1 |
Alekseenko I, Kondratyeva L, Chernov I, Sverdlov E. From the Catastrophic Objective Irreproducibility of Cancer Research and Unavoidable Failures of Molecular Targeted Therapies to the Sparkling Hope of Supramolecular Targeted Strategies. Int J Mol Sci 2023;24. [PMID: 36769134 DOI: 10.3390/ijms24032796] [Reference Citation Analysis]
|
2 |
Chau BA, Chen V, Cochrane AW, Parent LJ, Mouland AJ. Liquid-liquid phase separation of nucleocapsid proteins during SARS-CoV-2 and HIV-1 replication. Cell Rep 2023;42:111968. [PMID: 36640305 DOI: 10.1016/j.celrep.2022.111968] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
3 |
Sasidharan S, Nag N, Tripathi T, Saudagar P. Interactions and interplay of MLOs with classical membrane-bound organelles. Droplets of Life 2023. [DOI: 10.1016/b978-0-12-823967-4.00024-5] [Reference Citation Analysis]
|
4 |
Arter WE, Qi R, Erkamp NA, Krainer G, Didi K, Welsh TJ, Acker J, Nixon-Abell J, Qamar S, Guillén-Boixet J, Franzmann TM, Kuster D, Hyman AA, Borodavka A, George-Hyslop PS, Alberti S, Knowles TPJ. Biomolecular condensate phase diagrams with a combinatorial microdroplet platform. Nat Commun 2022;13:7845. [PMID: 36543777 DOI: 10.1038/s41467-022-35265-7] [Reference Citation Analysis]
|
5 |
Thody SA, Clements HD, Baniasadi H, Lyon AS, Sigman MS, Rosen MK. Small Molecule Properties Define Partitioning into Biomolecular Condensates.. [DOI: 10.1101/2022.12.19.521099] [Reference Citation Analysis]
|
6 |
Meszaros A, Ahmed J, Russo G, Tompa P, Lazar T. The evolution and polymorphism of mono-amino acid repeats in androgen receptor and their regulatory role in health and disease. Front Med 2022;9:1019803. [DOI: 10.3389/fmed.2022.1019803] [Reference Citation Analysis]
|
7 |
Chen HM, Nikolic A, Singhal D, Gallo M. Roles of Chromatin Remodelling and Molecular Heterogeneity in Therapy Resistance in Glioblastoma. Cancers (Basel) 2022;14:4942. [PMID: 36230865 DOI: 10.3390/cancers14194942] [Reference Citation Analysis]
|
8 |
Ren J, Zhang Z, Zong Z, Zhang L, Zhou F. Emerging Implications of Phase Separation in Cancer. Adv Sci (Weinh) 2022;:e2202855. [PMID: 36117111 DOI: 10.1002/advs.202202855] [Reference Citation Analysis]
|
9 |
Shillcock JC, Lagisquet C, Alexandre J, Vuillon L, Ipsen JH. Model biomolecular condensates have heterogeneous structure quantitatively dependent on the interaction profile of their constituent macromolecules. Soft Matter 2022. [PMID: 36004748 DOI: 10.1039/d2sm00387b] [Reference Citation Analysis]
|
10 |
Ganne A, Balasubramaniam M, Ayyadevara S, Shmookler Reis RJ. Machine-learning analysis of intrinsically disordered proteins identifies key factors that contribute to neurodegeneration-related aggregation. Front Aging Neurosci 2022;14:938117. [DOI: 10.3389/fnagi.2022.938117] [Reference Citation Analysis]
|
11 |
Parra AS, Johnston CA. Emerging Roles of RNA-Binding Proteins in Neurodevelopment. J Dev Biol 2022;10:23. [PMID: 35735914 DOI: 10.3390/jdb10020023] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
12 |
Tang SC, Vijayakumar U, Zhang Y, Fullwood MJ. Super-Enhancers, Phase-Separated Condensates, and 3D Genome Organization in Cancer. Cancers (Basel) 2022;14:2866. [PMID: 35740532 DOI: 10.3390/cancers14122866] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
13 |
Shillcock JC, Lagisquet C, Alexandre J, Vuillon L, Ipsen JH. Model biomolecular condensates have heterogeneous structure quantitatively dependent on the interaction profile of their constituent macromolecules.. [DOI: 10.1101/2022.03.25.485792] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
14 |
Chatterjee S, Kan Y, Brzezinski M, Koynov K, Regy RM, Murthy AC, Burke KA, Michels JJ, Mittal J, Fawzi NL, Parekh SH. Reversible Kinetic Trapping of FUS Biomolecular Condensates. Adv Sci (Weinh) 2022;9:e2104247. [PMID: 34862761 DOI: 10.1002/advs.202104247] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
|
15 |
Heinrich S, Hondele M. Probing Liquid–Liquid Phase Separation of RNA-Binding Proteins In Vitro and In Vivo. Methods in Molecular Biology 2022. [DOI: 10.1007/978-1-0716-2521-7_18] [Reference Citation Analysis]
|
16 |
Li P, Zeng X, Li S, Xiang X, Chen P, Li Y, Liu BF. Rapid Determination of Phase Diagrams for Biomolecular Liquid-Liquid Phase Separation with Microfluidics. Anal Chem 2021. [PMID: 34936324 DOI: 10.1021/acs.analchem.1c02700] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
17 |
Sprunger ML, Jackrel ME. Prion-Like Proteins in Phase Separation and Their Link to Disease. Biomolecules 2021;11:1014. [PMID: 34356638 DOI: 10.3390/biom11071014] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
|
18 |
Saito Y, Kimura W. Roles of Phase Separation for Cellular Redox Maintenance. Front Genet 2021;12:691946. [PMID: 34306032 DOI: 10.3389/fgene.2021.691946] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
19 |
Fare CM, Villani A, Drake LE, Shorter J. Higher-order organization of biomolecular condensates. Open Biol 2021;11:210137. [PMID: 34129784 DOI: 10.1098/rsob.210137] [Cited by in Crossref: 35] [Cited by in F6Publishing: 39] [Article Influence: 17.5] [Reference Citation Analysis]
|
20 |
Dettori LG, Torrejon D, Chakraborty A, Dutta A, Mohamed M, Papp C, Kuznetsov VA, Sung P, Feng W, Bah A. A Tale of Loops and Tails: The Role of Intrinsically Disordered Protein Regions in R-Loop Recognition and Phase Separation. Front Mol Biosci 2021;8:691694. [PMID: 34179096 DOI: 10.3389/fmolb.2021.691694] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
|
21 |
Bielskutė S, Garcia-Cabau C, Frigolé-Vivas M, Szulc E, De Mol E, Pesarrodona M, García J, Salvatella X. Low amounts of heavy water increase the phase separation propensity of a fragment of the androgen receptor activation domain. Protein Sci 2021;30:1427-37. [PMID: 33978290 DOI: 10.1002/pro.4110] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
|
22 |
Ismail H, Liu X, Yang F, Li J, Zahid A, Dou Z, Liu X, Yao X. Mechanisms and regulation underlying membraneless organelle plasticity control. J Mol Cell Biol 2021;13:239-58. [PMID: 33914074 DOI: 10.1093/jmcb/mjab028] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
|
23 |
Solomon DA, Smikle R, Reid MJ, Mizielinska S. Altered Phase Separation and Cellular Impact in C9orf72-Linked ALS/FTD. Front Cell Neurosci 2021;15:664151. [PMID: 33967699 DOI: 10.3389/fncel.2021.664151] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
|
24 |
Zorrilla S, Monterroso B, Robles-Ramos MÁ, Margolin W, Rivas G. FtsZ Interactions and Biomolecular Condensates as Potential Targets for New Antibiotics. Antibiotics (Basel) 2021;10:254. [PMID: 33806332 DOI: 10.3390/antibiotics10030254] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
25 |
Brocca S, Grandori R, Longhi S, Uversky V. Liquid-Liquid Phase Separation by Intrinsically Disordered Protein Regions of Viruses: Roles in Viral Life Cycle and Control of Virus-Host Interactions. Int J Mol Sci 2020;21:E9045. [PMID: 33260713 DOI: 10.3390/ijms21239045] [Cited by in Crossref: 42] [Cited by in F6Publishing: 48] [Article Influence: 14.0] [Reference Citation Analysis]
|