BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hassani OK, Lee MG, Jones BE. Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle. Proc Natl Acad Sci U S A 2009;106:2418-22. [PMID: 19188611 DOI: 10.1073/pnas.0811400106] [Cited by in Crossref: 289] [Cited by in F6Publishing: 267] [Article Influence: 22.2] [Reference Citation Analysis]
Number Citing Articles
1 Silkis IG. Search for approaches to correction of daytime sleepiness induced by dopaminergic drugs during treatment of Parkinson’s disease: Neurochemical aspects. Neurochem J 2009;3:221-31. [DOI: 10.1134/s1819712409030118] [Cited by in Crossref: 3] [Article Influence: 0.2] [Reference Citation Analysis]
2 Konadhode RR, Pelluru D, Shiromani PJ. Unihemispheric Sleep: An Enigma for Current Models of Sleep-Wake Regulation. Sleep 2016;39:491-4. [PMID: 26856898 DOI: 10.5665/sleep.5508] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
3 Chan A, Li S, Lee AR, Leung J, Yip A, Bird J, Godden KE, Martinez-gonzalez D, Rattenborg NC, Balaban E, Pompeiano M. Activation of state-regulating neurochemical systems in newborn and embryonic chicks. Neuroscience 2016;339:219-34. [DOI: 10.1016/j.neuroscience.2016.09.048] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
4 Thomasy HE, Febinger HY, Ringgold KM, Gemma C, Opp MR. Hypocretinergic and cholinergic contributions to sleep-wake disturbances in a mouse model of traumatic brain injury. Neurobiol Sleep Circadian Rhythms 2017;2:71-84. [PMID: 31236496 DOI: 10.1016/j.nbscr.2016.03.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
5 Herrera CG, Ponomarenko A, Korotkova T, Burdakov D, Adamantidis A. Sleep & metabolism: The multitasking ability of lateral hypothalamic inhibitory circuitries. Front Neuroendocrinol 2017;44:27-34. [PMID: 27884682 DOI: 10.1016/j.yfrne.2016.11.002] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 5.2] [Reference Citation Analysis]
6 De la Herrán-Arita AK, García-García F. Current and emerging options for the drug treatment of narcolepsy. Drugs 2013;73:1771-81. [PMID: 24122734 DOI: 10.1007/s40265-013-0127-y] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 3.1] [Reference Citation Analysis]
7 Schrölkamp M, Jennum PJ, Gammeltoft S, Holm A, Kornum BR, Knudsen S. Normal Morning Melanin-Concentrating Hormone Levels and No Association with Rapid Eye Movement or Non-Rapid Eye Movement Sleep Parameters in Narcolepsy Type 1 and Type 2. J Clin Sleep Med 2017;13:235-43. [PMID: 27855741 DOI: 10.5664/jcsm.6454] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
8 Ono D, Yamanaka A. Hypothalamic regulation of the sleep/wake cycle. Neurosci Res 2017;118:74-81. [PMID: 28526553 DOI: 10.1016/j.neures.2017.03.013] [Cited by in Crossref: 30] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
9 Kroeger D, Bandaru SS, Madara JC, Vetrivelan R. Ventrolateral periaqueductal gray mediates rapid eye movement sleep regulation by melanin-concentrating hormone neurons. Neuroscience 2019;406:314-24. [PMID: 30890480 DOI: 10.1016/j.neuroscience.2019.03.020] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
10 Hassani OK, Krause MR, Mainville L, Cordova CA, Jones BE. Orexin Neurons Respond Differentially to Auditory Cues Associated with Appetitive versus Aversive Outcomes. J Neurosci 2016;36:1747-57. [PMID: 26843654 DOI: 10.1523/JNEUROSCI.3903-15.2016] [Cited by in Crossref: 25] [Cited by in F6Publishing: 12] [Article Influence: 4.2] [Reference Citation Analysis]
11 Elbaz I, Zada D, Tovin A, Braun T, Lerer-Goldshtein T, Wang G, Mourrain P, Appelbaum L. Sleep-Dependent Structural Synaptic Plasticity of Inhibitory Synapses in the Dendrites of Hypocretin/Orexin Neurons. Mol Neurobiol 2017;54:6581-97. [PMID: 27734337 DOI: 10.1007/s12035-016-0175-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
12 Vas S, Ádori C, Könczöl K, Kátai Z, Pap D, Papp RS, Bagdy G, Palkovits M, Tóth ZE. Nesfatin-1/NUCB2 as a potential new element of sleep regulation in rats. PLoS One. 2013;8:e59809. [PMID: 23560056 DOI: 10.1371/journal.pone.0059809] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 4.0] [Reference Citation Analysis]
13 Qi Y, Henry BA, Oldfield BJ, Clarke IJ. The Action of Leptin on Appetite-Regulating Cells in the Ovine Hypothalamus: Demonstration of Direct Action in the Absence of the Arcuate Nucleus. Endocrinology 2010;151:2106-16. [DOI: 10.1210/en.2009-1283] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 2.0] [Reference Citation Analysis]
14 Luppi PH, Peyron C, Fort P. Role of MCH neurons in paradoxical (REM) sleep control. Sleep 2013;36:1775-6. [PMID: 24293748 DOI: 10.5665/sleep.3192] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 2.1] [Reference Citation Analysis]
15 Tyree SM, Borniger JC, de Lecea L. Hypocretin as a Hub for Arousal and Motivation. Front Neurol 2018;9:413. [PMID: 29928253 DOI: 10.3389/fneur.2018.00413] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 9.3] [Reference Citation Analysis]
16 Monti JM, Torterolo P, Lagos P. Melanin-concentrating hormone control of sleep–wake behavior. Sleep Medicine Reviews 2013;17:293-8. [DOI: 10.1016/j.smrv.2012.10.002] [Cited by in Crossref: 70] [Cited by in F6Publishing: 55] [Article Influence: 7.8] [Reference Citation Analysis]
17 Tsunematsu T, Ueno T, Tabuchi S, Inutsuka A, Tanaka KF, Hasuwa H, Kilduff TS, Terao A, Yamanaka A. Optogenetic manipulation of activity and temporally controlled cell-specific ablation reveal a role for MCH neurons in sleep/wake regulation. J Neurosci 2014;34:6896-909. [PMID: 24828644 DOI: 10.1523/JNEUROSCI.5344-13.2014] [Cited by in Crossref: 128] [Cited by in F6Publishing: 77] [Article Influence: 16.0] [Reference Citation Analysis]
18 Wheeler DS, Wan S, Miller A, Angeli N, Adileh B, Hu W, Holland PC. Role of lateral hypothalamus in two aspects of attention in associative learning. Eur J Neurosci 2014;40:2359-77. [PMID: 24750426 DOI: 10.1111/ejn.12592] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
19 Hassani OK, Lee MG, Henny P, Jones BE. Discharge profiles of identified GABAergic in comparison to cholinergic and putative glutamatergic basal forebrain neurons across the sleep-wake cycle. J Neurosci 2009;29:11828-40. [PMID: 19776269 DOI: 10.1523/JNEUROSCI.1259-09.2009] [Cited by in Crossref: 126] [Cited by in F6Publishing: 80] [Article Influence: 9.7] [Reference Citation Analysis]
20 Latifi B, Adamantidis A, Bassetti C, Schmidt MH. Sleep-Wake Cycling and Energy Conservation: Role of Hypocretin and the Lateral Hypothalamus in Dynamic State-Dependent Resource Optimization. Front Neurol 2018;9:790. [PMID: 30344503 DOI: 10.3389/fneur.2018.00790] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
21 Corsi G, Picard K, di Castro MA, Garofalo S, Tucci F, Chece G, Del Percio C, Golia MT, Raspa M, Scavizzi F, Decoeur F, Lauro C, Rigamonti M, Iannello F, Ragozzino DA, Russo E, Bernardini G, Nadjar A, Tremblay ME, Babiloni C, Maggi L, Limatola C. Microglia modulate hippocampal synaptic transmission and sleep duration along the light/dark cycle. Glia 2021. [PMID: 34487590 DOI: 10.1002/glia.24090] [Reference Citation Analysis]
22 Ferreira JGP, Bittencourt JC, Adamantidis A. Melanin-concentrating hormone and sleep. Current Opinion in Neurobiology 2017;44:152-8. [DOI: 10.1016/j.conb.2017.04.008] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 5.4] [Reference Citation Analysis]
23 Yamashita T, Yamanaka A. Lateral hypothalamic circuits for sleep-wake control. Curr Opin Neurobiol 2017;44:94-100. [PMID: 28427008 DOI: 10.1016/j.conb.2017.03.020] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 5.8] [Reference Citation Analysis]
24 Bandaru SS, Khanday MA, Ibrahim N, Naganuma F, Vetrivelan R. Sleep-Wake Control by Melanin-Concentrating Hormone (MCH) Neurons: a Review of Recent Findings. Curr Neurol Neurosci Rep 2020;20:55. [PMID: 33006677 DOI: 10.1007/s11910-020-01075-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Li JX, Yoshida T, Monk KJ, Katz DB. Lateral hypothalamus contains two types of palatability-related taste responses with distinct dynamics. J Neurosci 2013;33:9462-73. [PMID: 23719813 DOI: 10.1523/JNEUROSCI.3935-12.2013] [Cited by in Crossref: 41] [Article Influence: 4.6] [Reference Citation Analysis]
26 Arrigoni E, Chee MJS, Fuller PM. To eat or to sleep: That is a lateral hypothalamic question. Neuropharmacology 2019;154:34-49. [PMID: 30503993 DOI: 10.1016/j.neuropharm.2018.11.017] [Cited by in Crossref: 49] [Cited by in F6Publishing: 39] [Article Influence: 12.3] [Reference Citation Analysis]
27 Carter ME, Adamantidis A, Ohtsu H, Deisseroth K, de Lecea L. Sleep homeostasis modulates hypocretin-mediated sleep-to-wake transitions. J Neurosci 2009;29:10939-49. [PMID: 19726652 DOI: 10.1523/JNEUROSCI.1205-09.2009] [Cited by in Crossref: 155] [Cited by in F6Publishing: 89] [Article Influence: 11.9] [Reference Citation Analysis]
28 Varin C, Luppi P, Fort P. Melanin-concentrating hormone-expressing neurons adjust slow-wave sleep dynamics to catalyze paradoxical (REM) sleep. Sleep 2018;41. [DOI: 10.1093/sleep/zsy068] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
29 Benedetto L, Rodriguez-Servetti Z, Lagos P, D'Almeida V, Monti JM, Torterolo P. Microinjection of melanin concentrating hormone into the lateral preoptic area promotes non-REM sleep in the rat. Peptides 2013;39:11-5. [PMID: 23123302 DOI: 10.1016/j.peptides.2012.10.005] [Cited by in Crossref: 36] [Cited by in F6Publishing: 29] [Article Influence: 3.6] [Reference Citation Analysis]
30 Yates NJ. Schizophrenia: the role of sleep and circadian rhythms in regulating dopamine and psychosis. Reviews in the Neurosciences 2016;27:669-87. [DOI: 10.1515/revneuro-2016-0030] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
31 Obukuro K, Takigawa M, Hisatsune A, Isohama Y, Katsuki H. Quinolinate induces selective loss of melanin-concentrating hormone neurons, rather than orexin neurons, in the hypothalamus of mice and young rats. Neuroscience 2010;170:298-307. [DOI: 10.1016/j.neuroscience.2010.06.081] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
32 Apergis-Schoute J, Iordanidou P, Faure C, Jego S, Schöne C, Aitta-Aho T, Adamantidis A, Burdakov D. Optogenetic evidence for inhibitory signaling from orexin to MCH neurons via local microcircuits. J Neurosci 2015;35:5435-41. [PMID: 25855162 DOI: 10.1523/JNEUROSCI.5269-14.2015] [Cited by in Crossref: 79] [Cited by in F6Publishing: 52] [Article Influence: 11.3] [Reference Citation Analysis]
33 Li A, Nattie E. Orexin, cardio-respiratory function, and hypertension. Front Neurosci 2014;8:22. [PMID: 24574958 DOI: 10.3389/fnins.2014.00022] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
34 Ungurean G, Rattenborg NC. Neurobiology: REM-Sleep-Promoting 'Goldilocks' Neurons. Curr Biol 2019;29:R644-6. [PMID: 31287986 DOI: 10.1016/j.cub.2019.05.048] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
35 Arrigoni E, Mochizuki T, Scammell TE. Activation of the basal forebrain by the orexin/hypocretin neurones. Acta Physiol (Oxf) 2010;198:223-35. [PMID: 19723027 DOI: 10.1111/j.1748-1716.2009.02036.x] [Cited by in Crossref: 58] [Cited by in F6Publishing: 55] [Article Influence: 4.5] [Reference Citation Analysis]
36 Noseda R, Kainz V, Borsook D, Burstein R. Neurochemical pathways that converge on thalamic trigeminovascular neurons: potential substrate for modulation of migraine by sleep, food intake, stress and anxiety. PLoS One. 2014;9:103929. [PMID: 25090640 DOI: 10.1371/journal.pone.0103929] [Cited by in Crossref: 52] [Cited by in F6Publishing: 41] [Article Influence: 6.5] [Reference Citation Analysis]
37 Naganuma F, Bandaru SS, Absi G, Mahoney CE, Scammell TE, Vetrivelan R. Melanin-concentrating hormone neurons contribute to dysregulation of rapid eye movement sleep in narcolepsy. Neurobiol Dis 2018;120:12-20. [PMID: 30149182 DOI: 10.1016/j.nbd.2018.08.012] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
38 Hall S, Deurveilher S, Robertson GS, Semba K. Homeostatic state of microglia in a rat model of chronic sleep restriction. Sleep 2020;43:zsaa108. [PMID: 32474610 DOI: 10.1093/sleep/zsaa108] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
39 Moustafa AA. On and Off switches in the brain. Front Behav Neurosci 2015;9:114. [PMID: 25972796 DOI: 10.3389/fnbeh.2015.00114] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
40 Liu M, Blanco-Centurion C, Konadhode RR, Luan L, Shiromani PJ. Orexin gene transfer into the amygdala suppresses both spontaneous and emotion-induced cataplexy in orexin-knockout mice. Eur J Neurosci 2016;43:681-8. [PMID: 26741960 DOI: 10.1111/ejn.13158] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
41 Kitka T, Adori C, Katai Z, Vas S, Molnar E, Papp RS, Toth ZE, Bagdy G. Association between the activation of MCH and orexin immunorective neurons and REM sleep architecture during REM rebound after a three day long REM deprivation. Neurochem Int 2011;59:686-94. [PMID: 21740944 DOI: 10.1016/j.neuint.2011.06.015] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.4] [Reference Citation Analysis]
42 Landry JP, Hawkins C, Lee A, Coté A, Balaban E, Pompeiano M. Chick embryos have the same pattern of hypoxic lower-brain activation as fetal mammals: Chick Embryo Brain Responses to Hypoxia. Devel Neurobio 2016;76:64-74. [DOI: 10.1002/dneu.22299] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
43 Arthaud S, Varin C, Gay N, Libourel P, Chauveau F, Fort P, Luppi P, Peyron C. Paradoxical (REM) sleep deprivation in mice using the small-platforms-over-water method: polysomnographic analyses and melanin-concentrating hormone and hypocretin/orexin neuronal activation before, during and after deprivation. J Sleep Res 2015;24:309-19. [DOI: 10.1111/jsr.12269] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 2.5] [Reference Citation Analysis]
44 Adamantidis A, Lüthi A. Optogenetic Dissection of Sleep-Wake States In Vitro and In Vivo. Handb Exp Pharmacol 2019;253:125-51. [PMID: 29687163 DOI: 10.1007/164_2018_94] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
45 Alhassen W, Kobayashi Y, Su J, Robbins B, Nguyen H, Myint T, Yu M, Nauli SM, Saito Y, Alachkar A. Regulation of Brain Primary Cilia Length by MCH Signaling: Evidence from Pharmacological, Genetic, Optogenetic, and Chemogenic Manipulations. Mol Neurobiol 2021. [PMID: 34665407 DOI: 10.1007/s12035-021-02511-w] [Reference Citation Analysis]
46 Liu JJ, Tsien RW, Pang ZP. Hypothalamic melanin-concentrating hormone regulates hippocampus-dorsolateral septum activity. Nat Neurosci 2022;25:61-71. [PMID: 34980924 DOI: 10.1038/s41593-021-00984-5] [Reference Citation Analysis]
47 Renouard L, Billwiller F, Ogawa K, Clément O, Camargo N, Abdelkarim M, Gay N, Scoté-Blachon C, Touré R, Libourel PA, Ravassard P, Salvert D, Peyron C, Claustrat B, Léger L, Salin P, Malleret G, Fort P, Luppi PH. The supramammillary nucleus and the claustrum activate the cortex during REM sleep. Sci Adv 2015;1:e1400177. [PMID: 26601158 DOI: 10.1126/sciadv.1400177] [Cited by in Crossref: 66] [Cited by in F6Publishing: 54] [Article Influence: 9.4] [Reference Citation Analysis]
48 Bergman P, Adori C, Vas S, Kai-Larsen Y, Sarkanen T, Cederlund A, Agerberth B, Julkunen I, Horvath B, Kostyalik D, Kalmár L, Bagdy G, Huutoniemi A, Partinen M, Hökfelt T. Narcolepsy patients have antibodies that stain distinct cell populations in rat brain and influence sleep patterns. Proc Natl Acad Sci U S A 2014;111:E3735-44. [PMID: 25136085 DOI: 10.1073/pnas.1412189111] [Cited by in Crossref: 59] [Cited by in F6Publishing: 54] [Article Influence: 7.4] [Reference Citation Analysis]
49 Tisdale RK, Yamanaka A, Kilduff TS. Animal models of narcolepsy and the hypocretin/orexin system: Past, present, and future. Sleep 2021;44:zsaa278. [PMID: 33313880 DOI: 10.1093/sleep/zsaa278] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
50 Burt J, Alberto CO, Parsons MP, Hirasawa M. Local network regulation of orexin neurons in the lateral hypothalamus. Am J Physiol Regul Integr Comp Physiol 2011;301:R572-80. [PMID: 21697524 DOI: 10.1152/ajpregu.00674.2010] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 4.5] [Reference Citation Analysis]
51 Arrigoni E, Fuller PM. The Circuit, Cellular, and Synaptic Bases of Sleep-Wake Regulation. Handbook of Sleep Research. Elsevier; 2019. pp. 65-88. [DOI: 10.1016/b978-0-12-813743-7.00005-0] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
52 Nevárez N, de Lecea L. Hypocretin and the Regulation of Sleep-Wake Transitions. Handbook of Sleep Research. Elsevier; 2019. pp. 89-99. [DOI: 10.1016/b978-0-12-813743-7.00006-2] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
53 Konadhode RR, Pelluru D, Shiromani PJ. Neurons containing orexin or melanin concentrating hormone reciprocally regulate wake and sleep. Front Syst Neurosci 2014;8:244. [PMID: 25620917 DOI: 10.3389/fnsys.2014.00244] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 3.6] [Reference Citation Analysis]
54 Alam MN, Kumar S, Rai S, Methippara M, Szymusiak R, McGinty D. Role of adenosine A(1) receptor in the perifornical-lateral hypothalamic area in sleep-wake regulation in rats. Brain Res 2009;1304:96-104. [PMID: 19781535 DOI: 10.1016/j.brainres.2009.09.066] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 1.4] [Reference Citation Analysis]
55 Hauw J, Hausser-hauw C, De Girolami U, Hasboun D, Seilhean D. Neuropathology of Sleep Disorders: A Review. J Neuropathol Exp Neurol 2011;70:243-52. [DOI: 10.1097/nen.0b013e318211488e] [Cited by in Crossref: 28] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
56 Leung LC, Wang GX, Madelaine R, Skariah G, Kawakami K, Deisseroth K, Urban AE, Mourrain P. Neural signatures of sleep in zebrafish. Nature 2019;571:198-204. [PMID: 31292557 DOI: 10.1038/s41586-019-1336-7] [Cited by in Crossref: 40] [Cited by in F6Publishing: 27] [Article Influence: 13.3] [Reference Citation Analysis]
57 Rai S, Kumar S, Alam MA, Szymusiak R, McGinty D, Alam MN. A1 receptor mediated adenosinergic regulation of perifornical-lateral hypothalamic area neurons in freely behaving rats. Neuroscience 2010;167:40-8. [PMID: 20109537 DOI: 10.1016/j.neuroscience.2010.01.044] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 2.1] [Reference Citation Analysis]
58 Horjales-Araujo E, Hellysaz A, Broberger C. Lateral hypothalamic thyrotropin-releasing hormone neurons: distribution and relationship to histochemically defined cell populations in the rat. Neuroscience 2014;277:87-102. [PMID: 24993479 DOI: 10.1016/j.neuroscience.2014.06.043] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 2.4] [Reference Citation Analysis]
59 Shiromani PJ, Peever JH. New Neuroscience Tools That Are Identifying the Sleep-Wake Circuit. Sleep 2017;40. [PMID: 28329204 DOI: 10.1093/sleep/zsx032] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
60 Oishi Y, Williams RH, Agostinelli L, Arrigoni E, Fuller PM, Mochizuki T, Saper CB, Scammell TE. Role of the medial prefrontal cortex in cataplexy. J Neurosci 2013;33:9743-51. [PMID: 23739971 DOI: 10.1523/JNEUROSCI.0499-13.2013] [Cited by in Crossref: 56] [Cited by in F6Publishing: 37] [Article Influence: 6.2] [Reference Citation Analysis]
61 Blanco-Centurion C, Liu M, Konadhode RP, Zhang X, Pelluru D, van den Pol AN, Shiromani PJ. Optogenetic activation of melanin-concentrating hormone neurons increases non-rapid eye movement and rapid eye movement sleep during the night in rats. Eur J Neurosci 2016;44:2846-57. [PMID: 27657541 DOI: 10.1111/ejn.13410] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 4.3] [Reference Citation Analysis]
62 Chung S, Parks GS, Lee C, Civelli O. Recent updates on the melanin-concentrating hormone (MCH) and its receptor system: lessons from MCH1R antagonists. J Mol Neurosci 2011;43:115-21. [PMID: 20582487 DOI: 10.1007/s12031-010-9411-4] [Cited by in Crossref: 48] [Cited by in F6Publishing: 45] [Article Influence: 4.0] [Reference Citation Analysis]
63 Luppi P, Clément O, Sapin E, Gervasoni D, Peyron C, Léger L, Salvert D, Fort P. The neuronal network responsible for paradoxical sleep and its dysfunctions causing narcolepsy and rapid eye movement (REM) behavior disorder. Sleep Medicine Reviews 2011;15:153-63. [DOI: 10.1016/j.smrv.2010.08.002] [Cited by in Crossref: 176] [Cited by in F6Publishing: 146] [Article Influence: 16.0] [Reference Citation Analysis]
64 Li J, Hu Z, de Lecea L. The hypocretins/orexins: integrators of multiple physiological functions. Br J Pharmacol 2014;171:332-50. [PMID: 24102345 DOI: 10.1111/bph.12415] [Cited by in Crossref: 153] [Cited by in F6Publishing: 141] [Article Influence: 19.1] [Reference Citation Analysis]
65 Ye H, Cui XY, Ding H, Cui SY, Hu X, Liu YT, Zhao HL, Zhang YH. Melanin-Concentrating Hormone (MCH) and MCH-R1 in the Locus Coeruleus May Be Involved in the Regulation of Depressive-Like Behavior. Int J Neuropsychopharmacol 2018;21:1128-37. [PMID: 30335150 DOI: 10.1093/ijnp/pyy088] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
66 Lim MM, Szymusiak R. Neurobiology of Arousal and Sleep: Updates and Insights Into Neurological Disorders. Curr Sleep Medicine Rep 2015;1:91-100. [DOI: 10.1007/s40675-015-0013-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 1.4] [Reference Citation Analysis]
67 Peyron C, Valentin F, Bayard S, Hanriot L, Bedetti C, Rousset B, Luppi P, Dauvilliers Y. Melanin concentrating hormone in central hypersomnia. Sleep Medicine 2011;12:768-72. [DOI: 10.1016/j.sleep.2011.04.002] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 1.6] [Reference Citation Analysis]
68 Alam MN, Kumar S, Suntsova N, Bashir T, Szymusiak R, McGinty D. GABAergic regulation of the perifornical-lateral hypothalamic neurons during non-rapid eye movement sleep in rats. Neuroscience 2010;167:920-8. [PMID: 20188152 DOI: 10.1016/j.neuroscience.2010.02.038] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.1] [Reference Citation Analysis]
69 Schmidt MH. The energy allocation function of sleep: A unifying theory of sleep, torpor, and continuous wakefulness. Neuroscience & Biobehavioral Reviews 2014;47:122-53. [DOI: 10.1016/j.neubiorev.2014.08.001] [Cited by in Crossref: 136] [Cited by in F6Publishing: 112] [Article Influence: 17.0] [Reference Citation Analysis]
70 Chen YW, Barson JR, Chen A, Hoebel BG, Leibowitz SF. Glutamatergic input to the lateral hypothalamus stimulates ethanol intake: role of orexin and melanin-concentrating hormone. Alcohol Clin Exp Res 2013;37:123-31. [PMID: 22823322 DOI: 10.1111/j.1530-0277.2012.01854.x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
71 Burdakov D, Karnani MM, Gonzalez A. Lateral hypothalamus as a sensor-regulator in respiratory and metabolic control. Physiol Behav 2013;121:117-24. [PMID: 23562864 DOI: 10.1016/j.physbeh.2013.03.023] [Cited by in Crossref: 69] [Cited by in F6Publishing: 58] [Article Influence: 7.7] [Reference Citation Analysis]
72 Seifinejad A, Vassalli A, Tafti M. Neurobiology of cataplexy. Sleep Med Rev 2021;60:101546. [PMID: 34607185 DOI: 10.1016/j.smrv.2021.101546] [Reference Citation Analysis]
73 Blasiak A, Gundlach AL, Hess G, Lewandowski MH. Interactions of Circadian Rhythmicity, Stress and Orexigenic Neuropeptide Systems: Implications for Food Intake Control. Front Neurosci 2017;11:127. [PMID: 28373831 DOI: 10.3389/fnins.2017.00127] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
74 Tesoriero C, Del Gallo F, Bentivoglio M. Sleep and brain infections. Brain Res Bull 2019;145:59-74. [PMID: 30016726 DOI: 10.1016/j.brainresbull.2018.07.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
75 Sicardi A, Prévot V. [MCH neurons regulate fenestration of the median eminence vascular loops reaching the arcuate nucleus of the hypothalamus]. Med Sci (Paris) 2022;38:248-51. [PMID: 35333160 DOI: 10.1051/medsci/2022016] [Reference Citation Analysis]
76 Schéle E, Fekete C, Egri P, Füzesi T, Palkovits M, Keller É, Liposits Z, Gereben B, Karlsson-Lindahl L, Shao R, Jansson JO. Interleukin-6 receptor α is co-localised with melanin-concentrating hormone in human and mouse hypothalamus. J Neuroendocrinol 2012;24:930-43. [PMID: 22295972 DOI: 10.1111/j.1365-2826.2012.02286.x] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.2] [Reference Citation Analysis]
77 Le Barillier L, Léger L, Luppi P, Fort P, Malleret G, Salin P. Genetic deletion of melanin-concentrating hormone neurons impairs hippocampal short-term synaptic plasticity and hippocampal-dependent forms of short-term memory: DELETION OF MCH NEURONS IMPAIRED SHORT-TERM MEMORY AND PLASTICITY. Hippocampus 2015;25:1361-73. [DOI: 10.1002/hipo.22442] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
78 Varin C, Arthaud S, Salvert D, Gay N, Libourel PA, Luppi PH, Léger L, Fort P. Sleep architecture and homeostasis in mice with partial ablation of melanin-concentrating hormone neurons. Behav Brain Res 2016;298:100-10. [PMID: 26529469 DOI: 10.1016/j.bbr.2015.10.051] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
79 González JA, Iordanidou P, Strom M, Adamantidis A, Burdakov D. Awake dynamics and brain-wide direct inputs of hypothalamic MCH and orexin networks. Nat Commun 2016;7:11395. [PMID: 27102565 DOI: 10.1038/ncomms11395] [Cited by in Crossref: 87] [Cited by in F6Publishing: 79] [Article Influence: 14.5] [Reference Citation Analysis]
80 Zielinski MR, McKenna JT, McCarley RW. Functions and Mechanisms of Sleep. AIMS Neurosci 2016;3:67-104. [PMID: 28413828 DOI: 10.3934/Neuroscience.2016.1.67] [Cited by in Crossref: 41] [Cited by in F6Publishing: 16] [Article Influence: 6.8] [Reference Citation Analysis]
81 Scammell TE, Jackson AC, Franks NP, Wisden W, Dauvilliers Y. Histamine: neural circuits and new medications. Sleep 2019;42. [PMID: 30239935 DOI: 10.1093/sleep/zsy183] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
82 Gao X. The Role of Melanin-Concentrating Hormone in the Regulation of the Sleep/Wake Cycle: Sleep Promoter or Arousal Modulator? In: Pandi-perumal SR, Torterolo P, Monti JM, editors. Melanin-Concentrating Hormone and Sleep. Cham: Springer International Publishing; 2018. pp. 57-74. [DOI: 10.1007/978-3-319-75765-0_3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
83 Mahoney CE, Brewer JM, Bittman EL. Central control of circadian phase in arousal-promoting neurons. PLoS One 2013;8:e67173. [PMID: 23826226 DOI: 10.1371/journal.pone.0067173] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
84 Chometton S, Charrière K, Bayer L, Houdayer C, Franchi G, Poncet F, Fellmann D, Risold PY. The rostromedial zona incerta is involved in attentional processes while adjacent LHA responds to arousal: c-Fos and anatomical evidence. Brain Struct Funct 2017;222:2507-25. [DOI: 10.1007/s00429-016-1353-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
85 Pascovich C, Lagos P, Urbanavicius J, Devera A, Rivas M, Costa A, López Hill X, Falconi A, Scorza C, Torterolo P. Melanin-concentrating hormone (MCH) in the median raphe nucleus: Fibers, receptors and cellular effects. Peptides 2020;126:170249. [DOI: 10.1016/j.peptides.2019.170249] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
86 Azeez IA, Del Gallo F, Cristino L, Bentivoglio M. Daily Fluctuation of Orexin Neuron Activity and Wiring: The Challenge of "Chronoconnectivity". Front Pharmacol 2018;9:1061. [PMID: 30319410 DOI: 10.3389/fphar.2018.01061] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
87 Héricé C, Patel AA, Sakata S. Circuit mechanisms and computational models of REM sleep. Neurosci Res 2019;140:77-92. [PMID: 30118737 DOI: 10.1016/j.neures.2018.08.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
88 Chometton S, Franchi G, Houdayer C, Mariot A, Poncet F, Fellmann D, Tillet Y, Risold PY. Different distributions of preproMCH and hypocretin/orexin in the forebrain of the pig (Sus scrofa domesticus). J Chem Neuroanat 2014;61-62:72-82. [PMID: 25124772 DOI: 10.1016/j.jchemneu.2014.08.001] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
89 Clément O, Sapin E, Libourel PA, Arthaud S, Brischoux F, Fort P, Luppi PH. The lateral hypothalamic area controls paradoxical (REM) sleep by means of descending projections to brainstem GABAergic neurons. J Neurosci 2012;32:16763-74. [PMID: 23175830 DOI: 10.1523/JNEUROSCI.1885-12.2012] [Cited by in Crossref: 61] [Cited by in F6Publishing: 36] [Article Influence: 6.8] [Reference Citation Analysis]
90 Jiang H, Gallet S, Klemm P, Scholl P, Folz-Donahue K, Altmüller J, Alber J, Heilinger C, Kukat C, Loyens A, Müller-Fielitz H, Sundaram S, Schwaninger M, Prevot V, Brüning JC. MCH Neurons Regulate Permeability of the Median Eminence Barrier. Neuron 2020;107:306-319.e9. [PMID: 32407670 DOI: 10.1016/j.neuron.2020.04.020] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
91 Torterolo P, Scorza C, Lagos P, Urbanavicius J, Benedetto L, Pascovich C, López-Hill X, Chase MH, Monti JM. Melanin-Concentrating Hormone (MCH): Role in REM Sleep and Depression. Front Neurosci 2015;9:475. [PMID: 26733789 DOI: 10.3389/fnins.2015.00475] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 5.3] [Reference Citation Analysis]
92 Naganuma F, Bandaru SS, Absi G, Chee MJ, Vetrivelan R. Melanin-concentrating hormone neurons promote rapid eye movement sleep independent of glutamate release. Brain Struct Funct 2019;224:99-110. [PMID: 30284033 DOI: 10.1007/s00429-018-1766-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
93 García AP, Aitta-aho T, Schaaf L, Heeley N, Heuschmid L, Bai Y, Barrantes FJ, Apergis-Schoute J. Nicotinic α4 Receptor-Mediated Cholinergic Influences on Food Intake and Activity Patterns in Hypothalamic Circuits. PLoS One 2015;10:e0133327. [PMID: 26247203 DOI: 10.1371/journal.pone.0133327] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
94 Pérez-morales M, Fajardo-valdez A, Méndez-díaz M, Ruiz-contreras AE, Prospéro-garcía O. 2-Arachidonoylglycerol into the lateral hypothalamus improves reduced sleep in adult rats subjected to maternal separation. NeuroReport 2014;25:1437-41. [DOI: 10.1097/wnr.0000000000000287] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
95 Kátai Z, Ádori C, Kitka T, Vas S, Kalmár L, Kostyalik D, Tóthfalusi L, Palkovits M, Bagdy G. Acute escitalopram treatment inhibits REM sleep rebound and activation of MCH-expressing neurons in the lateral hypothalamus after long term selective REM sleep deprivation. Psychopharmacology 2013;228:439-49. [DOI: 10.1007/s00213-013-3046-4] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
96 Gutierrez R, Lobo MK, Zhang F, de Lecea L. Neural integration of reward, arousal, and feeding: Recruitment of VTA, lateral hypothalamus, and ventral striatal neurons. IUBMB Life 2011;63:824-30. [DOI: 10.1002/iub.539] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 2.5] [Reference Citation Analysis]
97 Zhao S, Li R, Li H, Wang S, Zhang X, Wang D, Guo J, Li H, Li A, Tong T, Zhong H, Yang Q, Dong H. Lateral Hypothalamic Area Glutamatergic Neurons and Their Projections to the Lateral Habenula Modulate the Anesthetic Potency of Isoflurane in Mice. Neurosci Bull 2021;37:934-46. [PMID: 33847915 DOI: 10.1007/s12264-021-00674-z] [Reference Citation Analysis]
98 Pachoud B, Adamantidis A, Ravassard P, Luppi PH, Grisar T, Lakaye B, Salin PA. Major impairments of glutamatergic transmission and long-term synaptic plasticity in the hippocampus of mice lacking the melanin-concentrating hormone receptor-1. J Neurophysiol 2010;104:1417-25. [PMID: 20592115 DOI: 10.1152/jn.01052.2009] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 1.7] [Reference Citation Analysis]
99 Clasadonte J, Scemes E, Wang Z, Boison D, Haydon PG. Connexin 43-Mediated Astroglial Metabolic Networks Contribute to the Regulation of the Sleep-Wake Cycle. Neuron 2017;95:1365-1380.e5. [PMID: 28867552 DOI: 10.1016/j.neuron.2017.08.022] [Cited by in Crossref: 76] [Cited by in F6Publishing: 73] [Article Influence: 15.2] [Reference Citation Analysis]
100 Liu M, Blanco-Centurion C, Shiromani PJ. Rewiring brain circuits to block cataplexy in murine models of narcolepsy. Curr Opin Neurobiol 2017;44:110-5. [PMID: 28445807 DOI: 10.1016/j.conb.2017.03.017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
101 Arrigoni E, Saper CB. What optogenetic stimulation is telling us (and failing to tell us) about fast neurotransmitters and neuromodulators in brain circuits for wake-sleep regulation. Curr Opin Neurobiol 2014;29:165-71. [PMID: 25064179 DOI: 10.1016/j.conb.2014.07.016] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 4.1] [Reference Citation Analysis]
102 Regan MD, Flynn-Evans EE, Griko YV, Kilduff TS, Rittenberger JC, Ruskin KJ, Buck CL. Shallow metabolic depression and human spaceflight: a feasible first step. J Appl Physiol (1985) 2020;128:637-47. [PMID: 31999524 DOI: 10.1152/japplphysiol.00725.2019] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
103 Whiddon BB, Palmiter RD. Ablation of neurons expressing melanin-concentrating hormone (MCH) in adult mice improves glucose tolerance independent of MCH signaling. J Neurosci 2013;33:2009-16. [PMID: 23365238 DOI: 10.1523/JNEUROSCI.3921-12.2013] [Cited by in Crossref: 44] [Cited by in F6Publishing: 34] [Article Influence: 4.9] [Reference Citation Analysis]
104 Sun G, Li M, Li H, Tian Y, Chen Q, Bai Y, Kang X. Molecular cloning and SNP association analysis of chicken PMCH gene. Mol Biol Rep 2013;40:5049-55. [PMID: 23670042 DOI: 10.1007/s11033-013-2606-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
105 Brown RE, Spratt TJ, Kaplan GB. Translational Approaches to Influence Sleep and Arousal. Brain Res Bull 2022:S0361-9230(22)00116-2. [PMID: 35550156 DOI: 10.1016/j.brainresbull.2022.05.002] [Reference Citation Analysis]
106 Hassani OK, Henny P, Lee MG, Jones BE. GABAergic neurons intermingled with orexin and MCH neurons in the lateral hypothalamus discharge maximally during sleep. Eur J Neurosci 2010;32:448-57. [PMID: 20597977 DOI: 10.1111/j.1460-9568.2010.07295.x] [Cited by in Crossref: 87] [Cited by in F6Publishing: 81] [Article Influence: 7.3] [Reference Citation Analysis]
107 Girault EM, Yi CX, Fliers E, Kalsbeek A. Orexins, feeding, and energy balance. Prog Brain Res 2012;198:47-64. [PMID: 22813969 DOI: 10.1016/B978-0-444-59489-1.00005-7] [Cited by in Crossref: 51] [Cited by in F6Publishing: 25] [Article Influence: 5.1] [Reference Citation Analysis]
108 Gao XB. Electrophysiological effects of MCH on neurons in the hypothalamus. Peptides 2009;30:2025-30. [PMID: 19463877 DOI: 10.1016/j.peptides.2009.05.006] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 1.8] [Reference Citation Analysis]
109 Lu HC, Pollack H, Lefante JJ, Mills AA, Tian D. Altered sleep architecture, rapid eye movement sleep, and neural oscillation in a mouse model of human chromosome 16p11.2 microdeletion. Sleep 2019;42:zsy253. [PMID: 30541142 DOI: 10.1093/sleep/zsy253] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
110 Larson-Prior LJ, Ju YE, Galvin JE. Cortical-subcortical interactions in hypersomnia disorders: mechanisms underlying cognitive and behavioral aspects of the sleep-wake cycle. Front Neurol 2014;5:165. [PMID: 25309500 DOI: 10.3389/fneur.2014.00165] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
111 Lew CH, Petersen C, Neylan TC, Grinberg LT. Tau-driven degeneration of sleep- and wake-regulating neurons in Alzheimer's disease. Sleep Med Rev 2021;60:101541. [PMID: 34500400 DOI: 10.1016/j.smrv.2021.101541] [Reference Citation Analysis]
112 Briggs C, Hirasawa M, Semba K. Sleep Deprivation Distinctly Alters Glutamate Transporter 1 Apposition and Excitatory Transmission to Orexin and MCH Neurons. J Neurosci 2018;38:2505-18. [PMID: 29431649 DOI: 10.1523/JNEUROSCI.2179-17.2018] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 4.8] [Reference Citation Analysis]
113 Croizier S, Franchi-Bernard G, Colard C, Poncet F, La Roche A, Risold PY. A comparative analysis shows morphofunctional differences between the rat and mouse melanin-concentrating hormone systems. PLoS One 2010;5:e15471. [PMID: 21103352 DOI: 10.1371/journal.pone.0015471] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 2.6] [Reference Citation Analysis]
114 Silkis IG. Hypothetical neurochemical mechanisms of paradoxical sleep deficiency in Alzheimer’s disease. Neurochem J 2017;11:138-48. [DOI: 10.1134/s181971241702012x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
115 Geuzaine A, Tyhon A, Grisar T, Brabant C, Lakaye B, Tirelli E. Amphetamine reward in food restricted mice lacking the melanin-concentrating hormone receptor-1. Behav Brain Res 2014;262:14-20. [PMID: 24412349 DOI: 10.1016/j.bbr.2013.12.052] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
116 Equihua-Benítez AC, Guzmán-Vásquez K, Drucker-Colín R. Understanding sleep-wake mechanisms and drug discovery. Expert Opin Drug Discov 2017;12:643-57. [PMID: 28511597 DOI: 10.1080/17460441.2017.1329818] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
117 Parks GS, Olivas ND, Ikrar T, Sanathara NM, Wang L, Wang Z, Civelli O, Xu X. Histamine inhibits the melanin-concentrating hormone system: implications for sleep and arousal. J Physiol 2014;592:2183-96. [PMID: 24639485 DOI: 10.1113/jphysiol.2013.268771] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 2.9] [Reference Citation Analysis]
118 de Lecea L. Optogenetic control of hypocretin (orexin) neurons and arousal circuits. Curr Top Behav Neurosci 2015;25:367-78. [PMID: 25502546 DOI: 10.1007/7854_2014_364] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 4.3] [Reference Citation Analysis]
119 Casaglia E, Luppi PH. Is paradoxical sleep setting up innate and acquired complex sensorimotor and adaptive behaviours?: A proposed function based on literature review. J Sleep Res 2022;:e13633. [PMID: 35596591 DOI: 10.1111/jsr.13633] [Reference Citation Analysis]
120 Volgin DV, Lu JW, Stettner GM, Mann GL, Ross RJ, Morrison AR, Kubin L. Time- and behavioral state-dependent changes in posterior hypothalamic GABAA receptors contribute to the regulation of sleep. PLoS One 2014;9:e86545. [PMID: 24466145 DOI: 10.1371/journal.pone.0086545] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
121 Atkin T, Comai S, Gobbi G. Drugs for Insomnia beyond Benzodiazepines: Pharmacology, Clinical Applications, and Discovery. Pharmacol Rev 2018;70:197-245. [PMID: 29487083 DOI: 10.1124/pr.117.014381] [Cited by in Crossref: 89] [Cited by in F6Publishing: 57] [Article Influence: 22.3] [Reference Citation Analysis]
122 Chee MJ, Arrigoni E, Maratos-Flier E. Melanin-concentrating hormone neurons release glutamate for feedforward inhibition of the lateral septum. J Neurosci 2015;35:3644-51. [PMID: 25716862 DOI: 10.1523/JNEUROSCI.4187-14.2015] [Cited by in Crossref: 49] [Cited by in F6Publishing: 35] [Article Influence: 7.0] [Reference Citation Analysis]
123 Lee JS, Lee EY, Lee HS. Hypothalamic, feeding/arousal-related peptidergic projections to the paraventricular thalamic nucleus in the rat. Brain Research 2015;1598:97-113. [DOI: 10.1016/j.brainres.2014.12.029] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 4.4] [Reference Citation Analysis]
124 Branch AF, Navidi W, Tabuchi S, Terao A, Yamanaka A, Scammell TE, Diniz Behn C. Progressive Loss of the Orexin Neurons Reveals Dual Effects on Wakefulness. Sleep 2016;39:369-77. [PMID: 26446125 DOI: 10.5665/sleep.5446] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
125 Naganuma F, Kroeger D, Bandaru SS, Absi G, Madara JC, Vetrivelan R. Lateral hypothalamic neurotensin neurons promote arousal and hyperthermia. PLoS Biol 2019;17:e3000172. [PMID: 30893297 DOI: 10.1371/journal.pbio.3000172] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
126 Croizier S, Amiot C, Chen X, Presse F, Nahon JL, Wu JY, Fellmann D, Risold PY. Development of posterior hypothalamic neurons enlightens a switch in the prosencephalic basic plan. PLoS One 2011;6:e28574. [PMID: 22194855 DOI: 10.1371/journal.pone.0028574] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 1.8] [Reference Citation Analysis]
127 Kostin A, McGinty D, Szymusiak R, Alam MN. Sleep-wake and diurnal modulation of nitric oxide in the perifornical-lateral hypothalamic area: real-time detection in freely behaving rats. Neuroscience 2013;254:275-84. [PMID: 24056193 DOI: 10.1016/j.neuroscience.2013.09.022] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
128 Schmidt FM, Kratzsch J, Gertz HJ, Tittmann M, Jahn I, Pietsch UC, Kaisers UX, Thiery J, Hegerl U, Schönknecht P. Cerebrospinal fluid melanin-concentrating hormone (MCH) and hypocretin-1 (HCRT-1, orexin-A) in Alzheimer's disease. PLoS One 2013;8:e63136. [PMID: 23667582 DOI: 10.1371/journal.pone.0063136] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 4.3] [Reference Citation Analysis]
129 Brooks P, Peever J. A Temporally Controlled Inhibitory Drive Coordinates Twitch Movements during REM Sleep. Current Biology 2016;26:1177-82. [DOI: 10.1016/j.cub.2016.03.013] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
130 Brown JA, Woodworth HL, Leinninger GM. To ingest or rest? Specialized roles of lateral hypothalamic area neurons in coordinating energy balance. Front Syst Neurosci 2015;9:9. [PMID: 25741247 DOI: 10.3389/fnsys.2015.00009] [Cited by in Crossref: 47] [Cited by in F6Publishing: 51] [Article Influence: 6.7] [Reference Citation Analysis]
131 de Lecea L, Huerta R. Hypocretin (orexin) regulation of sleep-to-wake transitions. Front Pharmacol. 2014;5:16. [PMID: 24575043 DOI: 10.3389/fphar.2014.00016] [Cited by in Crossref: 68] [Cited by in F6Publishing: 69] [Article Influence: 8.5] [Reference Citation Analysis]
132 Ayala C, Pennacchio GE, Soaje M, Carreño NB, Bittencourt JC, Jahn GA, Celis ME, Valdez SR. Effects of thyroid status on NEI concentration in specific brain areas related to reproduction during the estrous cycle. Peptides 2013;49:74-80. [DOI: 10.1016/j.peptides.2013.08.016] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
133 Kostin A, Alam MA, McGinty D, Alam MN. Adult hypothalamic neurogenesis and sleep-wake dysfunction in aging. Sleep 2021;44:zsaa173. [PMID: 33202015 DOI: 10.1093/sleep/zsaa173] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
134 Méndez-díaz M, Domínguez Martín E, Pérez Morales M, Ruiz-contreras A, Navarro L, Prospéro-garcía O. The anorexigenic peptide cocaine-and-amphetamine-regulated transcript modulates rem-sleep in rats. Neuropeptides 2009;43:499-505. [DOI: 10.1016/j.npep.2009.08.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
135 Li JX, Yoshida T, Monk KJ, Katz DB. Lateral hypothalamus contains two types of palatability-related taste responses with distinct dynamics. J Neurosci 2013;33:9462-73. [PMID: 23719813 DOI: 10.1523/JNEUROSCI.3935-12.2013] [Cited by in Crossref: 40] [Cited by in F6Publishing: 27] [Article Influence: 4.4] [Reference Citation Analysis]
136 Dias Abdo Agamme AL, Aguilar Calegare BF, Fernandes L, Costa A, Lagos P, Torterolo P, D’almeida V. MCH levels in the CSF, brain preproMCH and MCHR1 gene expression during paradoxical sleep deprivation, sleep rebound and chronic sleep restriction. Peptides 2015;74:9-15. [DOI: 10.1016/j.peptides.2015.10.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
137 Oh SG, Hwang YG, Lee HS. LIM homeobox 6 (Lhx6)+ neurons in the ventral zona incerta project to the core portion of the lateral supramammillary nucleus in the rat. Brain Res 2020;1748:147125. [PMID: 32931819 DOI: 10.1016/j.brainres.2020.147125] [Reference Citation Analysis]
138 Pérez-morales M, Alvarado-capuleño I, López-colomé AM, Méndez-díaz M, Ruiz-contreras AE, Prospéro-garcía O. Activation of PAR1 in the lateral hypothalamus of rats enhances food intake and REMS through CB1R. NeuroReport 2012;23:814-8. [DOI: 10.1097/wnr.0b013e328357615a] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 0.9] [Reference Citation Analysis]
139 Sapin E, Bérod A, Léger L, Herman PA, Luppi PH, Peyron C. A very large number of GABAergic neurons are activated in the tuberal hypothalamus during paradoxical (REM) sleep hypersomnia. PLoS One 2010;5:e11766. [PMID: 20668680 DOI: 10.1371/journal.pone.0011766] [Cited by in Crossref: 56] [Cited by in F6Publishing: 55] [Article Influence: 4.7] [Reference Citation Analysis]
140 Torterolo P, Chase MH. The hypocretins (orexins) mediate the "phasic" components of REM sleep: A new hypothesis. Sleep Sci 2014;7:19-29. [PMID: 26483897 DOI: 10.1016/j.slsci.2014.07.021] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
141 Szabadi E. Selective targets for arousal-modifying drugs: implications for the treatment of sleep disorders. Drug Discovery Today 2014;19:701-8. [DOI: 10.1016/j.drudis.2014.01.001] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 1.9] [Reference Citation Analysis]
142 Mickelsen LE, Kolling FW 4th, Chimileski BR, Fujita A, Norris C, Chen K, Nelson CE, Jackson AC. Neurochemical Heterogeneity Among Lateral Hypothalamic Hypocretin/Orexin and Melanin-Concentrating Hormone Neurons Identified Through Single-Cell Gene Expression Analysis. eNeuro 2017;4:ENEURO. [PMID: 28966976 DOI: 10.1523/ENEURO.0013-17.2017] [Cited by in Crossref: 48] [Cited by in F6Publishing: 33] [Article Influence: 9.6] [Reference Citation Analysis]
143 Rolls A. Hypothalamic Control of Sleep in Aging. Neuromol Med 2012;14:139-53. [DOI: 10.1007/s12017-012-8175-0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
144 Croizier S, Cardot J, Brischoux F, Fellmann D, Griffond B, Risold PY. The vertebrate diencephalic MCH system: a versatile neuronal population in an evolving brain. Front Neuroendocrinol 2013;34:65-87. [PMID: 23088995 DOI: 10.1016/j.yfrne.2012.10.001] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 1.9] [Reference Citation Analysis]
145 Wang Y, Guo R, Chen B, Rahman T, Cai L, Li Y, Dong Y, Tseng GC, Fang J, Seney ML, Huang YH. Cocaine-induced neural adaptations in the lateral hypothalamic melanin-concentrating hormone neurons and the role in regulating rapid eye movement sleep after withdrawal. Mol Psychiatry 2021;26:3152-68. [PMID: 33093653 DOI: 10.1038/s41380-020-00921-1] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
146 Vyazovskiy VV, Delogu A. NREM and REM Sleep: Complementary Roles in Recovery after Wakefulness. Neuroscientist 2014;20:203-19. [PMID: 24598308 DOI: 10.1177/1073858413518152] [Cited by in Crossref: 80] [Cited by in F6Publishing: 62] [Article Influence: 10.0] [Reference Citation Analysis]
147 Bonnavion P, Jackson AC, Carter ME, de Lecea L. Antagonistic interplay between hypocretin and leptin in the lateral hypothalamus regulates stress responses. Nat Commun 2015;6:6266. [PMID: 25695914 DOI: 10.1038/ncomms7266] [Cited by in Crossref: 91] [Cited by in F6Publishing: 86] [Article Influence: 13.0] [Reference Citation Analysis]
148 Zhang Z, Zhong P, Hu F, Barger Z, Ren Y, Ding X, Li S, Weber F, Chung S, Palmiter RD, Dan Y. An Excitatory Circuit in the Perioculomotor Midbrain for Non-REM Sleep Control. Cell 2019;177:1293-1307.e16. [PMID: 31031008 DOI: 10.1016/j.cell.2019.03.041] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 8.3] [Reference Citation Analysis]
149 Adamantidis A, Carter MC, de Lecea L. Optogenetic deconstruction of sleep-wake circuitry in the brain. Front Mol Neurosci 2010;2:31. [PMID: 20126433 DOI: 10.3389/neuro.02.031.2009] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 2.6] [Reference Citation Analysis]
150 Verty ANA, Allen AM, Oldfield BJ. The Endogenous Actions of Hypothalamic Peptides on Brown Adipose Tissue Thermogenesis in the Rat. Endocrinology 2010;151:4236-46. [DOI: 10.1210/en.2009-1235] [Cited by in Crossref: 45] [Cited by in F6Publishing: 41] [Article Influence: 3.8] [Reference Citation Analysis]
151 Blouin AM, Fried I, Wilson CL, Staba RJ, Behnke EJ, Lam HA, Maidment NT, Karlsson KÆ, Lapierre JL, Siegel JM. Human hypocretin and melanin-concentrating hormone levels are linked to emotion and social interaction. Nat Commun 2013;4:1547. [PMID: 23462990 DOI: 10.1038/ncomms2461] [Cited by in Crossref: 142] [Cited by in F6Publishing: 133] [Article Influence: 15.8] [Reference Citation Analysis]
152 Ferrari LL, Park D, Zhu L, Palmer MR, Broadhurst RY, Arrigoni E. Regulation of Lateral Hypothalamic Orexin Activity by Local GABAergic Neurons. J Neurosci 2018;38:1588-99. [PMID: 29311142 DOI: 10.1523/JNEUROSCI.1925-17.2017] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 5.8] [Reference Citation Analysis]
153 Nardone R, Bergmann J, Kunz A, Caleri F, Seidl M, Tezzon F, Gerstenbrand F, Trinka E, Golaszewski S. Cortical Excitability Changes in Patients with Sleep-Wake Disturbances after Traumatic Brain Injury. Journal of Neurotrauma 2011;28:1165-71. [DOI: 10.1089/neu.2010.1748] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 3.1] [Reference Citation Analysis]
154 Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE. Sleep state switching. Neuron 2010;68:1023-42. [PMID: 21172606 DOI: 10.1016/j.neuron.2010.11.032] [Cited by in Crossref: 775] [Cited by in F6Publishing: 639] [Article Influence: 70.5] [Reference Citation Analysis]
155 Torterolo P, Lagos P, Monti JM. Melanin-concentrating hormone: a new sleep factor? Front Neurol 2011;2:14. [PMID: 21516258 DOI: 10.3389/fneur.2011.00014] [Cited by in Crossref: 50] [Cited by in F6Publishing: 37] [Article Influence: 4.5] [Reference Citation Analysis]
156 De la Herrán-arita AK, Equihua-benítez AC, Drucker-colín R. Treatment of cataplexy. Expert Opinion on Orphan Drugs 2013;1:199-210. [DOI: 10.1517/21678707.2013.765359] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
157 Pelluru D, Konadhode RR, Bhat NR, Shiromani PJ. Optogenetic stimulation of astrocytes in the posterior hypothalamus increases sleep at night in C57BL/6J mice. Eur J Neurosci 2016;43:1298-306. [PMID: 26369866 DOI: 10.1111/ejn.13074] [Cited by in Crossref: 57] [Cited by in F6Publishing: 53] [Article Influence: 8.1] [Reference Citation Analysis]
158 Weber F, Hoang Do JP, Chung S, Beier KT, Bikov M, Saffari Doost M, Dan Y. Regulation of REM and Non-REM Sleep by Periaqueductal GABAergic Neurons. Nat Commun 2018;9:354. [PMID: 29367602 DOI: 10.1038/s41467-017-02765-w] [Cited by in Crossref: 61] [Cited by in F6Publishing: 58] [Article Influence: 15.3] [Reference Citation Analysis]
159 de Lecea L. A decade of hypocretins: past, present and future of the neurobiology of arousal. Acta Physiol (Oxf) 2010;198:203-8. [PMID: 19473132 DOI: 10.1111/j.1748-1716.2009.02004.x] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 2.1] [Reference Citation Analysis]
160 Linehan V, Hirasawa M. Electrophysiological Properties of Melanin-Concentrating Hormone and Orexin Neurons in Adolescent Rats. Front Cell Neurosci 2018;12:70. [PMID: 29662440 DOI: 10.3389/fncel.2018.00070] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
161 Toossi H, Del Cid-Pellitero E, Jones BE. GABA Receptors on Orexin and Melanin-Concentrating Hormone Neurons Are Differentially Homeostatically Regulated Following Sleep Deprivation. eNeuro 2016;3:ENEURO. [PMID: 27294196 DOI: 10.1523/ENEURO.0077-16.2016] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 2.2] [Reference Citation Analysis]
162 Oesch LT, Gazea M, Gent TC, Bandarabadi M, Gutierrez Herrera C, Adamantidis AR. REM sleep stabilizes hypothalamic representation of feeding behavior. Proc Natl Acad Sci U S A 2020;117:19590-8. [PMID: 32732431 DOI: 10.1073/pnas.1921909117] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
163 Adamantidis A, de Lecea L. A role for Melanin-Concentrating Hormone in learning and memory. Peptides 2009;30:2066-70. [PMID: 19576257 DOI: 10.1016/j.peptides.2009.06.024] [Cited by in Crossref: 37] [Cited by in F6Publishing: 32] [Article Influence: 2.8] [Reference Citation Analysis]
164 Alam MA, Kumar S, McGinty D, Alam MN, Szymusiak R. Neuronal activity in the preoptic hypothalamus during sleep deprivation and recovery sleep. J Neurophysiol 2014;111:287-99. [PMID: 24174649 DOI: 10.1152/jn.00504.2013] [Cited by in Crossref: 65] [Cited by in F6Publishing: 51] [Article Influence: 7.2] [Reference Citation Analysis]
165 Berman JR, Skariah G, Maro GS, Mignot E, Mourrain P. Characterization of two melanin-concentrating hormone genes in zebrafish reveals evolutionary and physiological links with the mammalian MCH system. J Comp Neurol. 2009;517:695-710. [PMID: 19827161 DOI: 10.1002/cne.22171] [Cited by in Crossref: 70] [Cited by in F6Publishing: 64] [Article Influence: 5.8] [Reference Citation Analysis]
166 Pérez-morales M, De La Herrán-arita AK, Méndez-díaz M, Ruiz-contreras AE, Drucker-colín R, Prospéro-garcía O. 2-AG into the lateral hypothalamus increases REM sleep and cFos expression in melanin concentrating hormone neurons in rats. Pharmacology Biochemistry and Behavior 2013;108:1-7. [DOI: 10.1016/j.pbb.2013.04.006] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
167 Brown RE, McKenna JT. Turning a Negative into a Positive: Ascending GABAergic Control of Cortical Activation and Arousal. Front Neurol 2015;6:135. [PMID: 26124745 DOI: 10.3389/fneur.2015.00135] [Cited by in Crossref: 35] [Cited by in F6Publishing: 40] [Article Influence: 5.0] [Reference Citation Analysis]
168 Clément O, Sapin E, Bérod A, Fort P, Luppi PH. Evidence that neurons of the sublaterodorsal tegmental nucleus triggering paradoxical (REM) sleep are glutamatergic. Sleep 2011;34:419-23. [PMID: 21461384 DOI: 10.1093/sleep/34.4.419] [Cited by in Crossref: 97] [Cited by in F6Publishing: 89] [Article Influence: 8.8] [Reference Citation Analysis]
169 Lőrincz ML, Adamantidis AR. Monoaminergic control of brain states and sensory processing: Existing knowledge and recent insights obtained with optogenetics. Prog Neurobiol 2017;151:237-53. [PMID: 27634227 DOI: 10.1016/j.pneurobio.2016.09.003] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 3.7] [Reference Citation Analysis]
170 Baumann CR, Bassetti CL, Valko PO, Haybaeck J, Keller M, Clark E, Stocker R, Tolnay M, Scammell TE. Loss of hypocretin (orexin) neurons with traumatic brain injury. Ann Neurol. 2009;66:555-559. [PMID: 19847903 DOI: 10.1002/ana.21836] [Cited by in Crossref: 129] [Cited by in F6Publishing: 108] [Article Influence: 9.9] [Reference Citation Analysis]
171 Kostin A, Mcginty D, Szymusiak R, Alam M. Mechanisms mediating effects of nitric oxide on perifornical lateral hypothalamic neurons. Neuroscience 2012;220:179-90. [DOI: 10.1016/j.neuroscience.2012.06.014] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
172 Kosse C, Gonzalez A, Burdakov D. Predictive models of glucose control: roles for glucose-sensing neurones. Acta Physiol (Oxf) 2015;213:7-18. [PMID: 25131833 DOI: 10.1111/apha.12360] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 2.9] [Reference Citation Analysis]
173 Risold P, Croizier S, Legagneux K, Brischoux F, Fellmann D, Griffond B. The development of the MCH system. Peptides 2009;30:1969-72. [DOI: 10.1016/j.peptides.2009.07.016] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
174 Li SB, de Lecea L. The hypocretin (orexin) system: from a neural circuitry perspective. Neuropharmacology 2020;167:107993. [PMID: 32135427 DOI: 10.1016/j.neuropharm.2020.107993] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 14.5] [Reference Citation Analysis]
175 Cook LB, Shum L, Portwood S. Melanin-concentrating hormone facilitates migration of preadipocytes. Mol Cell Endocrinol 2010;320:45-50. [PMID: 20171260 DOI: 10.1016/j.mce.2010.02.009] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
176 Lee H, Yamazaki R, Wang D, Arthaud S, Fort P, Denardo LA, Luppi P. Targeted recombination in active populations as a new mouse genetic model to study sleep‐active neuronal populations: Demonstration that Lhx6+ neurons in the ventral zona incerta are activated during paradoxical sleep hypersomnia. J Sleep Res 2020;29. [DOI: 10.1111/jsr.12976] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
177 Xu Q, Wang DR, Dong H, Chen L, Lu J, Lazarus M, Cherasse Y, Chen GH, Qu WM, Huang ZL. Medial Parabrachial Nucleus Is Essential in Controlling Wakefulness in Rats. Front Neurosci 2021;15:645877. [PMID: 33841086 DOI: 10.3389/fnins.2021.645877] [Reference Citation Analysis]
178 Wu M, Dumalska I, Morozova E, van den Pol A, Alreja M. Melanin-concentrating hormone directly inhibits GnRH neurons and blocks kisspeptin activation, linking energy balance to reproduction. Proc Natl Acad Sci U S A 2009;106:17217-22. [PMID: 19805188 DOI: 10.1073/pnas.0908200106] [Cited by in Crossref: 69] [Cited by in F6Publishing: 76] [Article Influence: 5.3] [Reference Citation Analysis]
179 Del Cid-Pellitero E, Jones BE. Immunohistochemical evidence for synaptic release of GABA from melanin-concentrating hormone containing varicosities in the locus coeruleus. Neuroscience 2012;223:269-76. [PMID: 22890079 DOI: 10.1016/j.neuroscience.2012.07.072] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 3.5] [Reference Citation Analysis]
180 Liu M, Blanco-Centurion C, Konadhode R, Begum S, Pelluru D, Gerashchenko D, Sakurai T, Yanagisawa M, van den Pol AN, Shiromani PJ. Orexin gene transfer into zona incerta neurons suppresses muscle paralysis in narcoleptic mice. J Neurosci 2011;31:6028-40. [PMID: 21508228 DOI: 10.1523/JNEUROSCI.6069-10.2011] [Cited by in Crossref: 54] [Cited by in F6Publishing: 32] [Article Influence: 4.9] [Reference Citation Analysis]
181 Okamoto K, Yamasaki M, Takao K, Soya S, Iwasaki M, Sasaki K, Magoori K, Sakakibara I, Miyakawa T, Mieda M, Watanabe M, Sakai J, Yanagisawa M, Sakurai T. QRFP-Deficient Mice Are Hypophagic, Lean, Hypoactive and Exhibit Increased Anxiety-Like Behavior. PLoS One 2016;11:e0164716. [PMID: 27835635 DOI: 10.1371/journal.pone.0164716] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
182 Blanco-Centurion C, Luo S, Vidal-Ortiz A, Swank C, Shiromani PJ. Activity of a subset of vesicular GABA-transporter neurons in the ventral zona incerta anticipates sleep onset. Sleep 2021;44:zsaa268. [PMID: 33270105 DOI: 10.1093/sleep/zsaa268] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
183 Del Cid-Pellitero E, Plavski A, Mainville L, Jones BE. Homeostatic Changes in GABA and Glutamate Receptors on Excitatory Cortical Neurons during Sleep Deprivation and Recovery. Front Syst Neurosci 2017;11:17. [PMID: 28408870 DOI: 10.3389/fnsys.2017.00017] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]
184 Griffond B, Risold P. MCH and feeding behavior-interaction with peptidic network. Peptides 2009;30:2045-51. [DOI: 10.1016/j.peptides.2009.07.008] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 1.9] [Reference Citation Analysis]
185 Sugiishi A, Kimura M, Kamiya R, Ueki S, Yoneya M, Saito Y, Saito H. Derangement of ghrelin secretion after long-term high-fat diet feeding in rats. Hepatol Res 2013;43:1105-14. [PMID: 23374505 DOI: 10.1111/hepr.12062] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
186 Nollet M, Gaillard P, Minier F, Tanti A, Belzung C, Leman S. Activation of orexin neurons in dorsomedial/perifornical hypothalamus and antidepressant reversal in a rodent model of depression. Neuropharmacology 2011;61:336-46. [PMID: 21530551 DOI: 10.1016/j.neuropharm.2011.04.022] [Cited by in Crossref: 70] [Cited by in F6Publishing: 69] [Article Influence: 6.4] [Reference Citation Analysis]
187 Toossi H, Del Cid-Pellitero E, Jones BE. Homeostatic Changes in GABA and Acetylcholine Muscarinic Receptors on GABAergic Neurons in the Mesencephalic Reticular Formation following Sleep Deprivation. eNeuro 2017;4:ENEURO. [PMID: 29302615 DOI: 10.1523/ENEURO.0269-17.2017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
188 Li N, Nattie E, Li A. The role of melanin concentrating hormone (MCH) in the central chemoreflex: a knockdown study by siRNA in the lateral hypothalamus in rats. PLoS One 2014;9:e103585. [PMID: 25084113 DOI: 10.1371/journal.pone.0103585] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
189 Cheng Z, Yang W, Li B, Cui R. KLF4 Exerts Sedative Effects in Pentobarbital-Treated Mice. J Mol Neurosci 2021;71:596-606. [PMID: 32789565 DOI: 10.1007/s12031-020-01680-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
190 Sabetghadam A, Grabowiecka-nowak A, Kania A, Gugula A, Blasiak E, Blasiak T, Ma S, Gundlach AL, Blasiak A. Melanin-concentrating hormone and orexin systems in rat nucleus incertus: Dual innervation, bidirectional effects on neuron activity, and differential influences on arousal and feeding. Neuropharmacology 2018;139:238-56. [DOI: 10.1016/j.neuropharm.2018.07.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
191 Bonnavion P, Mickelsen LE, Fujita A, de Lecea L, Jackson AC. Hubs and spokes of the lateral hypothalamus: cell types, circuits and behaviour. J Physiol 2016;594:6443-62. [PMID: 27302606 DOI: 10.1113/JP271946] [Cited by in Crossref: 95] [Cited by in F6Publishing: 53] [Article Influence: 15.8] [Reference Citation Analysis]
192 Guyon A, Conductier G, Rovere C, Enfissi A, Nahon J. Melanin-concentrating hormone producing neurons: Activities and modulations. Peptides 2009;30:2031-9. [DOI: 10.1016/j.peptides.2009.05.028] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 3.5] [Reference Citation Analysis]
193 de Lecea L, Carter ME, Adamantidis A. Shining light on wakefulness and arousal. Biol Psychiatry 2012;71:1046-52. [PMID: 22440618 DOI: 10.1016/j.biopsych.2012.01.032] [Cited by in Crossref: 54] [Cited by in F6Publishing: 46] [Article Influence: 5.4] [Reference Citation Analysis]
194 Peleg-Raibstein D, Burdakov D. Do orexin/hypocretin neurons signal stress or reward? Peptides 2021;145:170629. [PMID: 34416308 DOI: 10.1016/j.peptides.2021.170629] [Reference Citation Analysis]
195 Yoon YS, Lee HS. Projections from melanin-concentrating hormone (MCH) neurons to the dorsal raphe or the nuclear core of the locus coeruleus in the rat. Brain Res 2013;1490:72-82. [PMID: 22967922 DOI: 10.1016/j.brainres.2012.08.022] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 2.8] [Reference Citation Analysis]
196 Blanco-Centurion C, Bendell E, Zou B, Sun Y, Shiromani PJ, Liu M. VGAT and VGLUT2 expression in MCH and orexin neurons in double transgenic reporter mice. IBRO Rep 2018;4:44-9. [PMID: 30155524 DOI: 10.1016/j.ibror.2018.05.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
197 Barson JR, Morganstern I, Leibowitz SF. Similarities in hypothalamic and mesocorticolimbic circuits regulating the overconsumption of food and alcohol. Physiol Behav 2011;104:128-37. [PMID: 21549731 DOI: 10.1016/j.physbeh.2011.04.054] [Cited by in Crossref: 44] [Cited by in F6Publishing: 45] [Article Influence: 4.0] [Reference Citation Analysis]
198 Lagos P, Monti JM, Jantos H, Torterolo P. Microinjection of the melanin-concentrating hormone into the lateral basal forebrain increases REM sleep and reduces wakefulness in the rat. Life Sci 2012;90:895-9. [PMID: 22579511 DOI: 10.1016/j.lfs.2012.04.019] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 2.8] [Reference Citation Analysis]
199 Zhang X, van den Pol AN. Thyrotropin-releasing hormone (TRH) inhibits melanin-concentrating hormone neurons: implications for TRH-mediated anorexic and arousal actions. J Neurosci 2012;32:3032-43. [PMID: 22378876 DOI: 10.1523/JNEUROSCI.5966-11.2012] [Cited by in Crossref: 27] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
200 Peyron C, Sapin E, Leger L, Luppi P, Fort P. Role of the melanin-concentrating hormone neuropeptide in sleep regulation. Peptides 2009;30:2052-9. [DOI: 10.1016/j.peptides.2009.07.022] [Cited by in Crossref: 60] [Cited by in F6Publishing: 49] [Article Influence: 4.6] [Reference Citation Analysis]
201 Izawa S, Yoneshiro T, Kondoh K, Nakagiri S, Okamatsu-Ogura Y, Terao A, Minokoshi Y, Yamanaka A, Kimura K. Melanin-concentrating hormone-producing neurons in the hypothalamus regulate brown adipose tissue and thus contribute to energy expenditure. J Physiol 2021. [PMID: 33899241 DOI: 10.1113/JP281241] [Reference Citation Analysis]
202 Kang YJ, Tian G, Bazrafkan A, Farahabadi MH, Azadian M, Abbasi H, Shamaoun BE, Steward O, Akbari Y. Recovery from Coma Post-Cardiac Arrest Is Dependent on the Orexin Pathway. J Neurotrauma 2017;34:2823-32. [PMID: 28447885 DOI: 10.1089/neu.2016.4852] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 2.4] [Reference Citation Analysis]
203 Jones BE. Arousal and sleep circuits. Neuropsychopharmacology 2020;45:6-20. [PMID: 31216564 DOI: 10.1038/s41386-019-0444-2] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 10.3] [Reference Citation Analysis]
204 Michinaga S, Hisatsune A, Isohama Y, Katsuki H. Inhibition of neural activity depletes orexin from rat hypothalamic slice culture. J Neurosci Res 2010;88:214-21. [PMID: 19610104 DOI: 10.1002/jnr.22183] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
205 Tsuneki H, Wada T, Sasaoka T. Role of orexin in the regulation of glucose homeostasis. Acta Physiologica 2010;198:335-48. [DOI: 10.1111/j.1748-1716.2009.02008.x] [Cited by in Crossref: 45] [Cited by in F6Publishing: 36] [Article Influence: 3.8] [Reference Citation Analysis]
206 Szymusiak RS. New Insights into Melanin Concentrating Hormone and Sleep: A Critical Topics Forum. Sleep 2013;36:1765-6. [DOI: 10.5665/sleep.3184] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
207 Jancsik V, Bene R, Sótonyi P, Zachar G. Sub-cellular organization of the melanin-concentrating hormone neurons in the hypothalamus. Peptides 2018;99:56-60. [PMID: 29108810 DOI: 10.1016/j.peptides.2017.11.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
208 Le Bon O. Relationships between REM and NREM in the NREM-REM sleep cycle: a review on competing concepts. Sleep Medicine 2020;70:6-16. [DOI: 10.1016/j.sleep.2020.02.004] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
209 Kostin A, Siegel JM, Alam MN. Lack of hypocretin attenuates behavioral changes produced by glutamatergic activation of the perifornical-lateral hypothalamic area. Sleep 2014;37:1011-20. [PMID: 24790280 DOI: 10.5665/sleep.3680] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
210 Vetrivelan R, Kong D, Ferrari LL, Arrigoni E, Madara JC, Bandaru SS, Lowell BB, Lu J, Saper CB. Melanin-concentrating hormone neurons specifically promote rapid eye movement sleep in mice. Neuroscience 2016;336:102-13. [PMID: 27595887 DOI: 10.1016/j.neuroscience.2016.08.046] [Cited by in Crossref: 49] [Cited by in F6Publishing: 45] [Article Influence: 8.2] [Reference Citation Analysis]
211 Blanco-Centurion C, Luo S, Spergel DJ, Vidal-Ortiz A, Oprisan SA, Van den Pol AN, Liu M, Shiromani PJ. Dynamic Network Activation of Hypothalamic MCH Neurons in REM Sleep and Exploratory Behavior. J Neurosci 2019;39:4986-98. [PMID: 31036764 DOI: 10.1523/JNEUROSCI.0305-19.2019] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 8.3] [Reference Citation Analysis]
212 Hong EY, Yoon YS, Lee HS. Differential distribution of melanin-concentrating hormone (MCH)- and hypocretin (Hcrt)-immunoreactive neurons projecting to the mesopontine cholinergic complex in the rat. Brain Res 2011;1424:20-31. [PMID: 22015351 DOI: 10.1016/j.brainres.2011.09.051] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
213 Morin LP. A Path to Sleep Is through the Eye. eNeuro 2015;2:ENEURO. [PMID: 26464977 DOI: 10.1523/ENEURO.0069-14.2015] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
214 Vetrivelan R, Lu J. Neural Circuitry Regulating REM Sleep and Its Implication in REM Sleep Behavior Disorder. In: Schenck CH, Högl B, Videnovic A, editors. Rapid-Eye-Movement Sleep Behavior Disorder. Cham: Springer International Publishing; 2019. pp. 559-77. [DOI: 10.1007/978-3-319-90152-7_39] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
215 Lin JS, Anaclet C, Sergeeva OA, Haas HL. The waking brain: an update. Cell Mol Life Sci 2011;68:2499-512. [PMID: 21318261 DOI: 10.1007/s00018-011-0631-8] [Cited by in Crossref: 77] [Cited by in F6Publishing: 65] [Article Influence: 7.0] [Reference Citation Analysis]
216 McGregor R, Shan L, Wu MF, Siegel JM. Diurnal fluctuation in the number of hypocretin/orexin and histamine producing: Implication for understanding and treating neuronal loss. PLoS One 2017;12:e0178573. [PMID: 28570646 DOI: 10.1371/journal.pone.0178573] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 4.2] [Reference Citation Analysis]
217 Benedetto L, Torterolo P, Ferreira A. Melanin-Concentrating Hormone: Role in Nursing and Sleep in Mother Rats. In: Pandi-perumal SR, Torterolo P, Monti JM, editors. Melanin-Concentrating Hormone and Sleep. Cham: Springer International Publishing; 2018. pp. 149-70. [DOI: 10.1007/978-3-319-75765-0_9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
218 Vanini G, Torterolo P. Sleep-Wake Neurobiology. Adv Exp Med Biol 2021;1297:65-82. [PMID: 33537937 DOI: 10.1007/978-3-030-61663-2_5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
219 Li A, Nattie E. Orexin, cardio-respiratory function, and hypertension. Front Neurosci 2014;8:22. [PMID: 24574958 DOI: 10.3389/fnins.2014.00022] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 3.3] [Reference Citation Analysis]
220 Sirieix C, Gervasoni D, Luppi PH, Léger L. Role of the lateral paragigantocellular nucleus in the network of paradoxical (REM) sleep: an electrophysiological and anatomical study in the rat. PLoS One 2012;7:e28724. [PMID: 22235249 DOI: 10.1371/journal.pone.0028724] [Cited by in Crossref: 39] [Cited by in F6Publishing: 32] [Article Influence: 3.9] [Reference Citation Analysis]
221 Haas HL, Lin J. Waking with the hypothalamus. Pflugers Arch - Eur J Physiol 2012;463:31-42. [DOI: 10.1007/s00424-011-0996-4] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
222 Takase K, Kikuchi K, Tsuneoka Y, Oda S, Kuroda M, Funato H. Meta-analysis of melanin-concentrating hormone signaling-deficient mice on behavioral and metabolic phenotypes. PLoS One 2014;9:e99961. [PMID: 24924345 DOI: 10.1371/journal.pone.0099961] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
223 Hung CJ, Ono D, Kilduff TS, Yamanaka A. Dual orexin and MCH neuron-ablated mice display severe sleep attacks and cataplexy. Elife 2020;9:e54275. [PMID: 32314734 DOI: 10.7554/eLife.54275] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
224 Tellez LA, Perez IO, Simon SA, Gutierrez R. Transitions between sleep and feeding states in rat ventral striatum neurons. J Neurophysiol 2012;108:1739-51. [PMID: 22745464 DOI: 10.1152/jn.00394.2012] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 1.4] [Reference Citation Analysis]
225 Concetti C, Burdakov D. Orexin/Hypocretin and MCH Neurons: Cognitive and Motor Roles Beyond Arousal. Front Neurosci 2021;15:639313. [PMID: 33828450 DOI: 10.3389/fnins.2021.639313] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
226 Nakamura M, Kanbayashi T, Sugiura T, Inoue Y. Relationship between clinical characteristics of narcolepsy and CSF orexin-A levels. J Sleep Res 2011;20:45-9. [PMID: 20642748 DOI: 10.1111/j.1365-2869.2010.00870.x] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 2.2] [Reference Citation Analysis]
227 Konadhode RR, Pelluru D, Blanco-Centurion C, Zayachkivsky A, Liu M, Uhde T, Glen WB Jr, van den Pol AN, Mulholland PJ, Shiromani PJ. Optogenetic stimulation of MCH neurons increases sleep. J Neurosci 2013;33:10257-63. [PMID: 23785141 DOI: 10.1523/JNEUROSCI.1225-13.2013] [Cited by in Crossref: 170] [Cited by in F6Publishing: 98] [Article Influence: 18.9] [Reference Citation Analysis]
228 Arrigoni E, Chen MC, Fuller PM. The anatomical, cellular and synaptic basis of motor atonia during rapid eye movement sleep. J Physiol 2016;594:5391-414. [PMID: 27060683 DOI: 10.1113/JP271324] [Cited by in Crossref: 32] [Cited by in F6Publishing: 10] [Article Influence: 5.3] [Reference Citation Analysis]
229 Weber F, Dan Y. Circuit-based interrogation of sleep control. Nature 2016;538:51-9. [PMID: 27708309 DOI: 10.1038/nature19773] [Cited by in Crossref: 166] [Cited by in F6Publishing: 141] [Article Influence: 27.7] [Reference Citation Analysis]
230 Hsieh KC, Gvilia I, Kumar S, Uschakov A, McGinty D, Alam MN, Szymusiak R. c-Fos expression in neurons projecting from the preoptic and lateral hypothalamic areas to the ventrolateral periaqueductal gray in relation to sleep states. Neuroscience 2011;188:55-67. [PMID: 21601616 DOI: 10.1016/j.neuroscience.2011.05.016] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 2.1] [Reference Citation Analysis]
231 Palomba M, Seke-Etet PF, Laperchia C, Tiberio L, Xu YZ, Colavito V, Grassi-Zucconi G, Bentivoglio M. Alterations of orexinergic and melanin-concentrating hormone neurons in experimental sleeping sickness. Neuroscience 2015;290:185-95. [PMID: 25595977 DOI: 10.1016/j.neuroscience.2014.12.066] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
232 Barson JR, Morganstern I, Leibowitz SF. Complementary roles of orexin and melanin-concentrating hormone in feeding behavior. Int J Endocrinol 2013;2013:983964. [PMID: 23935621 DOI: 10.1155/2013/983964] [Cited by in Crossref: 46] [Cited by in F6Publishing: 45] [Article Influence: 5.1] [Reference Citation Analysis]
233 Noseda R, Borsook D, Burstein R. Neuropeptides and Neurotransmitters That Modulate Thalamo-Cortical Pathways Relevant to Migraine Headache. Headache 2017;57 Suppl 2:97-111. [PMID: 28485844 DOI: 10.1111/head.13083] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 7.3] [Reference Citation Analysis]
234 Jego S, Salvert D, Renouard L, Mori M, Goutagny R, Luppi PH, Fort P. Tuberal hypothalamic neurons secreting the satiety molecule Nesfatin-1 are critically involved in paradoxical (REM) sleep homeostasis. PLoS One 2012;7:e52525. [PMID: 23300698 DOI: 10.1371/journal.pone.0052525] [Cited by in Crossref: 37] [Cited by in F6Publishing: 32] [Article Influence: 3.7] [Reference Citation Analysis]
235 Luppi P, Peyron C, Fort P. Not a single but multiple populations of GABAergic neurons control sleep. Sleep Medicine Reviews 2017;32:85-94. [DOI: 10.1016/j.smrv.2016.03.002] [Cited by in Crossref: 49] [Cited by in F6Publishing: 46] [Article Influence: 9.8] [Reference Citation Analysis]
236 Komagata N, Latifi B, Rusterholz T, Bassetti CLA, Adamantidis A, Schmidt MH. Dynamic REM Sleep Modulation by Ambient Temperature and the Critical Role of the Melanin-Concentrating Hormone System. Curr Biol 2019;29:1976-1987.e4. [PMID: 31155350 DOI: 10.1016/j.cub.2019.05.009] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 6.3] [Reference Citation Analysis]
237 Pace M, Falappa M, Freschi A, Balzani E, Berteotti C, Lo Martire V, Kaveh F, Hovig E, Zoccoli G, Amici R, Cerri M, Urbanucci A, Tucci V. Loss of Snord116 impacts lateral hypothalamus, sleep, and food-related behaviors. JCI Insight 2020;5:137495. [PMID: 32365348 DOI: 10.1172/jci.insight.137495] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
238 Wang D, Opperhuizen A, Reznick J, Turner N, Su Y, Cooney GJ, Kalsbeek A. Effects of feeding time on daily rhythms of neuropeptide and clock gene expression in the rat hypothalamus. Brain Research 2017;1671:93-101. [DOI: 10.1016/j.brainres.2017.07.006] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 4.2] [Reference Citation Analysis]
239 Kostin A, Rai S, Kumar S, Szymusiak R, McGinty D, Alam MN. Nitric oxide production in the perifornical-lateral hypothalamic area and its influences on the modulation of perifornical-lateral hypothalamic area neurons. Neuroscience 2011;179:159-69. [PMID: 21277356 DOI: 10.1016/j.neuroscience.2011.01.052] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
240 Jones BE. The mysteries of sleep and waking unveiled by Michel Jouvet. Sleep Med 2018;49:14-9. [PMID: 29983241 DOI: 10.1016/j.sleep.2018.05.030] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
241 Cabanas M, Pistono C, Puygrenier L, Rakesh D, Jeantet Y, Garret M, Cho YH. Neurophysiological and Behavioral Effects of Anti-Orexinergic Treatments in a Mouse Model of Huntington's Disease. Neurotherapeutics 2019;16:784-96. [PMID: 30915710 DOI: 10.1007/s13311-019-00726-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
242 Saper CB, Fuller PM. Wake-sleep circuitry: an overview. Curr Opin Neurobiol 2017;44:186-92. [PMID: 28577468 DOI: 10.1016/j.conb.2017.03.021] [Cited by in Crossref: 168] [Cited by in F6Publishing: 127] [Article Influence: 33.6] [Reference Citation Analysis]
243 Walker WH 2nd, Borniger JC. Molecular Mechanisms of Cancer-Induced Sleep Disruption. Int J Mol Sci 2019;20:E2780. [PMID: 31174326 DOI: 10.3390/ijms20112780] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
244 Luppi P, Fort P. Sleep–wake physiology. Clinical Neurophysiology: Basis and Technical Aspects. Elsevier; 2019. pp. 359-70. [DOI: 10.1016/b978-0-444-64032-1.00023-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 3.3] [Reference Citation Analysis]
245 Tyree SM, de Lecea L. Optogenetic Investigation of Arousal Circuits. Int J Mol Sci 2017;18:E1773. [PMID: 28809797 DOI: 10.3390/ijms18081773] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
246 Sharma R, Parikh M, Mishra V, Zuniga A, Sahota P, Thakkar M. Sleep, sleep homeostasis and arousal disturbances in alcoholism. Brain Res Bull 2022:S0361-9230(22)00031-4. [PMID: 35122900 DOI: 10.1016/j.brainresbull.2022.01.022] [Reference Citation Analysis]
247 Jego S, Adamantidis A. MCH neurons: vigilant workers in the night. Sleep 2013;36:1783-6. [PMID: 24293751 DOI: 10.5665/sleep.3198] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
248 Lu Z, Fukuda S, Minakawa Y, Yasuda A, Sakamoto H, Sawamura S, Takahashi H, Ishii N. Melanin concentrating hormone induces hippocampal acetylcholine release via the medial septum in rats. Peptides 2013;44:32-9. [DOI: 10.1016/j.peptides.2013.03.015] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
249 Luppi P, Clément O, Fort P. Paradoxical (REM) sleep genesis by the brainstem is under hypothalamic control. Current Opinion in Neurobiology 2013;23:786-92. [DOI: 10.1016/j.conb.2013.02.006] [Cited by in Crossref: 77] [Cited by in F6Publishing: 65] [Article Influence: 8.6] [Reference Citation Analysis]
250 Scammell TE, Arrigoni E, Lipton JO. Neural Circuitry of Wakefulness and Sleep. Neuron 2017;93:747-65. [PMID: 28231463 DOI: 10.1016/j.neuron.2017.01.014] [Cited by in Crossref: 298] [Cited by in F6Publishing: 257] [Article Influence: 59.6] [Reference Citation Analysis]
251 Luan X, Sun X, Guo F, Zhang D, Wang C, Ma L, Xu L. Lateral hypothalamic Orexin-A-ergic projections to the arcuate nucleus modulate gastric function in vivo. J Neurochem 2017;143:697-707. [DOI: 10.1111/jnc.14233] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
252 Freeman AAH. Neurochemistry of the Sleep-Wake Cycle in Parkinson’s Disease. In: Videnovic A, Högl B, editors. Disorders of Sleep and Circadian Rhythms in Parkinson's Disease. Vienna: Springer; 2015. pp. 19-33. [DOI: 10.1007/978-3-7091-1631-9_2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
253 Pérez-Morales M, Hurtado-Alvarado G, Morales-Hernández I, Gómez-González B, Domínguez-Salazar E, Velázquez-Moctezuma J. Postnatal overnutrition alters the orexigenic effects of melanin-concentrating hormone (MCH) and reduces MCHR1 hypothalamic expression on spontaneous feeding and fasting. Pharmacol Biochem Behav 2018;175:53-61. [PMID: 30196088 DOI: 10.1016/j.pbb.2018.09.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
254 Jones BE. Principal cell types of sleep-wake regulatory circuits. Curr Opin Neurobiol 2017;44:101-9. [PMID: 28433001 DOI: 10.1016/j.conb.2017.03.018] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 5.8] [Reference Citation Analysis]
255 Shiromani PJ, Blanco-Centurion C, Vidal-Ortiz A. Mapping Network Activity in Sleep. Front Neurosci 2021;15:646468. [PMID: 33828453 DOI: 10.3389/fnins.2021.646468] [Reference Citation Analysis]
256 Schoonakker M, Meijer JH, Deboer T, Fifel K. Heterogeneity in the circadian and homeostatic modulation of multiunit activity in the lateral hypothalamus. Sleep 2018;41. [PMID: 29522210 DOI: 10.1093/sleep/zsy051] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
257 Kosse C, Burdakov D. Natural hypothalamic circuit dynamics underlying object memorization. Nat Commun 2019;10:2505. [PMID: 31175285 DOI: 10.1038/s41467-019-10484-7] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
258 Zitnik GA. Control of arousal through neuropeptide afferents of the locus coeruleus. Brain Research 2016;1641:338-50. [DOI: 10.1016/j.brainres.2015.12.010] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 4.2] [Reference Citation Analysis]
259 Torterolo P, Sampogna S, Chase MH. Hypocretinergic and non-hypocretinergic projections from the hypothalamus to the REM sleep executive area of the pons. Brain Res 2013;1491:68-77. [PMID: 23122879 DOI: 10.1016/j.brainres.2012.10.050] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.5] [Reference Citation Analysis]
260 Tang Y, Benusiglio D, Grinevich V, Lin L. Distinct Types of Feeding Related Neurons in Mouse Hypothalamus. Front Behav Neurosci 2016;10:91. [PMID: 27242460 DOI: 10.3389/fnbeh.2016.00091] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
261 Lagos P, Torterolo P, Jantos H, Monti JM. Immunoneutralization of melanin-concentrating hormone (MCH) in the dorsal raphe nucleus: effects on sleep and wakefulness. Brain Res 2011;1369:112-8. [PMID: 21078307 DOI: 10.1016/j.brainres.2010.11.027] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 2.8] [Reference Citation Analysis]
262 Fraigne JJ, Peever JH. Melanin-concentrating hormone neurons promote and stabilize sleep. Sleep 2013;36:1767-8. [PMID: 24293745 DOI: 10.5665/sleep.3186] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
263 Eban-Rothschild A, Appelbaum L, de Lecea L. Neuronal Mechanisms for Sleep/Wake Regulation and Modulatory Drive. Neuropsychopharmacology 2018;43:937-52. [PMID: 29206811 DOI: 10.1038/npp.2017.294] [Cited by in Crossref: 68] [Cited by in F6Publishing: 51] [Article Influence: 13.6] [Reference Citation Analysis]
264 Masneuf S, Imbach LL, Büchele F, Colacicco G, Penner M, Moreira CG, Ineichen C, Jahanshahi A, Temel Y, Baumann CR, Noain D. Altered sleep intensity upon DBS to hypothalamic sleep-wake centers in rats. Transl Neurosci 2021;12:611-25. [PMID: 35070444 DOI: 10.1515/tnsci-2020-0202] [Reference Citation Analysis]
265 Chen KS, Xu M, Zhang Z, Chang WC, Gaj T, Schaffer DV, Dan Y. A Hypothalamic Switch for REM and Non-REM Sleep. Neuron 2018;97:1168-1176.e4. [PMID: 29478915 DOI: 10.1016/j.neuron.2018.02.005] [Cited by in Crossref: 57] [Cited by in F6Publishing: 42] [Article Influence: 14.3] [Reference Citation Analysis]
266 Jones BE, Hassani OK. The role of Hcrt/Orx and MCH neurons in sleep-wake state regulation. Sleep 2013;36:1769-72. [PMID: 24293746 DOI: 10.5665/sleep.3188] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.0] [Reference Citation Analysis]
267 Carter ME, de Lecea L, Adamantidis A. Functional wiring of hypocretin and LC-NE neurons: implications for arousal. Front Behav Neurosci 2013;7:43. [PMID: 23730276 DOI: 10.3389/fnbeh.2013.00043] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 4.7] [Reference Citation Analysis]
268 Torterolo P, Castro-Zaballa S, Cavelli M, Chase MH, Falconi A. Neocortical 40 Hz oscillations during carbachol-induced rapid eye movement sleep and cataplexy. Eur J Neurosci 2016;43:580-9. [PMID: 26670051 DOI: 10.1111/ejn.13151] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
269 Izawa S, Chowdhury S, Miyazaki T, Mukai Y, Ono D, Inoue R, Ohmura Y, Mizoguchi H, Kimura K, Yoshioka M, Terao A, Kilduff TS, Yamanaka A. REM sleep-active MCH neurons are involved in forgetting hippocampus-dependent memories. Science 2019;365:1308-13. [PMID: 31604241 DOI: 10.1126/science.aax9238] [Cited by in Crossref: 51] [Cited by in F6Publishing: 34] [Article Influence: 25.5] [Reference Citation Analysis]
270 Devera A, Pascovich C, Lagos P, Falconi A, Sampogna S, Chase MH, Torterolo P. Melanin-concentrating hormone (MCH) modulates the activity of dorsal raphe neurons. Brain Research 2015;1598:114-28. [DOI: 10.1016/j.brainres.2014.12.032] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 3.4] [Reference Citation Analysis]
271 Al-Massadi O, Dieguez C, Schneeberger M, López M, Schwaninger M, Prevot V, Nogueiras R. Multifaceted actions of melanin-concentrating hormone on mammalian energy homeostasis. Nat Rev Endocrinol 2021;17:745-55. [PMID: 34608277 DOI: 10.1038/s41574-021-00559-1] [Reference Citation Analysis]
272 Oesch LT, Adamantidis AR. How REM sleep shapes hypothalamic computations for feeding behavior. Trends Neurosci 2021;44:990-1003. [PMID: 34663506 DOI: 10.1016/j.tins.2021.09.003] [Reference Citation Analysis]
273 Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW. Control of sleep and wakefulness. Physiol Rev 2012;92:1087-187. [PMID: 22811426 DOI: 10.1152/physrev.00032.2011] [Cited by in Crossref: 700] [Cited by in F6Publishing: 590] [Article Influence: 70.0] [Reference Citation Analysis]
274 Sorooshyari S, Huerta R, de Lecea L. A Framework for Quantitative Modeling of Neural Circuits Involved in Sleep-to-Wake Transition. Front Neurol 2015;6:32. [PMID: 25767461 DOI: 10.3389/fneur.2015.00032] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 2.1] [Reference Citation Analysis]
275 Li Y, Xu Y, van den Pol AN. Reversed synaptic effects of hypocretin and NPY mediated by excitatory GABA-dependent synaptic activity in developing MCH neurons. J Neurophysiol 2013;109:1571-8. [PMID: 23255725 DOI: 10.1152/jn.00522.2012] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
276 Miyazaki S, Liu C, Hayashi Y. Sleep in vertebrate and invertebrate animals, and insights into the function and evolution of sleep. Neuroscience Research 2017;118:3-12. [DOI: 10.1016/j.neures.2017.04.017] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
277 Luppi P, Fort P. Neuroanatomical and Neurochemical Bases of Vigilance States. In: Landolt H, Dijk D, editors. Sleep-Wake Neurobiology and Pharmacology. Cham: Springer International Publishing; 2019. pp. 35-58. [DOI: 10.1007/164_2017_84] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
278 Bogáthy E, Papp N, Tóthfalusi L, Vas S, Bagdy G. Additive effect of 5-HT2C and CB1 receptor blockade on the regulation of sleep-wake cycle. BMC Neurosci 2019;20:14. [PMID: 30894126 DOI: 10.1186/s12868-019-0495-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
279 Jego S, Glasgow SD, Herrera CG, Ekstrand M, Reed SJ, Boyce R, Friedman J, Burdakov D, Adamantidis AR. Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat Neurosci 2013;16:1637-43. [PMID: 24056699 DOI: 10.1038/nn.3522] [Cited by in Crossref: 254] [Cited by in F6Publishing: 225] [Article Influence: 28.2] [Reference Citation Analysis]
280 Qiu MH, Chen MC, Fuller PM, Lu J. Stimulation of the Pontine Parabrachial Nucleus Promotes Wakefulness via Extra-thalamic Forebrain Circuit Nodes. Curr Biol 2016;26:2301-12. [PMID: 27546576 DOI: 10.1016/j.cub.2016.07.054] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 6.7] [Reference Citation Analysis]