BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Notarnicola C, Rouleau C, Le Guen L, Virsolvy A, Richard S, Faure S, De Santa Barbara P. The RNA-Binding Protein RBPMS2 Regulates Development of Gastrointestinal Smooth Muscle. Gastroenterology 2012;143:687-697.e9. [DOI: 10.1053/j.gastro.2012.05.047] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 2.5] [Reference Citation Analysis]
Number Citing Articles
1 Scirocco A, Matarrese P, Carabotti M, Ascione B, Malorni W, Severi C. Cellular and Molecular Mechanisms of Phenotypic Switch in Gastrointestinal Smooth Muscle: GI SMOOTH MUSCLE PHENOTYPIC SWITCH. J Cell Physiol 2016;231:295-302. [DOI: 10.1002/jcp.25105] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
2 Bourret A, Chauvet N, de Santa Barbara P, Faure S. Colonic mesenchyme differentiates into smooth muscle before its colonization by vagal enteric neural crest-derived cells in the chick embryo. Cell Tissue Res 2017;368:503-11. [DOI: 10.1007/s00441-017-2577-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
3 Soufari H, Mackereth CD. Conserved binding of GCAC motifs by MEC-8, couch potato, and the RBPMS protein family. RNA 2017;23:308-16. [PMID: 28003515 DOI: 10.1261/rna.059733.116] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
4 Farazi TA, Leonhardt CS, Mukherjee N, Mihailovic A, Li S, Max KE, Meyer C, Yamaji M, Cekan P, Jacobs NC, Gerstberger S, Bognanni C, Larsson E, Ohler U, Tuschl T. Identification of the RNA recognition element of the RBPMS family of RNA-binding proteins and their transcriptome-wide mRNA targets. RNA 2014;20:1090-102. [PMID: 24860013 DOI: 10.1261/rna.045005.114] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 3.5] [Reference Citation Analysis]
5 Romano S, Kaufman OH, Marlow FL. Loss of dmrt1 restores zebrafish female fates in the absence of cyp19a1a but not rbpms2a/b. Development 2020;147:dev190942. [PMID: 32895289 DOI: 10.1242/dev.190942] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Krishna CV, Singh J, Thangavel C, Rattan S. Role of microRNAs in gastrointestinal smooth muscle fibrosis and dysfunction: novel molecular perspectives on the pathophysiology and therapeutic targeting. Am J Physiol Gastrointest Liver Physiol 2016;310:G449-59. [PMID: 26822916 DOI: 10.1152/ajpgi.00445.2015] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
7 McGrath-Morrow SA, Ndeh R, Helmin KA, Khuder B, Rothblum-Oviatt C, Collaco JM, Wright J, Reyfman PA, Lederman HM, Singer BD. DNA methylation and gene expression signatures are associated with ataxia-telangiectasia phenotype. Sci Rep 2020;10:7479. [PMID: 32366930 DOI: 10.1038/s41598-020-64514-2] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
8 Martire D, Garnier S, Sagnol S, Bourret A, Marchal S, Chauvet N, Guérin A, Forgues D, Berrebi D, Chardot C, Bellaiche M, Rendu J, Kalfa N, Faure S, de Santa Barbara P. Phenotypic switch of smooth muscle cells in paediatric chronic intestinal pseudo-obstruction syndrome. J Cell Mol Med 2021;25:4028-39. [PMID: 33656779 DOI: 10.1111/jcmm.16367] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Sagnol S, Yang Y, Bessin Y, Allemand F, Hapkova I, Notarnicola C, Guichou JF, Faure S, Labesse G, de Santa Barbara P. Homodimerization of RBPMS2 through a new RRM-interaction motif is necessary to control smooth muscle plasticity. Nucleic Acids Res 2014;42:10173-84. [PMID: 25064856 DOI: 10.1093/nar/gku692] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 2.5] [Reference Citation Analysis]
10 Faure S, Georges M, Mckey J, Sagnol S, de Santa Barbara P. Expression pattern of the homeotic gene Bapx1 during early chick gastrointestinal tract development. Gene Expression Patterns 2013;13:287-92. [DOI: 10.1016/j.gep.2013.05.005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.2] [Reference Citation Analysis]
11 McKey J, Martire D, de Santa Barbara P, Faure S. LIX1 regulates YAP1 activity and controls the proliferation and differentiation of stomach mesenchymal progenitors. BMC Biol 2016;14:34. [PMID: 27125505 DOI: 10.1186/s12915-016-0257-2] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
12 Hapkova I, Skarda J, Rouleau C, Thys A, Notarnicola C, Janikova M, Bernex F, Rypka M, Vanderwinden JM, Faure S, Vesely J, de Santa Barbara P. High expression of the RNA-binding protein RBPMS2 in gastrointestinal stromal tumors. Exp Mol Pathol 2013;94:314-21. [PMID: 23295309 DOI: 10.1016/j.yexmp.2012.12.004] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 1.9] [Reference Citation Analysis]
13 Akerberg AA, Burns CE, Burns CG. Exploring the Activities of RBPMS Proteins in Myocardial Biology. Pediatr Cardiol 2019;40:1410-8. [PMID: 31399780 DOI: 10.1007/s00246-019-02180-6] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
14 Roig B, Cadiere A, Bressieux S, Biau S, Faure S, de Santa Barbara P. Environmental concentration of nonylphenol alters the development of urogenital and visceral organs in avian model. Environment International 2014;62:78-85. [DOI: 10.1016/j.envint.2013.10.006] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
15 Huycke TR, Tabin CJ. Chick midgut morphogenesis. Int J Dev Biol 2018;62:109-19. [PMID: 29616718 DOI: 10.1387/ijdb.170325ct] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
16 Nakagaki-Silva EE, Gooding C, Llorian M, Jacob AG, Richards F, Buckroyd A, Sinha S, Smith CW. Identification of RBPMS as a mammalian smooth muscle master splicing regulator via proximity of its gene with super-enhancers. Elife 2019;8:e46327. [PMID: 31283468 DOI: 10.7554/eLife.46327] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
17 Le Guen L, Marchal S, Faure S, de Santa Barbara P. Mesenchymal-epithelial interactions during digestive tract development and epithelial stem cell regeneration. Cell Mol Life Sci 2015;72:3883-96. [PMID: 26126787 DOI: 10.1007/s00018-015-1975-2] [Cited by in Crossref: 43] [Cited by in F6Publishing: 36] [Article Influence: 6.1] [Reference Citation Analysis]
18 Margarido AS, Le Guen L, Falco A, Faure S, Chauvet N, de Santa Barbara P. PROX1 is a specific and dynamic marker of sacral neural crest cells in the chicken intestine. J Comp Neurol 2020;528:879-89. [PMID: 31658363 DOI: 10.1002/cne.24801] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
19 Zhao H, Tong Y, Pan S, Qiu Z, Liu P, Guo P. RBPMS2, as a novel biomarker for predicting lymph node metastasis, guides therapeutic regimens in gastric cancer. Hum Cell 2022. [PMID: 34981466 DOI: 10.1007/s13577-021-00667-0] [Reference Citation Analysis]
20 Chen J, Wang A, Ji J, Zhou K, Bu Z, Lyu G, Ji J. An Innovative Prognostic Model Based on Four Genes in Asian Patient with Gastric Cancer. Cancer Res Treat 2021;53:148-61. [PMID: 32878427 DOI: 10.4143/crt.2020.424] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Chetaille P, Preuss C, Burkhard S, Côté J, Houde C, Castilloux J, Piché J, Gosset N, Leclerc S, Wünnemann F, Thibeault M, Gagnon C, Galli A, Tuck E, Hickson GR, Amine NE, Boufaied I, Lemyre E, de Santa Barbara P, Faure S, Jonzon A, Cameron M, Dietz HC, Gallo-mcfarlane E, Benson DW, Moreau C, Labuda D, Zhan SH, Shen Y, Jomphe M, Jones SJM, Bakkers J, Andelfinger G; FORGE Canada Consortium. Mutations in SGOL1 cause a novel cohesinopathy affecting heart and gut rhythm. Nat Genet 2014;46:1245-9. [DOI: 10.1038/ng.3113] [Cited by in Crossref: 70] [Cited by in F6Publishing: 64] [Article Influence: 8.8] [Reference Citation Analysis]
22 Faure S, Mckey J, Sagnol S, de Santa Barbara P. Enteric neural crest cells regulate vertebrate stomach patterning and differentiation. Development 2015. [DOI: 10.1242/dev.118422] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 4.4] [Reference Citation Analysis]
23 Huycke TR, Miller BM, Gill HK, Nerurkar NL, Sprinzak D, Mahadevan L, Tabin CJ. Genetic and Mechanical Regulation of Intestinal Smooth Muscle Development. Cell 2019;179:90-105.e21. [PMID: 31539501 DOI: 10.1016/j.cell.2019.08.041] [Cited by in Crossref: 39] [Cited by in F6Publishing: 23] [Article Influence: 19.5] [Reference Citation Analysis]
24 Chun SH, Kim EY, Yoon JS, Won HS, Yim K, Hwang HW, Hong SA, Lee M, Lee SL, Kim SS, Sun S, Ko YH. Prognostic value of noggin protein expression in patients with resected gastric cancer. BMC Cancer 2021;21:558. [PMID: 34001012 DOI: 10.1186/s12885-021-08273-x] [Reference Citation Analysis]
25 Fu J, Cheng L, Wang Y, Yuan P, Xu X, Ding L, Zhang H, Jiang K, Song H, Chen Z, Ye Q. The RNA-binding protein RBPMS1 represses AP-1 signaling and regulates breast cancer cell proliferation and migration. Biochim Biophys Acta. 2015;1853:1-13. [PMID: 25281386 DOI: 10.1016/j.bbamcr.2014.09.022] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 3.1] [Reference Citation Analysis]