BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kelz MB, Sun Y, Chen J, Cheng Meng Q, Moore JT, Veasey SC, Dixon S, Thornton M, Funato H, Yanagisawa M. An essential role for orexins in emergence from general anesthesia. Proc Natl Acad Sci USA. 2008;105:1309-1314. [PMID: 18195361 DOI: 10.1073/pnas.0707146105] [Cited by in Crossref: 205] [Cited by in F6Publishing: 186] [Article Influence: 14.6] [Reference Citation Analysis]
Number Citing Articles
1 Hudson AE, Calderon DP, Pfaff DW, Proekt A. Recovery of consciousness is mediated by a network of discrete metastable activity states. Proc Natl Acad Sci U S A 2014;111:9283-8. [PMID: 24927558 DOI: 10.1073/pnas.1408296111] [Cited by in Crossref: 93] [Cited by in F6Publishing: 77] [Article Influence: 11.6] [Reference Citation Analysis]
2 Minert A, Yatziv SL, Devor M. Location of the Mesopontine Neurons Responsible for Maintenance of Anesthetic Loss of Consciousness. J Neurosci 2017;37:9320-31. [PMID: 28821646 DOI: 10.1523/JNEUROSCI.0544-17.2017] [Cited by in Crossref: 21] [Cited by in F6Publishing: 8] [Article Influence: 4.2] [Reference Citation Analysis]
3 Dong H, Niu J, Su B, Zhu Z, Lv Y, Li Y, Xiong L. Activation of orexin signal in basal forebrain facilitates the emergence from sevoflurane anesthesia in rat. Neuropeptides 2009;43:179-85. [DOI: 10.1016/j.npep.2009.04.006] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 2.6] [Reference Citation Analysis]
4 Björnström K, Turina D, Strid T, Sundqvist T, Eintrei C. Orexin A inhibits propofol-induced neurite retraction by a phospholipase D/protein kinase Cε-dependent mechanism in neurons. PLoS One 2014;9:e97129. [PMID: 24828410 DOI: 10.1371/journal.pone.0097129] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
5 Camarda V, Rizzi A, Ruzza C, Zucchini S, Marzola G, Marzola E, Guerrini R, Salvadori S, Reinscheid RK, Regoli D, Calò G. In vitro and in vivo pharmacological characterization of the neuropeptide s receptor antagonist [D-Cys(tBu)5]neuropeptide S. J Pharmacol Exp Ther 2009;328:549-55. [PMID: 18971372 DOI: 10.1124/jpet.108.143867] [Cited by in Crossref: 51] [Cited by in F6Publishing: 51] [Article Influence: 3.6] [Reference Citation Analysis]
6 Meyer K. The Role of Dendritic Signaling in the Anesthetic Suppression of Consciousness. Anesthesiology 2015;122:1415-31. [DOI: 10.1097/aln.0000000000000673] [Cited by in Crossref: 19] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
7 Hu FY, Hanna GM, Han W, Mardini F, Thomas SA, Wyner AJ, Kelz MB. Hypnotic hypersensitivity to volatile anesthetics and dexmedetomidine in dopamine β-hydroxylase knockout mice. Anesthesiology 2012;117:1006-17. [PMID: 23042227 DOI: 10.1097/ALN.0b013e3182700ab9] [Cited by in Crossref: 28] [Cited by in F6Publishing: 19] [Article Influence: 3.1] [Reference Citation Analysis]
8 Mashour GA, Avidan MS. Dementia and sensitivity to anesthetics. Can J Anesth/J Can Anesth 2014;61:599-604. [DOI: 10.1007/s12630-014-0166-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
9 Kim M, Mashour GA, Moraes SB, Vanini G, Tarnal V, Janke E, Hudetz AG, Lee U. Functional and Topological Conditions for Explosive Synchronization Develop in Human Brain Networks with the Onset of Anesthetic-Induced Unconsciousness. Front Comput Neurosci 2016;10:1. [PMID: 26834616 DOI: 10.3389/fncom.2016.00001] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 4.5] [Reference Citation Analysis]
10 Bian T, Meng W, Qiu M, Zhong Z, Lin Z, Zou J, Wang Y, Huang X, Xu L, Yuan T, Huang Z, Niu L, Meng L, Zheng H. Noninvasive Ultrasound Stimulation of Ventral Tegmental Area Induces Reanimation from General Anaesthesia in Mice. Research (Wash D C) 2021;2021:2674692. [PMID: 33954291 DOI: 10.34133/2021/2674692] [Reference Citation Analysis]
11 Yang B, Ao Y, Liu Y, Zhang X, Li Y, Tang F, Xu H. Activation of Dopamine Signals in the Olfactory Tubercle Facilitates Emergence from Isoflurane Anesthesia in Mice. Neurochem Res 2021;46:1487-501. [PMID: 33710536 DOI: 10.1007/s11064-021-03291-4] [Reference Citation Analysis]
12 Tarnal V, Vlisides PE, Mashour GA. The Neurobiology of Anesthetic Emergence. J Neurosurg Anesthesiol. 2016;28:250-255. [PMID: 26274626 DOI: 10.1097/ana.0000000000000212] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 3.2] [Reference Citation Analysis]
13 Zhang LN, Li ZJ, Tong L, Guo C, Niu JY, Hou WG, Dong HL. Orexin-A facilitates emergence from propofol anesthesia in the rat. Anesth Analg. 2012;115:789-796. [PMID: 22798527 DOI: 10.1213/ane.0b013e3182645ea3] [Cited by in Crossref: 39] [Cited by in F6Publishing: 17] [Article Influence: 3.9] [Reference Citation Analysis]
14 Sepúlveda PO, Tapia LF, Monsalves S. Neural inertia and differences between loss of and recovery from consciousness during total intravenous anaesthesia: a narrative review. Anaesthesia 2019;74:801-9. [DOI: 10.1111/anae.14609] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
15 McCarren HS, Moore JT, Kelz MB. Assessing changes in volatile general anesthetic sensitivity of mice after local or systemic pharmacological intervention. J Vis Exp 2013;:e51079. [PMID: 24192721 DOI: 10.3791/51079] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 0.3] [Reference Citation Analysis]
16 Noseda R, Kainz V, Borsook D, Burstein R. Neurochemical pathways that converge on thalamic trigeminovascular neurons: potential substrate for modulation of migraine by sleep, food intake, stress and anxiety. PLoS One. 2014;9:103929. [PMID: 25090640 DOI: 10.1371/journal.pone.0103929] [Cited by in Crossref: 52] [Cited by in F6Publishing: 41] [Article Influence: 6.5] [Reference Citation Analysis]
17 Jacobson LH, Hoyer D, de Lecea L. Hypocretins (orexins): The ultimate translational neuropeptides. J Intern Med 2022. [PMID: 35043499 DOI: 10.1111/joim.13406] [Reference Citation Analysis]
18 Wasilczuk AZ, Meng QC, Mckinstry-wu AR. Electroencephalographic Evidence for Individual Neural Inertia in Mice That Decreases With Time. Front Syst Neurosci 2022;15:787612. [DOI: 10.3389/fnsys.2021.787612] [Reference Citation Analysis]
19 de Sousa AF, Cowansage KK, Zutshi I, Cardozo LM, Yoo EJ, Leutgeb S, Mayford M. Optogenetic reactivation of memory ensembles in the retrosplenial cortex induces systems consolidation. Proc Natl Acad Sci U S A 2019;116:8576-81. [PMID: 30877252 DOI: 10.1073/pnas.1818432116] [Cited by in Crossref: 48] [Cited by in F6Publishing: 28] [Article Influence: 16.0] [Reference Citation Analysis]
20 Melonakos ED, Moody OA, Nikolaeva K, Kato R, Nehs CJ, Solt K. Manipulating Neural Circuits in Anesthesia Research. Anesthesiology 2020;133:19-30. [PMID: 32349073 DOI: 10.1097/ALN.0000000000003279] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
21 Xu W, Wang L, Yuan XS, Wang TX, Li WX, Qu WM, Hong ZY, Huang ZL. Sevoflurane depresses neurons in the medial parabrachial nucleus by potentiating postsynaptic GABAA receptors and background potassium channels. Neuropharmacology 2020;181:108249. [PMID: 32931816 DOI: 10.1016/j.neuropharm.2020.108249] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
22 Sandermann H. Ecotoxicology of narcosis: Stereoselectivity and potential target sites. Chemosphere 2008;72:1256-9. [DOI: 10.1016/j.chemosphere.2008.05.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.4] [Reference Citation Analysis]
23 Carvajal F, Alcaraz-iborra M, Lerma-cabrera JM, Valor LM, de la Fuente L, Sanchez-amate MDC, Cubero I. Orexin receptor 1 signaling contributes to ethanol binge-like drinking: Pharmacological and molecular evidence. Behavioural Brain Research 2015;287:230-7. [DOI: 10.1016/j.bbr.2015.03.046] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
24 Veselis RA. The Memory Labyrinth: Systems, Processes, and Boundaries. In: Absalom AR, Mason KP, editors. Total Intravenous Anesthesia and Target Controlled Infusions. Cham: Springer International Publishing; 2017. pp. 31-62. [DOI: 10.1007/978-3-319-47609-4_3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
25 Whitlock EL, Villafranca AJ, Lin N, Palanca BJ, Jacobsohn E, Finkel KJ, Zhang L, Burnside BA, Kaiser HA, Evers AS, Avidan MS. Relationship between bispectral index values and volatile anesthetic concentrations during the maintenance phase of anesthesia in the B-Unaware trial. Anesthesiology 2011;115:1209-18. [PMID: 22037642 DOI: 10.1097/ALN.0b013e3182395dcb] [Cited by in Crossref: 52] [Cited by in F6Publishing: 29] [Article Influence: 5.2] [Reference Citation Analysis]
26 Wasilczuk AZ, Maier KL, Kelz MB. The Mouse as a Model Organism for Assessing Anesthetic Sensitivity. Methods Enzymol 2018;602:211-28. [PMID: 29588030 DOI: 10.1016/bs.mie.2018.01.008] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
27 Mashour GA. Top-down mechanisms of anesthetic-induced unconsciousness. Front Syst Neurosci 2014;8:115. [PMID: 25002838 DOI: 10.3389/fnsys.2014.00115] [Cited by in Crossref: 59] [Cited by in F6Publishing: 55] [Article Influence: 7.4] [Reference Citation Analysis]
28 Kushikata T, Yoshida H, Kudo M, Kudo T, Kudo T, Hirota K. Role of coerulean noradrenergic neurones in general anaesthesia in rats. British Journal of Anaesthesia 2011;107:924-9. [DOI: 10.1093/bja/aer303] [Cited by in Crossref: 33] [Cited by in F6Publishing: 25] [Article Influence: 3.0] [Reference Citation Analysis]
29 Luppi AI, Spindler LRB, Menon DK, Stamatakis EA. The Inert Brain: Explaining Neural Inertia as Post-anaesthetic Sleep Inertia. Front Neurosci 2021;15:643871. [PMID: 33737863 DOI: 10.3389/fnins.2021.643871] [Reference Citation Analysis]
30 Hight DF, Dadok VM, Szeri AJ, García PS, Voss L, Sleigh JW. Emergence from general anesthesia and the sleep-manifold. Front Syst Neurosci 2014;8:146. [PMID: 25165436 DOI: 10.3389/fnsys.2014.00146] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 3.6] [Reference Citation Analysis]
31 Mashour GA, Kelz MB. Systems Neuroscience: The Exciting Journey to Oblivion. Curr Biol 2018;28:R223-4. [PMID: 29510112 DOI: 10.1016/j.cub.2018.01.074] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
32 Nelson AM, Battersby AS, Baghdoyan HA, Lydic R. Opioid-induced decreases in rat brain adenosine levels are reversed by inhibiting adenosine deaminase. Anesthesiology 2009;111:1327-33. [PMID: 19934879 DOI: 10.1097/ALN.0b013e3181bdf894] [Cited by in Crossref: 41] [Cited by in F6Publishing: 30] [Article Influence: 3.2] [Reference Citation Analysis]
33 Pick J, Chen Y, Moore JT, Sun Y, Wyner AJ, Friedman EB, Kelz MB. Rapid eye movement sleep debt accrues in mice exposed to volatile anesthetics. Anesthesiology 2011;115:702-12. [PMID: 21934405 DOI: 10.1097/ALN.0b013e31822ddd72] [Cited by in Crossref: 43] [Cited by in F6Publishing: 28] [Article Influence: 3.9] [Reference Citation Analysis]
34 Adapa R. Consciousness and Anesthesia. In: Absalom AR, Mason KP, editors. Total Intravenous Anesthesia and Target Controlled Infusions. Cham: Springer International Publishing; 2017. pp. 63-78. [DOI: 10.1007/978-3-319-47609-4_4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
35 Turina D, Björnström K. Mechanisms of general anesthetic action: Focus on the cellular network. Translational Neuroscience 2011;2. [DOI: 10.2478/s13380-011-0022-5] [Reference Citation Analysis]
36 Li J, Hu Z, de Lecea L. The hypocretins/orexins: integrators of multiple physiological functions. Br J Pharmacol 2014;171:332-50. [PMID: 24102345 DOI: 10.1111/bph.12415] [Cited by in Crossref: 153] [Cited by in F6Publishing: 141] [Article Influence: 19.1] [Reference Citation Analysis]
37 Anastasian ZH, Ornstein E, Heyer EJ. Delayed arousal. Anesthesiol Clin 2009;27:429-50, table of contents. [PMID: 19825485 DOI: 10.1016/j.anclin.2009.07.007] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
38 Xiang X, Chen Y, Li K, Fang J, Bickler PE, Guan Z, Zhou W. Neuroanatomical Basis for the Orexinergic Modulation of Anesthesia Arousal and Pain Control. Front Cell Neurosci 2022;16:891631. [DOI: 10.3389/fncel.2022.891631] [Reference Citation Analysis]
39 Murai H, Suzuki H, Tanji H, Kimura T, Iba Y. A simple method using anesthetics to test effects of sleep-inducing substances in mice. Journal of Pharmacological Sciences 2020;142:79-82. [DOI: 10.1016/j.jphs.2019.12.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
40 Kenny JD, Chemali JJ, Cotten JF, Van Dort CJ, Kim SE, Ba D, Taylor NE, Brown EN, Solt K. Physostigmine and Methylphenidate Induce Distinct Arousal States During Isoflurane General Anesthesia in Rats. Anesth Analg 2016;123:1210-9. [PMID: 26991753 DOI: 10.1213/ANE.0000000000001234] [Cited by in Crossref: 22] [Cited by in F6Publishing: 12] [Article Influence: 4.4] [Reference Citation Analysis]
41 Solt K, Cotten JF, Cimenser A, Wong KF, Chemali JJ, Brown EN. Methylphenidate actively induces emergence from general anesthesia. Anesthesiology. 2011;115:791-803. [PMID: 21934407 DOI: 10.1097/aln.0b013e31822e92e5] [Cited by in Crossref: 112] [Cited by in F6Publishing: 69] [Article Influence: 10.2] [Reference Citation Analysis]
42 Amin R, Simakajornboon N, Szczesniak R, Inge T. Early improvement in obstructive sleep apnea and increase in orexin levels after bariatric surgery in adolescents and young adults. Surg Obes Relat Dis 2017;13:95-100. [PMID: 27720196 DOI: 10.1016/j.soard.2016.05.023] [Cited by in Crossref: 37] [Cited by in F6Publishing: 25] [Article Influence: 6.2] [Reference Citation Analysis]
43 Jang HS, Jung JY, Jang KH, Lee MG. Effects of isoflurane anesthesia on post-anesthetic sleep-wake architectures in rats. Korean J Physiol Pharmacol 2010;14:291-7. [PMID: 21165327 DOI: 10.4196/kjpp.2010.14.5.291] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
44 Aggarwal A, Brennan C, Shortal B, Contreras D, Kelz MB, Proekt A. Coherence of Visual-Evoked Gamma Oscillations Is Disrupted by Propofol but Preserved Under Equipotent Doses of Isoflurane. Front Syst Neurosci 2019;13:19. [PMID: 31139058 DOI: 10.3389/fnsys.2019.00019] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
45 Bianchi SL, Caltagarone BM, Laferla FM, Eckenhoff RG, Kelz MB. Inhaled anesthetic potency in aged Alzheimer mice. Anesth Analg 2010;110:427-30. [PMID: 19820240 DOI: 10.1213/ANE.0b013e3181b5a292] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
46 Icaza EE, Huang X, Fu Y, Neubig RR, Baghdoyan HA, Lydic R. Isoflurane-induced changes in righting response and breathing are modulated by RGS proteins. Anesth Analg 2009;109:1500-5. [PMID: 19843788 DOI: 10.1213/ANE.0b013e3181ba7815] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
47 Kimura-Kuroiwa K, Adachi YU, Obata Y, Kawamata M, Sato S, Matsuda N. Dexmedetomidine and hydroxyzine synergistically potentiate the hypnotic activity of propofol in mice. J Anesth 2012;26:422-8. [PMID: 22349749 DOI: 10.1007/s00540-012-1344-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
48 Daley JT, Kelz MB. Time in general anesthesia: depriving the homeostat? Sleep 2010;33:1583-4. [PMID: 21120119 DOI: 10.1093/sleep/33.12.1583] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
49 Nguyen G, Postnova S. Progress in modelling of brain dynamics during anaesthesia and the role of sleep-wake circuitry. Biochemical Pharmacology 2021;191:114388. [DOI: 10.1016/j.bcp.2020.114388] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Kushikata T, Yoshida H, Kudo M, Kudo T, Hirota K. Changes in plasma orexin A during propofol–fentanyl anaesthesia in patients undergoing eye surgery. British Journal of Anaesthesia 2010;104:723-7. [DOI: 10.1093/bja/aeq098] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
51 Vertes RP, Linley SB. No cognitive processing in the unconscious, anesthetic‐like , state of sleep. J Comp Neurol 2021;529:524-38. [DOI: 10.1002/cne.24963] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
52 Hara J, Gerashchenko D, Wisor JP, Sakurai T, Xie X, Kilduff TS. Thyrotropin-releasing hormone increases behavioral arousal through modulation of hypocretin/orexin neurons. J Neurosci 2009;29:3705-14. [PMID: 19321767 DOI: 10.1523/JNEUROSCI.0431-09.2009] [Cited by in Crossref: 56] [Cited by in F6Publishing: 23] [Article Influence: 4.3] [Reference Citation Analysis]
53 Reitz SL, Kelz MB. Preoptic Area Modulation of Arousal in Natural and Drug Induced Unconscious States. Front Neurosci 2021;15:644330. [PMID: 33642991 DOI: 10.3389/fnins.2021.644330] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Du WJ, Zhang RW, Li J, Zhang BB, Peng XL, Cao S, Yuan J, Yuan CD, Yu T, Du JL. The Locus Coeruleus Modulates Intravenous General Anesthesia of Zebrafish via a Cooperative Mechanism. Cell Rep 2018;24:3146-3155.e3. [PMID: 30231998 DOI: 10.1016/j.celrep.2018.08.046] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
55 Li A, Li R, Ouyang P, Li H, Wang S, Zhang X, Wang D, Ran M, Zhao G, Yang Q, Zhu Z, Dong H, Zhang H. Dorsal raphe serotonergic neurons promote arousal from isoflurane anesthesia. CNS Neurosci Ther 2021;27:941-50. [PMID: 33973716 DOI: 10.1111/cns.13656] [Reference Citation Analysis]
56 Pal D, Jones JM, Wisidagamage S, Meisler MH, Mashour GA. Reduced Nav1.6 Sodium Channel Activity in Mice Increases In Vivo Sensitivity to Volatile Anesthetics. PLoS One 2015;10:e0134960. [PMID: 26252017 DOI: 10.1371/journal.pone.0134960] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
57 Han B, McCarren HS, O'Neill D, Kelz MB. Distinctive recruitment of endogenous sleep-promoting neurons by volatile anesthetics and a nonimmobilizer. Anesthesiology 2014;121:999-1009. [PMID: 25057841 DOI: 10.1097/ALN.0000000000000383] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
58 Chemali JJ, Van Dort CJ, Brown EN, Solt K. Active emergence from propofol general anesthesia is induced by methylphenidate. Anesthesiology. 2012;116:998-1005. [PMID: 22446983 DOI: 10.1097/aln.0b013e3182518bfc] [Cited by in Crossref: 79] [Cited by in F6Publishing: 45] [Article Influence: 7.9] [Reference Citation Analysis]
59 Gompf H, Chen J, Sun Y, Yanagisawa M, Aston-Jones G, Kelz MB. Halothane-induced hypnosis is not accompanied by inactivation of orexinergic output in rodents. Anesthesiology 2009;111:1001-9. [PMID: 19809293 DOI: 10.1097/ALN.0b013e3181b764b3] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 1.8] [Reference Citation Analysis]
60 Kushikata T, Hirota K, Saito J, Takekawa D. Roles of Neuropeptide S in Anesthesia, Analgesia, and Sleep. Pharmaceuticals (Basel) 2021;14:483. [PMID: 34069327 DOI: 10.3390/ph14050483] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
61 Kushikata T, Yoshida H, Kudo M, Kudo T, Hirota K. Plasma orexin A increases at emergence from sevoflurane-fentanyl anesthesia in patients undergoing ophthalmologic surgery. Neurosci Lett. 2010;482:212-215. [PMID: 20655366 DOI: 10.1016/j.neulet.2010.07.037] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
62 Zhang H, Wheat H, Wang P, Jiang S, Baghdoyan HA, Neubig RR, Shi XY, Lydic R. RGS Proteins and Gαi2 Modulate Sleep, Wakefulness, and Disruption of Sleep/ Wake States after Isoflurane and Sevoflurane Anesthesia. Sleep 2016;39:393-404. [PMID: 26564126 DOI: 10.5665/sleep.5450] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
63 Vanini G, Nemanis K, Baghdoyan HA, Lydic R. GABAergic transmission in rat pontine reticular formation regulates the induction phase of anesthesia and modulates hyperalgesia caused by sleep deprivation. Eur J Neurosci 2014;40:2264-73. [PMID: 24674578 DOI: 10.1111/ejn.12571] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 2.9] [Reference Citation Analysis]
64 Garrity AG, Botta S, Lazar SB, Swor E, Vanini G, Baghdoyan HA, Lydic R. Dexmedetomidine-induced sedation does not mimic the neurobehavioral phenotypes of sleep in Sprague Dawley rat. Sleep 2015;38:73-84. [PMID: 25325438 DOI: 10.5665/sleep.4328] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]
65 Vanini G, Bassana M, Mast M, Mondino A, Cerda I, Phyle M, Chen V, Colmenero AV, Hambrecht-Wiedbusch VS, Mashour GA. Activation of Preoptic GABAergic or Glutamatergic Neurons Modulates Sleep-Wake Architecture, but Not Anesthetic State Transitions. Curr Biol 2020;30:779-787.e4. [PMID: 32084397 DOI: 10.1016/j.cub.2019.12.063] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 11.0] [Reference Citation Analysis]
66 Guerrini R, Salvadori S, Rizzi A, Regoli D, Calo' G. Neurobiology, pharmacology, and medicinal chemistry of neuropeptide S and its receptor. Med Res Rev 2010;30:751-77. [PMID: 19824051 DOI: 10.1002/med.20180] [Cited by in Crossref: 73] [Cited by in F6Publishing: 72] [Article Influence: 6.6] [Reference Citation Analysis]
67 Zhao S, Li R, Li H, Wang S, Zhang X, Wang D, Guo J, Li H, Li A, Tong T, Zhong H, Yang Q, Dong H. Lateral Hypothalamic Area Glutamatergic Neurons and Their Projections to the Lateral Habenula Modulate the Anesthetic Potency of Isoflurane in Mice. Neurosci Bull 2021;37:934-46. [PMID: 33847915 DOI: 10.1007/s12264-021-00674-z] [Reference Citation Analysis]
68 Wang D, Huang Y, Wang X, Chen X, Li J, Zhang S, Wu J, Liu D, Ma D, Mei W. Circadian differences in emergence from volatile anaesthesia in mice: involvement of the locus coeruleus noradrenergic system. Br J Anaesth 2020;125:548-59. [PMID: 32807382 DOI: 10.1016/j.bja.2020.07.012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
69 Kelz MB, Mashour GA. The Biology of General Anesthesia from Paramecium to Primate. Curr Biol 2019;29:R1199-210. [PMID: 31743680 DOI: 10.1016/j.cub.2019.09.071] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 12.0] [Reference Citation Analysis]
70 Xie X(. The Neuronal Circuit Between Nociceptin/Orphanin FQ and Hypocretins/Orexins Coordinately Modulates Stress-Induced Analgesia and Anxiety-Related Behavior. Nociceptin Opioid. Elsevier; 2015. pp. 295-321. [DOI: 10.1016/bs.vh.2014.11.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
71 Vacas S, Kurien P, Maze M. Sleep and Anesthesia - Common mechanisms of action. Sleep Med Clin 2013;8:1-9. [PMID: 28747855 DOI: 10.1016/j.jsmc.2012.11.009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
72 Solt K. General anesthesia: activating a sleep switch? Curr Biol 2012;22:R918-9. [PMID: 23137688 DOI: 10.1016/j.cub.2012.09.033] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
73 Zhou W, Cheung K, Kyu S, Wang L, Guan Z, Kurien PA, Bickler PE, Jan LY. Activation of orexin system facilitates anesthesia emergence and pain control. Proc Natl Acad Sci U S A 2018;115:E10740-7. [PMID: 30348769 DOI: 10.1073/pnas.1808622115] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
74 Boutrel B, Cannella N, de Lecea L. The role of hypocretin in driving arousal and goal-oriented behaviors. Brain Res 2010;1314:103-11. [PMID: 19948148 DOI: 10.1016/j.brainres.2009.11.054] [Cited by in Crossref: 84] [Cited by in F6Publishing: 86] [Article Influence: 6.5] [Reference Citation Analysis]
75 Leung LS, Ma J, Shen B, Nachim I, Luo T. Medial septal lesion enhances general anesthesia response. Experimental Neurology 2013;247:419-28. [DOI: 10.1016/j.expneurol.2013.01.010] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
76 Zhou X, Wang Y, Zhang C, Wang M, Zhang M, Yu L, Yan M. The Role of Dopaminergic VTA Neurons in General Anesthesia. PLoS One 2015;10:e0138187. [PMID: 26398236 DOI: 10.1371/journal.pone.0138187] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
77 Ran M, Wang Z, Yang H, Zhang L, Li W, Yang Q, Dong H. Orexin-1 receptor is involved in ageing-related delayed emergence from general anaesthesia in rats. British Journal of Anaesthesia 2018;121:1097-104. [DOI: 10.1016/j.bja.2018.05.073] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
78 Kato R, Zhang ER, Mallari OG, Moody OA, Vincent KF, Melonakos ED, Siegmann MJ, Nehs CJ, Houle TT, Akeju O, Solt K. D-Amphetamine Rapidly Reverses Dexmedetomidine-Induced Unconsciousness in Rats. Front Pharmacol 2021;12:668285. [PMID: 34084141 DOI: 10.3389/fphar.2021.668285] [Reference Citation Analysis]
79 Hashemi M, Hutt A, Sleigh J. Anesthetic action on extra-synaptic receptors: effects in neural population models of EEG activity. Front Syst Neurosci 2014;8:232. [PMID: 25540612 DOI: 10.3389/fnsys.2014.00232] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
80 Hershner S, Kakkar R, Chung F, Singh M, Wong J, Auckley D. Narcolepsy, Anesthesia, and Sedation: A Survey of the Perioperative Experience of Patients With Narcolepsy. Anesth Analg 2019;129:1374-80. [PMID: 30540615 DOI: 10.1213/ANE.0000000000003954] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
81 Kaiser HA, Knapp J, Sleigh J, Avidan MS, Stüber F, Hight D. [The quantitative EEG in electroencephalogram-based brain monitoring during general anesthesia]. Anaesthesist 2021;70:531-47. [PMID: 33970302 DOI: 10.1007/s00101-021-00960-5] [Reference Citation Analysis]
82 van Swinderen B, Kottler B. Explaining general anesthesia: a two-step hypothesis linking sleep circuits and the synaptic release machinery. Bioessays 2014;36:372-81. [PMID: 24449137 DOI: 10.1002/bies.201300154] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 1.8] [Reference Citation Analysis]
83 Deutschman CS, Raj NR, McGuire EO, Kelz MB. Orexinergic activity modulates altered vital signs and pituitary hormone secretion in experimental sepsis. Crit Care Med 2013;41:e368-75. [PMID: 24105451 DOI: 10.1097/CCM.0b013e31828e9843] [Cited by in Crossref: 35] [Cited by in F6Publishing: 16] [Article Influence: 3.9] [Reference Citation Analysis]
84 Lee SN, Li L, Zuo Z. Glutamate transporter type 3 knockout mice have a decreased isoflurane requirement to induce loss of righting reflex. Neuroscience 2010;171:788-93. [PMID: 20875840 DOI: 10.1016/j.neuroscience.2010.09.044] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 1.3] [Reference Citation Analysis]
85 Kumar S, Szymusiak R, Bashir T, Suntsova N, Rai S, McGinty D, Alam MN. Inactivation of median preoptic nucleus causes c-Fos expression in hypocretin- and serotonin-containing neurons in anesthetized rat. Brain Res 2008;1234:66-77. [PMID: 18722360 DOI: 10.1016/j.brainres.2008.07.115] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.1] [Reference Citation Analysis]
86 Wasilczuk AZ, Harrison BA, Kwasniewska P, Ku B, Kelz MB, McKinstry-Wu AR, Proekt A. Resistance to state transitions in responsiveness is differentially modulated by different volatile anaesthetics in male mice. Br J Anaesth 2020;125:308-20. [PMID: 32660718 DOI: 10.1016/j.bja.2020.05.031] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
87 Tai SK, Ma J, Leung LS. Medial Septal Cholinergic Neurons Modulate Isoflurane Anesthesia. Anesthesiology 2014;120:392-402. [DOI: 10.1097/aln.0b013e3182a7cab6] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
88 Sanders RD, Tononi G, Laureys S, Sleigh JW. Unresponsiveness ≠ unconsciousness. Anesthesiology 2012;116:946-59. [PMID: 22314293 DOI: 10.1097/ALN.0b013e318249d0a7] [Cited by in Crossref: 243] [Cited by in F6Publishing: 84] [Article Influence: 24.3] [Reference Citation Analysis]
89 Gao S, Calderon DP. Robust alternative to the righting reflex to assess arousal in rodents. Sci Rep 2020;10:20280. [PMID: 33219247 DOI: 10.1038/s41598-020-77162-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
90 Proekt A, Hudson AE. A stochastic basis for neural inertia in emergence from general anaesthesia. Br J Anaesth 2018;121:86-94. [PMID: 29935600 DOI: 10.1016/j.bja.2018.02.035] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 5.8] [Reference Citation Analysis]
91 Wathen AB, West ES, Lydic R, Baghdoyan HA. Olanzapine causes a leptin-dependent increase in acetylcholine release in mouse prefrontal cortex. Sleep 2012;35:315-23. [PMID: 22379237 DOI: 10.5665/sleep.1686] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
92 Sugano A, Murai H, Horiguchi S, Yoshimoto Y, Amano Y, Kimura T, Iba Y. Influence of light-dark cycle on delayed recovery from isoflurane anesthesia induced by hypnotics in mice. J Pharmacol Sci 2021;145:335-9. [PMID: 33712285 DOI: 10.1016/j.jphs.2021.02.003] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
93 Conway KE, Cotten JF. Covalent modification of a volatile anesthetic regulatory site activates TASK-3 (KCNK9) tandem-pore potassium channels. Mol Pharmacol 2012;81:393-400. [PMID: 22147752 DOI: 10.1124/mol.111.076281] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.4] [Reference Citation Analysis]
94 Cascella M, Bimonte S, Di Napoli R. Delayed Emergence from Anesthesia: What We Know and How We Act. Local Reg Anesth 2020;13:195-206. [PMID: 33177867 DOI: 10.2147/LRA.S230728] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
95 Jia X, Yan J, Xia J, Xiong J, Wang T, Chen Y, Qi A, Yang N, Fan S, Ye J, Hu Z. Arousal effects of orexin A on acute alcohol intoxication-induced coma in rats. Neuropharmacology 2012;62:775-83. [PMID: 21924278 DOI: 10.1016/j.neuropharm.2011.08.047] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 1.5] [Reference Citation Analysis]
96 Chander D, García PS, MacColl JN, Illing S, Sleigh JW. Electroencephalographic variation during end maintenance and emergence from surgical anesthesia. PLoS One 2014;9:e106291. [PMID: 25264892 DOI: 10.1371/journal.pone.0106291] [Cited by in Crossref: 58] [Cited by in F6Publishing: 51] [Article Influence: 7.3] [Reference Citation Analysis]
97 Vazey EM, Aston-Jones G. Designer receptor manipulations reveal a role of the locus coeruleus noradrenergic system in isoflurane general anesthesia. Proc Natl Acad Sci USA. 2014;111:3859-3864. [PMID: 24567395 DOI: 10.1073/pnas.1310025111] [Cited by in Crossref: 137] [Cited by in F6Publishing: 127] [Article Influence: 17.1] [Reference Citation Analysis]
98 Hagihira S. Brain Mechanisms during Course of Anesthesia: What We Know from EEG Changes during Induction and Recovery. Front Syst Neurosci 2017;11:39. [PMID: 28611602 DOI: 10.3389/fnsys.2017.00039] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 2.6] [Reference Citation Analysis]
99 Gelegen C, Miracca G, Ran MZ, Harding EC, Ye Z, Yu X, Tossell K, Houston CM, Yustos R, Hawkins ED, Vyssotski AL, Dong HL, Wisden W, Franks NP. Excitatory Pathways from the Lateral Habenula Enable Propofol-Induced Sedation. Curr Biol 2018;28:580-587.e5. [PMID: 29398217 DOI: 10.1016/j.cub.2017.12.050] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 5.8] [Reference Citation Analysis]
100 Bian H, Huang L, Li B, Hu Q, Liang X, Tang J, Zhang JH. The arousal effect of hyperbaric oxygen through orexin/hypocretin an upregulation on ketamine/ethanol-induced unconsciousness in male rats. J Neurosci Res 2020;98:201-11. [PMID: 30895638 DOI: 10.1002/jnr.24414] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
101 Taylor NE, Van Dort CJ, Kenny JD, Pei J, Guidera JA, Vlasov KY, Lee JT, Boyden ES, Brown EN, Solt K. Optogenetic activation of dopamine neurons in the ventral tegmental area induces reanimation from general anesthesia. Proc Natl Acad Sci USA. 2016;113:12826-12831. [PMID: 27791160 DOI: 10.1073/pnas.1614340113] [Cited by in Crossref: 113] [Cited by in F6Publishing: 101] [Article Influence: 18.8] [Reference Citation Analysis]
102 Reitz SL, Wasilczuk AZ, Beh GH, Proekt A, Kelz MB. Activation of Preoptic Tachykinin 1 Neurons Promotes Wakefulness over Sleep and Volatile Anesthetic-Induced Unconsciousness. Curr Biol 2021;31:394-405.e4. [PMID: 33188746 DOI: 10.1016/j.cub.2020.10.050] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
103 Brown EN, Lydic R, Schiff ND. General anesthesia, sleep, and coma. N Engl J Med. 2010;363:2638-2650. [PMID: 21190458 DOI: 10.1056/nejmra0808281] [Cited by in Crossref: 635] [Cited by in F6Publishing: 305] [Article Influence: 57.7] [Reference Citation Analysis]
104 Bao WW, Xu W, Pan GJ, Wang TX, Han Y, Qu WM, Li WX, Huang ZL. Nucleus accumbens neurons expressing dopamine D1 receptors modulate states of consciousness in sevoflurane anesthesia. Curr Biol 2021;31:1893-1902.e5. [PMID: 33705720 DOI: 10.1016/j.cub.2021.02.011] [Reference Citation Analysis]
105 Yang C, Zhang L, Hao H, Ran M, Li J, Dong H. Serotonergic neurons in the dorsal raphe nucleus mediate the arousal-promoting effect of orexin during isoflurane anesthesia in male rats. Neuropeptides 2019;75:25-33. [DOI: 10.1016/j.npep.2019.03.004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
106 Reimann HM, Niendorf T. The (Un)Conscious Mouse as a Model for Human Brain Functions: Key Principles of Anesthesia and Their Impact on Translational Neuroimaging. Front Syst Neurosci 2020;14:8. [PMID: 32508601 DOI: 10.3389/fnsys.2020.00008] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
107 . Abstracts presented at the 8th International Symposium on Memory and Awareness in Anesthesia (MAA8). British Journal of Anaesthesia 2012;108:334P-67P. [DOI: 10.1093/bja/aer442] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
108 Solt K, Van Dort CJ, Chemali JJ, Taylor NE, Kenny JD, Brown EN. Electrical stimulation of the ventral tegmental area induces reanimation from general anesthesia. Anesthesiology. 2014;121:311-319. [PMID: 24398816 DOI: 10.1097/aln.0000000000000117] [Cited by in Crossref: 82] [Cited by in F6Publishing: 54] [Article Influence: 10.3] [Reference Citation Analysis]
109 Inutsuka A, Yamashita A, Chowdhury S, Nakai J, Ohkura M, Taguchi T, Yamanaka A. The integrative role of orexin/hypocretin neurons in nociceptive perception and analgesic regulation. Sci Rep 2016;6:29480. [PMID: 27385517 DOI: 10.1038/srep29480] [Cited by in Crossref: 62] [Cited by in F6Publishing: 55] [Article Influence: 10.3] [Reference Citation Analysis]
110 Wu T, Zhang X, Liu Z. Understanding the mechanisms of brain functions from the angle of synchronization and complex network. Front Phys 2022;17. [DOI: 10.1007/s11467-022-1161-6] [Reference Citation Analysis]
111 Proekt A, Kelz M. Schrödinger's cat: anaesthetised and not! British Journal of Anaesthesia 2018;120:424-8. [DOI: 10.1016/j.bja.2017.11.068] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
112 Coetzee J, Links A, Levin A. Assessment of the clinical validity of an adjusted Marsh pharmacokinetic model using an effect-site rate constant (ke0) of 1.21 min-1. Southern African Journal of Anaesthesia and Analgesia 2021;27:83-91. [DOI: 10.36303/sajaa.2021.27.2.2583] [Reference Citation Analysis]
113 Cascella M, Bimonte S, Muzio MR. Towards a better understanding of anesthesia emergence mechanisms: Research and clinical implications. World J Methodol 2018; 8(2): 9-16 [PMID: 30345225 DOI: 10.5662/wjm.v8.i2.9] [Cited by in CrossRef: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
114 Liu D, Li J, Wu J, Dai J, Chen X, Huang Y, Zhang S, Tian B, Mei W. Monochromatic Blue Light Activates Suprachiasmatic Nucleus Neuronal Activity and Promotes Arousal in Mice Under Sevoflurane Anesthesia. Front Neural Circuits 2020;14:55. [PMID: 32973462 DOI: 10.3389/fncir.2020.00055] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
115 Franks NP, Zecharia AY. Sleep and general anesthesia. Can J Anaesth 2011;58:139-48. [PMID: 21170623 DOI: 10.1007/s12630-010-9420-3] [Cited by in Crossref: 56] [Cited by in F6Publishing: 54] [Article Influence: 4.7] [Reference Citation Analysis]
116 Alkire MT. Probing the mind: anesthesia and neuroimaging. Clin Pharmacol Ther 2008;84:149-52. [PMID: 18418369 DOI: 10.1038/clpt.2008.75] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 1.7] [Reference Citation Analysis]
117 Vanini G, Torterolo P. Sleep-Wake Neurobiology. Adv Exp Med Biol 2021;1297:65-82. [PMID: 33537937 DOI: 10.1007/978-3-030-61663-2_5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
118 Hudson AE. Genetic Reporters of Neuronal Activity: c-Fos and G-CaMP6. Methods Enzymol 2018;603:197-220. [PMID: 29673526 DOI: 10.1016/bs.mie.2018.01.023] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
119 Scharf MT, Kelz MB. Sleep and Anesthesia Interactions: A Pharmacological Appraisal. Curr Anesthesiol Rep 2013;3:1-9. [PMID: 23440738 DOI: 10.1007/s40140-012-0007-0] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 2.3] [Reference Citation Analysis]
120 Wang D, Guo Y, Li H, Li J, Ran M, Guo J, Yin L, Zhao S, Yang Q, Dong H. Selective optogenetic activation of orexinergic terminals in the basal forebrain and locus coeruleus promotes emergence from isoflurane anaesthesia in rats. Br J Anaesth 2021;126:279-92. [PMID: 33131759 DOI: 10.1016/j.bja.2020.09.037] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
121 Avidan MS, Mashour GA, Glick DB. Prevention of awareness during general anesthesia. F1000 Med Rep 2009;1:9. [PMID: 20948688 DOI: 10.3410/M1-9] [Cited by in Crossref: 13] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
122 Nir T, Or-borichev A, Izraitel E, Hendler T, Lerner Y, Matot I. Transient subcortical functional connectivity upon emergence from propofol sedation in human male volunteers: evidence for active emergence. British Journal of Anaesthesia 2019;123:298-308. [DOI: 10.1016/j.bja.2019.05.038] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
123 Mansouri MT, Fidler JA, Meng QC, Eckenhoff RG, García PS. Sex effects on behavioral markers of emergence from propofol and isoflurane anesthesia in rats. Behavioural Brain Research 2019;367:59-67. [DOI: 10.1016/j.bbr.2019.03.029] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
124 Venincasa MJ, Randlett O, Sumathipala SH, Bindernagel R, Stark MJ, Yan Q, Sloan SA, Buglo E, Meng QC, Engert F, Züchner S, Kelz MB, Syed S, Dallman JE. Elevated preoptic brain activity in zebrafish glial glycine transporter mutants is linked to lethargy-like behaviors and delayed emergence from anesthesia. Sci Rep 2021;11:3148. [PMID: 33542258 DOI: 10.1038/s41598-021-82342-w] [Reference Citation Analysis]
125 McKinstry-Wu AR, Wasilczuk AZ, Harrison BA, Bedell VM, Sridharan MJ, Breig JJ, Pack M, Kelz MB, Proekt A. Analysis of stochastic fluctuations in responsiveness is a critical step toward personalized anesthesia. Elife 2019;8:e50143. [PMID: 31793434 DOI: 10.7554/eLife.50143] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
126 Wang T, Xiong B, Xu W, Wei H, Qu W, Hong Z, Huang Z. Activation of Parabrachial Nucleus Glutamatergic Neurons Accelerates Reanimation from Sevoflurane Anesthesia in Mice. Anesthesiology 2019;130:106-18. [DOI: 10.1097/aln.0000000000002475] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 6.3] [Reference Citation Analysis]
127 Ao Y, Yang B, Zhang C, Wu B, Zhang X, Xing D, Xu H. Locus Coeruleus to Paraventricular Thalamus Projections Facilitate Emergence From Isoflurane Anesthesia in Mice. Front Pharmacol 2021;12:643172. [PMID: 33986675 DOI: 10.3389/fphar.2021.643172] [Reference Citation Analysis]
128 Moody OA, Zhang ER, Vincent KF, Kato R, Melonakos ED, Nehs CJ, Solt K. The Neural Circuits Underlying General Anesthesia and Sleep. Anesth Analg 2021;132:1254-64. [PMID: 33857967 DOI: 10.1213/ANE.0000000000005361] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
129 Kushikata T, Hirota K. Mechanisms of Anesthetic Emergence: Evidence for Active Reanimation. Curr Anesthesiol Rep 2014;4:49-56. [DOI: 10.1007/s40140-013-0045-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
130 Nattie E, Li A. Central chemoreception in wakefulness and sleep: evidence for a distributed network and a role for orexin. J Appl Physiol (1985) 2010;108:1417-24. [PMID: 20133433 DOI: 10.1152/japplphysiol.01261.2009] [Cited by in Crossref: 56] [Cited by in F6Publishing: 55] [Article Influence: 4.7] [Reference Citation Analysis]
131 Liang Z, Huang C, Li Y, Hight DF, Voss LJ, Sleigh JW, Li X, Bai Y. Emergence EEG pattern classification in sevoflurane anesthesia. Physiol Meas. 2018;39:045006. [PMID: 29513276 DOI: 10.1088/1361-6579/aab4d0] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
132 Van Dort CJ, Baghdoyan HA, Lydic R. Neurochemical modulators of sleep and anesthetic states. Int Anesthesiol Clin 2008;46:75-104. [PMID: 18617819 DOI: 10.1097/AIA.0b013e318181a8ca] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
133 Friedman EB, Sun Y, Moore JT, Hung HT, Meng QC, Perera P, Joiner WJ, Thomas SA, Eckenhoff RG, Sehgal A, Kelz MB. A conserved behavioral state barrier impedes transitions between anesthetic-induced unconsciousness and wakefulness: evidence for neural inertia. PLoS One 2010;5:e11903. [PMID: 20689589 DOI: 10.1371/journal.pone.0011903] [Cited by in Crossref: 137] [Cited by in F6Publishing: 126] [Article Influence: 11.4] [Reference Citation Analysis]
134 Heshmati M, Bruchas MR. Historical and Modern Evidence for the Role of Reward Circuitry in Emergence. Anesthesiology 2022. [PMID: 35362070 DOI: 10.1097/ALN.0000000000004148] [Reference Citation Analysis]
135 Allada R. An emerging link between general anesthesia and sleep. Proc Natl Acad Sci U S A 2008;105:2257-8. [PMID: 18272494 DOI: 10.1073/pnas.0711532105] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
136 Takekawa D, Kushikata T, Kitayama M, Hirota K. Anesthetic management of a patient with narcolepsy by combination of total intravenous and regional anesthesia: a case report. JA Clin Rep 2017;3:37. [PMID: 29457081 DOI: 10.1186/s40981-017-0107-4] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
137 Leung LS, Luo T, Ma J, Herrick I. Brain areas that influence general anesthesia. Prog Neurobiol 2014;122:24-44. [PMID: 25172271 DOI: 10.1016/j.pneurobio.2014.08.001] [Cited by in Crossref: 59] [Cited by in F6Publishing: 60] [Article Influence: 7.4] [Reference Citation Analysis]
138 Sanders RD. Does Delta Connectivity Differentiate Sleep and Anesthesia? Anesthesiology 2020;133:700-1. [PMID: 32796199 DOI: 10.1097/ALN.0000000000003478] [Reference Citation Analysis]
139 Kenny JD, Taylor NE, Brown EN, Solt K. Dextroamphetamine (but Not Atomoxetine) Induces Reanimation from General Anesthesia: Implications for the Roles of Dopamine and Norepinephrine in Active Emergence. PLoS One 2015;10:e0131914. [PMID: 26148114 DOI: 10.1371/journal.pone.0131914] [Cited by in Crossref: 39] [Cited by in F6Publishing: 35] [Article Influence: 5.6] [Reference Citation Analysis]
140 Patel SR, Ballesteros JJ, Ahmed OJ, Huang P, Briscoe J, Eskandar EN, Ishizawa Y. Dynamics of recovery from anaesthesia-induced unconsciousness across primate neocortex. Brain 2020;143:833-43. [PMID: 32049333 DOI: 10.1093/brain/awaa017] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
141 Coppens M, Van Limmen J, Schnider T, Wyler B, Bonte S, Dewaele F, Struys M, Vereecke H. Study of the time course of the clinical effect of propofol compared with the time course of the predicted effect-site concentration: performance of three pharmacokinetic–dynamic models. British Journal of Anaesthesia 2010;104:452-8. [DOI: 10.1093/bja/aeq028] [Cited by in Crossref: 45] [Cited by in F6Publishing: 31] [Article Influence: 3.8] [Reference Citation Analysis]
142 Kuroki C, Takahashi Y, Ootsuka Y, Kanmura Y, Kuwaki T. The Impact of Hypothermia on Emergence from Isoflurane Anesthesia in Orexin Neuron-Ablated Mice. Anesthesia & Analgesia 2013;116:1001-5. [DOI: 10.1213/ane.0b013e31828842f0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
143 Fu B, Yu T, Yuan J, Gong X, Zhang M. Noradrenergic transmission in the central medial thalamic nucleus modulates the electroencephalographic activity and emergence from propofol anesthesia in rats. J Neurochem 2017;140:862-73. [DOI: 10.1111/jnc.13939] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 4.4] [Reference Citation Analysis]
144 Seigneur E, de Lecea L. Hypocretin (Orexin) Replacement Therapies. Medicine in Drug Discovery 2020;8:100070. [DOI: 10.1016/j.medidd.2020.100070] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
145 Eikermann M, Vetrivelan R, Grosse-Sundrup M, Henry ME, Hoffmann U, Yokota S, Saper CB, Chamberlin NL. The ventrolateral preoptic nucleus is not required for isoflurane general anesthesia. Brain Res 2011;1426:30-7. [PMID: 22041226 DOI: 10.1016/j.brainres.2011.10.018] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 2.7] [Reference Citation Analysis]
146 Watson SL, Watson CJ, Baghdoyan HA, Lydic R. Thermal nociception is decreased by hypocretin-1 and an adenosine A1 receptor agonist microinjected into the pontine reticular formation of Sprague Dawley rat. J Pain 2010;11:535-44. [PMID: 20015707 DOI: 10.1016/j.jpain.2009.09.010] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.2] [Reference Citation Analysis]
147 Proekt A, Kelz MB. Explaining anaesthetic hysteresis with effect-site equilibration. Br J Anaesth 2021;126:265-78. [PMID: 33081972 DOI: 10.1016/j.bja.2020.09.022] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
148 Noseda R, Borsook D, Burstein R. Neuropeptides and Neurotransmitters That Modulate Thalamo-Cortical Pathways Relevant to Migraine Headache. Headache 2017;57 Suppl 2:97-111. [PMID: 28485844 DOI: 10.1111/head.13083] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 7.3] [Reference Citation Analysis]
149 Gestreau C, Bévengut M, Dutschmann M. The dual role of the orexin/hypocretin system in modulating wakefulness and respiratory drive. Curr Opin Pulm Med 2008;14:512-8. [PMID: 18812827 DOI: 10.1097/MCP.0b013e32831311d3] [Cited by in Crossref: 40] [Cited by in F6Publishing: 17] [Article Influence: 2.9] [Reference Citation Analysis]
150 Luo T, Yu S, Cai S, Zhang Y, Jiao Y, Yu T, Yu W. Parabrachial Neurons Promote Behavior and Electroencephalographic Arousal From General Anesthesia. Front Mol Neurosci 2018;11:420. [PMID: 30564094 DOI: 10.3389/fnmol.2018.00420] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
151 Kushikata T, Yoshida H, Kudo M, Salvadori S, Calo G, Hirota K. The effects of neuropeptide S on general anesthesia in rats. Anesth Analg 2011;112:845-9. [PMID: 21288975 DOI: 10.1213/ANE.0b013e31820b990d] [Cited by in Crossref: 23] [Cited by in F6Publishing: 9] [Article Influence: 2.1] [Reference Citation Analysis]
152 Hemmings HC Jr, Riegelhaupt PM, Kelz MB, Solt K, Eckenhoff RG, Orser BA, Goldstein PA. Towards a Comprehensive Understanding of Anesthetic Mechanisms of Action: A Decade of Discovery. Trends Pharmacol Sci 2019;40:464-81. [PMID: 31147199 DOI: 10.1016/j.tips.2019.05.001] [Cited by in Crossref: 58] [Cited by in F6Publishing: 52] [Article Influence: 19.3] [Reference Citation Analysis]
153 Zhao S, Wang S, Li H, Guo J, Li J, Wang D, Zhang X, Yin L, Li R, Li A, Li H, Fan Z, Yang Q, Zhong H, Dong H. Activation of Orexinergic Neurons Inhibits the Anesthetic Effect of Desflurane on Consciousness State via Paraventricular Thalamic Nucleus in Rats. Anesth Analg 2021;133:781-93. [PMID: 34403389 DOI: 10.1213/ANE.0000000000005651] [Reference Citation Analysis]
154 Moore JT, Chen J, Han B, Meng QC, Veasey SC, Beck SG, Kelz MB. Direct activation of sleep-promoting VLPO neurons by volatile anesthetics contributes to anesthetic hypnosis. Curr Biol 2012;22:2008-16. [PMID: 23103189 DOI: 10.1016/j.cub.2012.08.042] [Cited by in Crossref: 100] [Cited by in F6Publishing: 93] [Article Influence: 10.0] [Reference Citation Analysis]
155 Van Dort CJ, Baghdoyan HA, Lydic R. Adenosine A(1) and A(2A) receptors in mouse prefrontal cortex modulate acetylcholine release and behavioral arousal. J Neurosci 2009;29:871-81. [PMID: 19158311 DOI: 10.1523/JNEUROSCI.4111-08.2009] [Cited by in Crossref: 86] [Cited by in F6Publishing: 60] [Article Influence: 6.6] [Reference Citation Analysis]
156 McCarren HS, Chalifoux MR, Han B, Moore JT, Meng QC, Baron-Hionis N, Sedigh-Sarvestani M, Contreras D, Beck SG, Kelz MB. α2-Adrenergic stimulation of the ventrolateral preoptic nucleus destabilizes the anesthetic state. J Neurosci 2014;34:16385-96. [PMID: 25471576 DOI: 10.1523/JNEUROSCI.1135-14.2014] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 3.6] [Reference Citation Analysis]
157 Ao Y, Yang B, Zhang C, Li S, Xu H. Application of quinpirole in the paraventricular thalamus facilitates emergence from isoflurane anesthesia in mice. Brain Behav 2021;11:e01903. [PMID: 33128305 DOI: 10.1002/brb3.1903] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
158 Wang ZH, Ni XL, Li JN, Xiao ZY, Wang C, Zhang LN, Tong L, Dong HL. Changes in plasma orexin-A levels in sevoflurane-remifentanil anesthesia in young and elderly patients undergoing elective lumbar surgery. Anesth Analg. 2014;118:818-822. [PMID: 24651236 DOI: 10.1213/ane.0000000000000109] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 1.4] [Reference Citation Analysis]
159 Noguchi A, Sakaguchi T, Sato M, Aikawa H, Matsumoto N, Ikegaya Y. Whisker electromyograms signify awake and anesthetized states in mice. Neurosci Res 2019;148:61-5. [PMID: 30593852 DOI: 10.1016/j.neures.2018.12.002] [Reference Citation Analysis]
160 Absalom AR, De Keyser R, Struys MMRF. Closed Loop Anesthesia: Are We Getting Close to Finding the Holy Grail? Anesthesia & Analgesia 2011;112:516-8. [DOI: 10.1213/ane.0b013e318203f5ad] [Cited by in Crossref: 60] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
161 Cao Y, Zhang L, Peng X, Wu Y, Zhang Q, Gu E, Zhang Y. Increased minimum alveolar concentration-awake of Sevoflurane in women of breast surgery with sleep disorders. BMC Anesthesiol 2020;20:17. [PMID: 31959101 DOI: 10.1186/s12871-020-0931-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
162 Hunt NJ, Waters KA, Rodriguez ML, Machaalani R. Decreased orexin (hypocretin) immunoreactivity in the hypothalamus and pontine nuclei in sudden infant death syndrome. Acta Neuropathol 2015;130:185-98. [PMID: 25953524 DOI: 10.1007/s00401-015-1437-9] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
163 Chung HS. Awareness and recall during general anesthesia. Korean J Anesthesiol 2014;66:339-45. [PMID: 24910724 DOI: 10.4097/kjae.2014.66.5.339] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 2.1] [Reference Citation Analysis]
164 Absalom AR, Menon DK. BIS and spectral entropy monitoring during sedation with midazolam/remifentanil and dexmedetomidine/remifentanil. Crit Care 2009;13:137. [PMID: 19439053 DOI: 10.1186/cc7776] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 0.8] [Reference Citation Analysis]
165 Flint RR, Chang T, Lydic R, Baghdoyan HA. GABA(A) receptors in the pontine reticular formation of C57BL/6J mouse modulate neurochemical, electrographic, and behavioral phenotypes of wakefulness. J Neurosci 2010;30:12301-9. [PMID: 20844126 DOI: 10.1523/JNEUROSCI.1119-10.2010] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
166 Tootoonchi MH, Bardsley R, Panagiotou T, Fisher RJ, Pretto EA, Fraker CA. Rapid quantification of isoflurane in anesthetic nanoemulsions using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR). Vibrational Spectroscopy 2020;109:103095. [DOI: 10.1016/j.vibspec.2020.103095] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
167 Graebner AK, Iyer M, Carter ME. Understanding how discrete populations of hypothalamic neurons orchestrate complicated behavioral states. Front Syst Neurosci 2015;9:111. [PMID: 26300745 DOI: 10.3389/fnsys.2015.00111] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.9] [Reference Citation Analysis]
168 Pillay S, Vizuete J, Liu X, Juhasz G, Hudetz AG. Brainstem stimulation augments information integration in the cerebral cortex of desflurane-anesthetized rats. Front Integr Neurosci 2014;8:8. [PMID: 24605091 DOI: 10.3389/fnint.2014.00008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 0.6] [Reference Citation Analysis]
169 Huang Z, Tarnal V, Vlisides PE, Janke EL, McKinney AM, Picton P, Mashour GA, Hudetz AG. Asymmetric neural dynamics characterize loss and recovery of consciousness. Neuroimage 2021;236:118042. [PMID: 33848623 DOI: 10.1016/j.neuroimage.2021.118042] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
170 Hershner S, Dauvilliers Y, Chung F, Singh M, Wong J, Gali B, Kakkar R, Mignot E, Thorpy M, Auckley D. Knowledge Gaps in the Perioperative Management of Adults With Narcolepsy: A Call for Further Research. Anesth Analg 2019;129:204-11. [PMID: 30882519 DOI: 10.1213/ANE.0000000000004088] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
171 Guo J, Xu K, Yin JW, Zhang H, Yin JT, Li Y. Dopamine transporter in the ventral tegmental area modulates recovery from propofol anesthesia in rats. J Chem Neuroanat 2022;:102083. [PMID: 35181484 DOI: 10.1016/j.jchemneu.2022.102083] [Reference Citation Analysis]
172 Carter ME, Schaich Borg J, de Lecea L. The brain hypocretins and their receptors: mediators of allostatic arousal. Curr Opin Pharmacol 2009;9:39-45. [PMID: 19185540 DOI: 10.1016/j.coph.2008.12.018] [Cited by in Crossref: 64] [Cited by in F6Publishing: 59] [Article Influence: 4.9] [Reference Citation Analysis]
173 Hirota K. Sepsis and the orexin system. J Anesth 2016;30:919-22. [PMID: 27580992 DOI: 10.1007/s00540-016-2246-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
174 Brevig HN, Watson CJ, Lydic R, Baghdoyan HA. Hypocretin and GABA interact in the pontine reticular formation to increase wakefulness. Sleep 2010;33:1285-93. [PMID: 21061850 DOI: 10.1093/sleep/33.10.1285] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 1.8] [Reference Citation Analysis]
175 Lewis LD, Piantoni G, Peterfreund RA, Eskandar EN, Harrell PG, Akeju O, Aglio LS, Cash SS, Brown EN, Mukamel EA, Purdon PL. A transient cortical state with sleep-like sensory responses precedes emergence from general anesthesia in humans. Elife 2018;7:e33250. [PMID: 30095069 DOI: 10.7554/eLife.33250] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
176 Liu Y, Chen B, Cai Y, Han Y, Xia Y, Li N, Fan B, Yuan T, Jiang J, Gao PO, Yu W, Jiao Y, Li W. Activation of anterior thalamic reticular nucleus GABAergic neurons promotes arousal from propofol anesthesia in mice. Acta Biochim Biophys Sin (Shanghai) 2021;53:883-92. [PMID: 33929026 DOI: 10.1093/abbs/gmab056] [Reference Citation Analysis]
177 Taylor NE, Chemali JJ, Brown EN, Solt K. Activation of D1 dopamine receptors induces emergence from isoflurane general anesthesia. Anesthesiology. 2013;118:30-39. [PMID: 23221866 DOI: 10.1097/aln.0b013e318278c896] [Cited by in Crossref: 69] [Cited by in F6Publishing: 44] [Article Influence: 7.7] [Reference Citation Analysis]
178 Shirasaka T, Yonaha T, Onizuka S, Tsuneyoshi I. Effects of orexin-A on propofol anesthesia in rats. J Anesth 2011;25:65-71. [PMID: 21153424 DOI: 10.1007/s00540-010-1071-6] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 3.5] [Reference Citation Analysis]
179 Koenig MA, Jia X, Kang X, Velasquez A, Thakor NV, Geocadin RG. Intraventricular orexin-A improves arousal and early EEG entropy in rats after cardiac arrest. Brain Res 2009;1255:153-61. [PMID: 19111527 DOI: 10.1016/j.brainres.2008.11.102] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
180 Kaskinoro K, Maksimow A, Långsjö J, Aantaa R, Jääskeläinen S, Kaisti K, Särkelä M, Scheinin H. Wide inter-individual variability of bispectral index and spectral entropy at loss of consciousness during increasing concentrations of dexmedetomidine, propofol, and sevoflurane. British Journal of Anaesthesia 2011;107:573-80. [DOI: 10.1093/bja/aer196] [Cited by in Crossref: 52] [Cited by in F6Publishing: 47] [Article Influence: 4.7] [Reference Citation Analysis]
181 Franks NP. General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat Rev Neurosci. 2008;9:370-386. [PMID: 18425091 DOI: 10.1038/nrn2372] [Cited by in Crossref: 752] [Cited by in F6Publishing: 686] [Article Influence: 53.7] [Reference Citation Analysis]
182 Zhang LN, Yang C, Ouyang PR, Zhang ZC, Ran MZ, Tong L, Dong HL, Liu Y. Orexin-A facilitates emergence of the rat from isoflurane anesthesia via mediation of the basal forebrain. Neuropeptides. 2016;58:7-14. [PMID: 26919917 DOI: 10.1016/j.npep.2016.02.003] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 3.3] [Reference Citation Analysis]
183 Adamantidis A, Carter MC, de Lecea L. Optogenetic deconstruction of sleep-wake circuitry in the brain. Front Mol Neurosci 2010;2:31. [PMID: 20126433 DOI: 10.3389/neuro.02.031.2009] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 2.6] [Reference Citation Analysis]
184 Song J, Um YH, Kim TW, Kim SM, Kwon SY, Hong S. Sleep and Anesthesia. Sleep Med Res 2018;9:11-9. [DOI: 10.17241/smr.2018.00164] [Cited by in Crossref: 4] [Article Influence: 1.0] [Reference Citation Analysis]
185 Teig MK, Hudetz AG, Mashour GA. Consciousness and Anesthesia: An Update for the Clinician. Adv Anesth 2012;30:13-27. [PMID: 34522064 DOI: 10.1016/j.aan.2012.08.001] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
186 Zecharia AY, Nelson LE, Gent TC, Schumacher M, Jurd R, Rudolph U, Brickley SG, Maze M, Franks NP. The involvement of hypothalamic sleep pathways in general anesthesia: testing the hypothesis using the GABAA receptor beta3N265M knock-in mouse. J Neurosci 2009;29:2177-87. [PMID: 19228970 DOI: 10.1523/JNEUROSCI.4997-08.2009] [Cited by in Crossref: 73] [Cited by in F6Publishing: 52] [Article Influence: 5.6] [Reference Citation Analysis]
187 Yin L, Li L, Deng J, Wang D, Guo Y, Zhang X, Li H, Zhao S, Zhong H, Dong H. Optogenetic/Chemogenetic Activation of GABAergic Neurons in the Ventral Tegmental Area Facilitates General Anesthesia via Projections to the Lateral Hypothalamus in Mice. Front Neural Circuits 2019;13:73. [PMID: 31798420 DOI: 10.3389/fncir.2019.00073] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
188 Shortal BP, Reitz SL, Aggarwal A, Meng QC, McKinstry-Wu AR, Kelz MB, Proekt A. Development and validation of brain target controlled infusion of propofol in mice. PLoS One 2018;13:e0194949. [PMID: 29684039 DOI: 10.1371/journal.pone.0194949] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
189 Gettys GC, Liu F, Kimlin E, Baghdoyan HA, Lydic R. Adenosine A(1) receptors in mouse pontine reticular formation depress breathing, increase anesthesia recovery time, and decrease acetylcholine release. Anesthesiology 2013;118:327-36. [PMID: 23263018 DOI: 10.1097/ALN.0b013e31827d413e] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
190 Xia T, Cui Y, Chu S, Ma Z, Gu X. Murine clock gene expression in the suprachiasmatic nuclei and peripheral blood mononuclear cells during the daily sleep-wake rhythm and after isoflurane anesthesia: Clock gene daily and after anesthesia. Sleep and Biological Rhythms 2015;13:357-65. [DOI: 10.1111/sbr.12126] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
191 Escalona Belmonte JJ, Romero Molina S, Sepúlveda Haro E, Malo Manso A, Guerrero Orriach JL. Narcolepsy and opioid-free anesthesia: a review and case report. Rev Esp Anestesiol Reanim (Engl Ed) 2021;68:165-70. [PMID: 33160690 DOI: 10.1016/j.redar.2020.07.002] [Reference Citation Analysis]
192 Andersson H, Björnström K, Eintrei C, Sundqvist T. Orexin a phosphorylates the γ-Aminobutyric acid type A receptor β2 subunit on a serine residue and changes the surface expression of the receptor in SH-SY5Y cells exposed to propofol. J Neurosci Res 2015;93:1748-55. [PMID: 26283475 DOI: 10.1002/jnr.23631] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
193 Stamatakis EA, Adapa RM, Absalom AR, Menon DK. Changes in resting neural connectivity during propofol sedation. PLoS One 2010;5:e14224. [PMID: 21151992 DOI: 10.1371/journal.pone.0014224] [Cited by in Crossref: 113] [Cited by in F6Publishing: 103] [Article Influence: 9.4] [Reference Citation Analysis]
194 Mashour GA, Pal D. Interfaces of Sleep and Anesthesia. Anesthesiology Clinics 2012;30:385-98. [DOI: 10.1016/j.anclin.2012.05.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 1.5] [Reference Citation Analysis]
195 Li K, Zhou Y, Fu B. Dopaminergic D1 receptors in the nucleus basalis modulate recovery from propofol anesthesia in rats. Iran J Basic Med Sci 2020;23:298-302. [PMID: 32440315 DOI: 10.22038/IJBMS.2019.37716.8962] [Reference Citation Analysis]
196 Pal D, Mashour GA. Consciousness, Anesthesia, and Acetylcholine. Anesthesiology 2021;134:515-7. [PMID: 33635939 DOI: 10.1097/ALN.0000000000003696] [Reference Citation Analysis]
197 Engbers F. Is unconsciousness simply the reverse of consciousness? Anaesthesia 2018;73:6-9. [DOI: 10.1111/anae.14121] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.4] [Reference Citation Analysis]
198 Muindi F, Kenny JD, Taylor NE, Solt K, Wilson MA, Brown EN, Van Dort CJ. Electrical stimulation of the parabrachial nucleus induces reanimation from isoflurane general anesthesia. Behavioural Brain Research 2016;306:20-5. [DOI: 10.1016/j.bbr.2016.03.021] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 4.8] [Reference Citation Analysis]
199 Kelz MB, García PS, Mashour GA, Solt K. Escape From Oblivion: Neural Mechanisms of Emergence From General Anesthesia. Anesth Analg 2019;128:726-36. [PMID: 30883418 DOI: 10.1213/ANE.0000000000004006] [Cited by in Crossref: 22] [Cited by in F6Publishing: 9] [Article Influence: 7.3] [Reference Citation Analysis]
200 Xia T, Cui Y, Chu S, Song J, Qian Y, Ma Z, Gu X. Melatonin pretreatment prevents isoflurane-induced cognitive dysfunction by modulating sleep-wake rhythm in mice. Brain Res 2016;1634:12-20. [PMID: 26519752 DOI: 10.1016/j.brainres.2015.10.036] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
201 Palanca BJA, Maybrier HR, Mickle AM, Farber NB, Hogan RE, Trammel ER, Spencer JW, Bohnenkamp DD, Wildes TS, Ching S, Lenze E, Basner M, Kelz MB, Avidan MS. Cognitive and Neurophysiological Recovery Following Electroconvulsive Therapy: A Study Protocol. Front Psychiatry 2018;9:171. [PMID: 29867602 DOI: 10.3389/fpsyt.2018.00171] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]