118 Sethi M, Joshi SS, Webb RL, Beckett TL, Donohue KD, Murphy MP, O'Hara BF, Duncan MJ. Increased fragmentation of sleep-wake cycles in the 5XFAD mouse model of Alzheimer's disease. Neuroscience 2015;290:80-9. [PMID: 25637807 DOI: 10.1016/j.neuroscience.2015.01.035] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 5.0] [Reference Citation Analysis]
119 Hight AE, Kozin ED, Darrow K, Lehmann A, Boyden E, Brown MC, Lee DJ. Superior temporal resolution of Chronos versus channelrhodopsin-2 in an optogenetic model of the auditory brainstem implant. Hear Res 2015;322:235-41. [PMID: 25598479 DOI: 10.1016/j.heares.2015.01.004] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 4.4] [Reference Citation Analysis]
120 Stanojlovic M, Pallais Yllescas JP Jr, Mavanji V, Kotz C. Chemogenetic activation of orexin/hypocretin neurons ameliorates aging-induced changes in behavior and energy expenditure. Am J Physiol Regul Integr Comp Physiol 2019;316:R571-83. [PMID: 30726119 DOI: 10.1152/ajpregu.00383.2018] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
121 Tam SK, Hasan S, Choi HM, Brown LA, Jagannath A, Hughes S, Hankins MW, Foster RG, Vyazovskiy VV, Bannerman DM, Peirson SN. Constant Light Desynchronizes Olfactory versus Object and Visuospatial Recognition Memory Performance. J Neurosci 2017;37:3555-67. [PMID: 28264977 DOI: 10.1523/JNEUROSCI.3213-16.2017] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
122 Cooke SF, Bear MF. Stimulus-selective response plasticity in the visual cortex: an assay for the assessment of pathophysiology and treatment of cognitive impairment associated with psychiatric disorders. Biol Psychiatry 2012;71:487-95. [PMID: 22019003 DOI: 10.1016/j.biopsych.2011.09.006] [Cited by in Crossref: 52] [Cited by in F6Publishing: 45] [Article Influence: 4.7] [Reference Citation Analysis]
123 Lecci S, Fernandez LM, Weber FD, Cardis R, Chatton JY, Born J, Lüthi A. Coordinated infraslow neural and cardiac oscillations mark fragility and offline periods in mammalian sleep. Sci Adv 2017;3:e1602026. [PMID: 28246641 DOI: 10.1126/sciadv.1602026] [Cited by in Crossref: 59] [Cited by in F6Publishing: 51] [Article Influence: 11.8] [Reference Citation Analysis]
124 Chen L, Tian S, Ke J. Rapid eye movement sleep deprivation disrupts consolidation but not reconsolidation of novel object recognition memory in rats. Neuroscience Letters 2014;563:12-6. [DOI: 10.1016/j.neulet.2014.01.024] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 2.9] [Reference Citation Analysis]