BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Furuse M. Central regulation of food intake in the neonatal chick. Animal Science Journal 2002;73:83-94. [DOI: 10.1046/j.1344-3941.2002.00014.x] [Cited by in Crossref: 69] [Cited by in F6Publishing: 49] [Article Influence: 3.5] [Reference Citation Analysis]
Number Citing Articles
1 Zhang XY, Zhu MK, Yuan C, Zou XT. Proteomic analysis of hypothalamus and liver proteins affected by dietary l-arginine supplementation in laying hens. J Anim Physiol Anim Nutr (Berl) 2018;102:1553-63. [PMID: 30091229 DOI: 10.1111/jpn.12916] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
2 Richards M, Rosebrough R, Coon C, Mcmurtry J. Feed intake regulation for the female broiler breeder: In theory and in practice ,. Journal of Applied Poultry Research 2010;19:182-93. [DOI: 10.3382/japr.2010-00167] [Cited by in Crossref: 39] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]
3 Yousefvand S, Hamidi F, Zendehdel M, Parham A. Hypophagic effects of insulin are mediated via NPY 1 /NPY 2 receptors in broiler cockerels. Can J Physiol Pharmacol 2018;96:1301-7. [DOI: 10.1139/cjpp-2018-0470] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
4 Tachibana T, Sato M, Oikawa D, Furuse M. Involvement of CRF on the anorexic effect of GLP-1 in layer chicks. Comp Biochem Physiol A Mol Integr Physiol 2006;143:112-7. [PMID: 16377222 DOI: 10.1016/j.cbpa.2005.11.007] [Cited by in Crossref: 42] [Cited by in F6Publishing: 41] [Article Influence: 2.5] [Reference Citation Analysis]
5 Zhou W, Aoyama M, Yoshizawa F, Sugahara K. Developmental increases in hypothalamic neuropeptide Y content with the embryonic age of meat- and layer-type chicks. Brain Res 2006;1072:26-9. [PMID: 16426585 DOI: 10.1016/j.brainres.2005.11.029] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.3] [Reference Citation Analysis]
6 Piekarski A, Decuypere E, Buyse J, Dridi S. Chenodeoxycholic acid reduces feed intake and modulates the expression of hypothalamic neuropeptides and hepatic lipogenic genes in broiler chickens. General and Comparative Endocrinology 2016;229:74-83. [DOI: 10.1016/j.ygcen.2016.03.007] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
7 Liu L, Song Z, Sheikhahmadi A, Jiao H, Lin H. Effect of corticosterone on gene expression of feed intake regulatory peptides in laying hens. Comp Biochem Physiol B Biochem Mol Biol 2012;162:81-7. [PMID: 22554475 DOI: 10.1016/j.cbpb.2012.04.005] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 2.7] [Reference Citation Analysis]
8 Torkzaban M, Zendehdel M, Babapour V, Panahi N, Hassanpour S. Interaction Between Central Opioidergic and Glutamatergic Systems on Food Intake in Neonatal Chicks: Role of NMDA, AMPA and mGLU1 Receptors. Int J Pept Res Ther 2018;24:157-69. [DOI: 10.1007/s10989-017-9601-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
9 Zendehdel M, Hamidi F, Hassanpour S. The Effect of Histaminergic System on Nociceptin/Orphanin FQ Induced Food Intake in Chicken. Int J Pept Res Ther 2015;21:179-86. [DOI: 10.1007/s10989-014-9445-5] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
10 Kamisoyama H, Honda K, Saneyasu T, Sugahara K, Hasegawa S. Corticotropin-releasing factor is a downstream mediator of the beta-melanocyte-stimulating hormone-induced anorexigenic pathway in chicks. Neurosci Lett 2009;458:102-5. [PMID: 19393716 DOI: 10.1016/j.neulet.2009.04.041] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.2] [Reference Citation Analysis]
11 Furuse M. Screening of central functions of amino acids and their metabolites for sedative and hypnotic effects using chick models. European Journal of Pharmacology 2015;762:382-93. [DOI: 10.1016/j.ejphar.2015.06.036] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
12 Bungo T, Dodo K, Kawamura K, Izumi T, Ueda H. Effects of various mu- and delta-opioid ligands on food intake in the meat-type chick. Physiol Behav 2005;85:519-23. [PMID: 16054662 DOI: 10.1016/j.physbeh.2005.05.015] [Cited by in Crossref: 33] [Cited by in F6Publishing: 22] [Article Influence: 1.9] [Reference Citation Analysis]
13 El-Naggar K, El-Kassas S, Abdo SE, Kirrella AAK, Al Wakeel RA. Role of gamma-aminobutyric acid in regulating feed intake in commercial broilers reared under normal and heat stress conditions. J Therm Biol 2019;84:164-75. [PMID: 31466750 DOI: 10.1016/j.jtherbio.2019.07.004] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
14 Tachibana T, Sato M, Takahashi H, Ukena K, Tsutsui K, Furuse M. Gonadotropin-inhibiting hormone stimulates feeding behavior in chicks. Brain Research 2005;1050:94-100. [DOI: 10.1016/j.brainres.2005.05.035] [Cited by in Crossref: 91] [Cited by in F6Publishing: 92] [Article Influence: 5.4] [Reference Citation Analysis]
15 Kuenzel WJ. The Avian Subpallium and Autonomic Nervous System. Sturkie's Avian Physiology. Elsevier; 2015. pp. 135-63. [DOI: 10.1016/b978-0-12-407160-5.00009-9] [Cited by in Crossref: 5] [Article Influence: 0.7] [Reference Citation Analysis]
16 Bouvarel I, Vallée C, Chagneau A, Constantin P, Lescoat P, Ferreira G, Leterrier C. Effects of various energy and protein levels during sequential feeding on feed preferences in meat-type chickens. Animal 2008;2:1674-81. [DOI: 10.1017/s1751731108002954] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
17 Wall JP, Cockrem JF. Effects of corticosterone treatment on responses to fasting in Japanese quail. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 2009;154:211-5. [DOI: 10.1016/j.cbpa.2009.06.006] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
18 Khan MSI, Ohkubo T, Masuda N, Tachibana T, Ueda H. Central administration of metastin increases food intake through opioid neurons in chicks. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 2009;153:209-12. [DOI: 10.1016/j.cbpa.2009.02.013] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
19 Honda K, Saneyasu T, Shimatani T, Aoki K, Yamaguchi T, Nakanishi K, Kamisoyama H. Intracerebroventricular administration of chicken glucagon-like peptide-2 potently suppresses food intake in chicks: Effects of Glucagon-Like Peptide-2. Animal Science Journal 2015;86:312-8. [DOI: 10.1111/asj.12282] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
20 Tachibana T, Saito S, Tomonaga S, Takagi T, Saito E, Nakanishi T, Koutoku T, Tsukada A, Ohkubo T, Boswell T, Furuse M. Effect of central administration of prolactin-releasing peptide on feeding in chicks. Physiology & Behavior 2004;80:713-9. [DOI: 10.1016/j.physbeh.2003.12.005] [Cited by in Crossref: 45] [Cited by in F6Publishing: 42] [Article Influence: 2.5] [Reference Citation Analysis]
21 Furuse M. Behavioral regulators in the brain of neonatal chicks. Animal Sci J 2007;78:218-32. [DOI: 10.1111/j.1740-0929.2007.00429.x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
22 Honda K, Saneyasu T, Aoki K, Shimatani T, Yamaguchi T, Kamisoyama H. Correlation analysis of hypothalamic mRNA levels of appetite regulatory neuropeptides and several metabolic parameters in 28-day-old layer chickens: Hypothalamic Neuropeptides in Chickens. Animal Science Journal 2015;86:517-22. [DOI: 10.1111/asj.12320] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
23 Tran PV, Chowdhury VS, Furuse M. Central regulation of feeding behavior through neuropeptides and amino acids in neonatal chicks. Amino Acids 2019;51:1129-52. [DOI: 10.1007/s00726-019-02762-x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
24 Bohler M, Dougherty C, Tachibana T, Gilbert ER, Cline MA. Gastrin releasing peptide-induced satiety is associated with hypothalamic and brainstem changes in chicks. Neurosci Lett 2019;713:134529. [PMID: 31585210 DOI: 10.1016/j.neulet.2019.134529] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
25 Paul K, Wang S, Chen S, Yu J, Zhu X, Wang L, Gao P, Xi Q, Zhang Y, Shu G, Jiang Q. Effects of Central Administration of Glutamine and Alanine on Feed Intake and Hypothalamic Expression of Orexigenic and Anorexigenic Neuropetides in Broiler Chicks. Journal of Integrative Agriculture 2012;11:1173-80. [DOI: 10.1016/s2095-3119(12)60112-9] [Cited by in Crossref: 2] [Article Influence: 0.2] [Reference Citation Analysis]
26 Bohler M, Gilbert ER, Cline MA. Reduced food intake during exposure to high ambient temperatures is associated with molecular changes in the nucleus of the hippocampal commissure and the paraventricular and arcuate hypothalamic nuclei. Gen Comp Endocrinol 2020;298:113576. [PMID: 32735796 DOI: 10.1016/j.ygcen.2020.113576] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
27 Richards M, Proszkowiec-weglarz M. Mechanisms Regulating Feed Intake, Energy Expenditure, and Body Weight in Poultry. Poultry Science 2007;86:1478-90. [DOI: 10.1093/ps/86.7.1478] [Cited by in Crossref: 142] [Cited by in F6Publishing: 120] [Article Influence: 9.5] [Reference Citation Analysis]
28 Khan MS, Tachibana T, Hasebe Y, Masuda N, Ueda H. Peripheral or central administration of nitric oxide synthase inhibitor affects feeding behavior in chicks. Comp Biochem Physiol A Mol Integr Physiol 2007;148:458-62. [PMID: 17618151 DOI: 10.1016/j.cbpa.2007.06.006] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 1.5] [Reference Citation Analysis]
29 Kamisoyama H, Honda K, Saneyasu T, Sugahara K, Hasegawa S. Central administration of neuromedin U suppresses food intake in chicks. Neuroscience Letters 2007;420:1-5. [DOI: 10.1016/j.neulet.2007.03.062] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 1.8] [Reference Citation Analysis]
30 Saito S, Takagi T, Koutoku T, Saito E, Hirakawa H, Tomonaga S, Tachibana T, Denbow D, Furuse M. Differences in catecholamine metabolism and behaviour in neonatal broiler and layer chicks. British Poultry Science 2004;45:158-62. [DOI: 10.1080/00071660410001715740] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 1.1] [Reference Citation Analysis]
31 Zhou W, Murakami M, Hasegawa S, Yoshizawa F, Sugahara K. Neuropeptide Y content in the hypothalamic paraventricular nucleus responds to fasting and refeeding in broiler chickens. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 2005;141:146-52. [DOI: 10.1016/j.cbpb.2005.04.015] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 1.5] [Reference Citation Analysis]
32 Khan MSI, Nakano Y, Tachibana T, Ueda H. Nitric oxide synthase inhibitor attenuates the anorexigenic effect of corticotropin-releasing hormone in neonatal chicks. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 2008;149:325-9. [DOI: 10.1016/j.cbpa.2008.01.011] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 0.9] [Reference Citation Analysis]
33 Zendehdel M, Sardari F, Hassanpour S, Rahnema M, Adeli A, Ghashghayi E. Serotonin-induced hypophagia is mediated via α 2 and β 2 adrenergic receptors in neonatal layer-type chickens. British Poultry Science 2017;58:298-304. [DOI: 10.1080/00071668.2017.1278626] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
34 Tachibana T, Moriyama S, Khan MS, Sakamoto T. Central administration of prolactin-releasing peptide shifts the utilities of metabolic fuels from carbohydrate to lipids in chicks. Physiol Behav 2013;120:40-5. [PMID: 23816984 DOI: 10.1016/j.physbeh.2013.06.017] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
35 Tachibana T, Nakai Y, Makino R, Khan MSI, Cline MA. Physiological response to central and peripheral injection of prostaglandin D2 in chicks. Prostaglandins & Other Lipid Mediators 2018;137:46-51. [DOI: 10.1016/j.prostaglandins.2018.06.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
36 Tachibana T, Kodama T, Yamane S, Makino R, Khan SI, Cline MA. Possible role of central interleukins on the anorexigenic effect of lipopolysaccharide in chicks. British Poultry Science 2017;58:305-11. [DOI: 10.1080/00071668.2017.1280774] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
37 Yousefvand S, Hamidi F, Zendehdel M, Parham A. Interaction of neuropeptide Y receptors (NPY 1 , NPY 2 and NPY 5 ) with somatostatin on somatostatin-induced feeding behaviour in neonatal chicken. British Poultry Science 2019;60:71-8. [DOI: 10.1080/00071668.2018.1547359] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
38 Wang J, Yi J, Siegel PB, Cline MA, Gilbert ER. Stress-induced suppression of neuropeptide Y-induced hunger in anorexic chicks involves corticotrophin-releasing factor signalling and the paraventricular nucleus of the hypothalamus. J Neuroendocrinol 2017;29. [PMID: 29121414 DOI: 10.1111/jne.12555] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
39 Chowdhury VS, Tomonaga S, Ikegami T, Erwan E, Ito K, Cockrem JF, Furuse M. Oxidative damage and brain concentrations of free amino acid in chicks exposed to high ambient temperature. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 2014;169:70-6. [DOI: 10.1016/j.cbpa.2013.12.020] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 4.6] [Reference Citation Analysis]
40 Mazaheri S, Zendehdel M, Haghparast A. Role of orexinergic receptors within the ventral tegmental area in the development of morphine sensitization induced by forced swim stress in the rat. Prog Neuropsychopharmacol Biol Psychiatry 2022;:110539. [PMID: 35217126 DOI: 10.1016/j.pnpbp.2022.110539] [Reference Citation Analysis]
41 Kamkrathok B, Sartsoongnoen N, Chaiseha Y. Neuropeptide Y and maternal behavior in the female native Thai chicken. Acta Histochem 2021;123:151698. [PMID: 33711725 DOI: 10.1016/j.acthis.2021.151698] [Reference Citation Analysis]
42 Tachibana T, Oikawa D, Adachi N, Boswell T, Furuse M. Central administration of alpha-melanocyte-stimulating hormone changes lipid metabolism in chicks. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 2007;148:408-12. [DOI: 10.1016/j.cbpa.2007.05.023] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 0.9] [Reference Citation Analysis]
43 Bohler M, Pauliukonis A, Gilbert ER, Cline MA. The anorexigenic effect of neuropeptide AF in Japanese quail, Coturnix japonica, is associated with activation of the melanocortin system. Comp Biochem Physiol A Mol Integr Physiol 2021;259:110982. [PMID: 34023535 DOI: 10.1016/j.cbpa.2021.110982] [Reference Citation Analysis]
44 Tachibana T, Sato M, Oikawa D, Takahashi H, Boswell T, Furuse M. Intracerebroventricular injection of neuropeptide Y modifies carbohydrate and lipid metabolism in chicks. Regulatory Peptides 2006;136:1-8. [DOI: 10.1016/j.regpep.2006.04.005] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 1.3] [Reference Citation Analysis]
45 Huang J, Lu L, Xi L, Luo X, Liu B. Effects of age and strain on the expression of leptin receptor, neuropeptide Y and pro-opiomelanocortin in the hypothalamus of young chickens. British Poultry Science 2010;51:696-702. [DOI: 10.1080/00071668.2010.508488] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
46 Motaghi S, Jonaidi H, Gooshki SN, Bashiri A. The central role of ATP in controlling broiler’s food intake. Comp Clin Pathol 2019;28:599-602. [DOI: 10.1007/s00580-018-2882-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
47 Chowdhury VS, Tomonaga S, Nishimura S, Tabata S, Cockrem JF, Tsutsui K, Furuse M. Hypothalamic gonadotropin-inhibitory hormone precursor mRNA is increased during depressed food intake in heat-exposed chicks. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 2012;162:227-33. [DOI: 10.1016/j.cbpa.2012.03.009] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 3.5] [Reference Citation Analysis]
48 Sartsoongnoen N, Kamkrathok B, Songserm T, Chaiseha Y. Distribution and variation of neuropeptide Y in the brain of native Thai chicken. Avian Biology Research 2021;14:27-36. [DOI: 10.1177/1758155920968991] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
49 Bohler M, Gilbert ER, Cline MA. The anorexigenic effect of vasoactive intestinal polypeptide in Japanese quail is associated with molecular changes in the arcuate and dorsomedial hypothalamic nuclei. Domest Anim Endocrinol 2021;74:106499. [PMID: 32858465 DOI: 10.1016/j.domaniend.2020.106499] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
50 Honda K, Saneyasu T, Yamaguchi T, Shimatani T, Aoki K, Nakanishi K, Kamisoyama H. Intracerebroventricular administration of chicken oxyntomodulin suppresses food intake and increases plasma glucose and corticosterone concentrations in chicks. Neurosci Lett 2014;564:57-61. [PMID: 24530259 DOI: 10.1016/j.neulet.2014.02.008] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
51 Yousefvand S, Hamidi F, Zendehdel M, Parham A. Survey the Effect of Insulin on Modulating Feed Intake Via NPY Receptors in 5-Day-Old Chickens. Int J Pept Res Ther 2020;26:467-76. [DOI: 10.1007/s10989-019-09852-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Khodadadi M, Zendehdel M, Baghbanzadeh A, Babapour V. Consequence of dopamine D2 receptor blockade on the hyperphagic effect induced by cannabinoid CB1 and CB2 receptors in layers. Br Poult Sci 2017;58:585-93. [PMID: 28728428 DOI: 10.1080/00071668.2017.1357799] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
53 Ito K, Bahry MA, Hui Y, Furuse M, Chowdhury VS. Acute heat stress up-regulates neuropeptide Y precursor mRNA expression and alters brain and plasma concentrations of free amino acids in chicks. Comp Biochem Physiol A Mol Integr Physiol 2015;187:13-9. [PMID: 25933935 DOI: 10.1016/j.cbpa.2015.04.010] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 3.6] [Reference Citation Analysis]
54 Bahry MA, Yang H, Tran PV, Do PH, Han G, Eltahan HM, Chowdhury VS, Furuse M. Reduction in voluntary food intake, but not fasting, stimulates hypothalamic gonadotropin-inhibitory hormone precursor mRNA expression in chicks under heat stress. Neuropeptides 2018;71:90-6. [PMID: 30220422 DOI: 10.1016/j.npep.2018.09.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]