BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lennicke C, Cochemé HM. Redox signalling and ageing: insights from Drosophila. Biochem Soc Trans 2020;48:367-77. [PMID: 32196546 DOI: 10.1042/BST20190052] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 21.0] [Reference Citation Analysis]
Number Citing Articles
1 Piloto JH, Rodriguez M, Choe KP. Sexual dimorphism in Caenorhabditis elegans stress resistance. PLoS ONE 2022;17:e0272452. [DOI: 10.1371/journal.pone.0272452] [Reference Citation Analysis]
2 Wang Y, Wang H, Ma T, Liu G, Feng X, Liu X, Ma X, Liu S, Shi D, Wang B, Kang J, Wang H, Wang Z. Hawthorn extract inhibited the PI3k/Akt pathway to prolong the lifespan of Drosophila melanogaster. J Food Biochem 2022;:e14169. [PMID: 35383968 DOI: 10.1111/jfbc.14169] [Reference Citation Analysis]
3 Filaferro M, Codeluppi A, Brighenti V, Cimurri F, González-paramás AM, Santos-buelga C, Bertelli D, Pellati F, Vitale G. Disclosing the Antioxidant and Neuroprotective Activity of an Anthocyanin-Rich Extract from Sweet Cherry (Prunus avium L.) Using In Vitro and In Vivo Models. Antioxidants 2022;11:211. [DOI: 10.3390/antiox11020211] [Reference Citation Analysis]
4 Vega Magdaleno GD, Bespalov V, Zheng Y, Freitas AA, de Magalhaes JP. Machine learning-based predictions of dietary restriction associations across ageing-related genes. BMC Bioinformatics 2022;23:10. [PMID: 34983372 DOI: 10.1186/s12859-021-04523-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Hébert JR, Hofseth LJ. Inflammation in the long arc of history. Diet, Inflammation, and Health 2022. [DOI: 10.1016/b978-0-12-822130-3.00012-0] [Reference Citation Analysis]
6 Zhao J, Zhang Q, Wang J, Zhang Q, Li H, Du Y. Advances in the Scavenging Materials for Reactive Oxygen Species. Acta Chimica Sinica 2022;80:570. [DOI: 10.6023/a21120586] [Reference Citation Analysis]
7 Thirupathi A, Pinho RA, Gu Y. Redox Homeostasis in Skeletal Muscle Aging. Healthy Ageing and Longevity 2022. [DOI: 10.1007/978-3-030-84965-8_5] [Reference Citation Analysis]
8 Peluso A, Damgaard MV, Mori MAS, Treebak JT. Age-Dependent Decline of NAD+-Universal Truth or Confounded Consensus? Nutrients 2021;14:101. [PMID: 35010977 DOI: 10.3390/nu14010101] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
9 Jia K, Yan L, Jia Y, Xu S, Yan Z, Wang S. aflN Is Involved in the Biosynthesis of Aflatoxin and Conidiation in Aspergillus flavus. Toxins (Basel) 2021;13:831. [PMID: 34822615 DOI: 10.3390/toxins13110831] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
10 Lushchak VI, Lushchak O. Interplay between reactive oxygen and nitrogen species in living organisms. Chem Biol Interact 2021;349:109680. [PMID: 34606757 DOI: 10.1016/j.cbi.2021.109680] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
11 Wu M, Liu CZ, Barrall EA, Rissman RA, Joiner WJ. Unbalanced Regulation of α7 nAChRs by Ly6h and NACHO Contributes to Neurotoxicity in Alzheimer's Disease. J Neurosci 2021;41:8461-74. [PMID: 34446574 DOI: 10.1523/JNEUROSCI.0494-21.2021] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
12 Pang Y, Zhang H, Ai HW. Genetically Encoded Fluorescent Redox Indicators for Unveiling Redox Signaling and Oxidative Toxicity. Chem Res Toxicol 2021;34:1826-45. [PMID: 34284580 DOI: 10.1021/acs.chemrestox.1c00149] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
13 Vega-magdaleno GD, Bespalov V, Zheng Y, Freitas AA, de Magalhaes JP. Machine-learning-based predictions of caloric restriction associations across ageing-related genes.. [DOI: 10.1101/2021.07.17.452785] [Reference Citation Analysis]
14 Lennicke C, Cochemé HM. Redox regulation of the insulin signalling pathway. Redox Biol 2021;42:101964. [PMID: 33893069 DOI: 10.1016/j.redox.2021.101964] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 18.0] [Reference Citation Analysis]
15 Meng J, Fu L, Liu K, Tian C, Wu Z, Jung Y, Ferreira RB, Carroll KS, Blackwell TK, Yang J. Global profiling of distinct cysteine redox forms reveals wide-ranging redox regulation in C. elegans. Nat Commun 2021;12:1415. [PMID: 33658510 DOI: 10.1038/s41467-021-21686-3] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 17.0] [Reference Citation Analysis]
16 Santos DE, Souza AO, Tibério GJ, Alberici LC, Hartfelder K. Differential expression of antioxidant system genes in honey bee (Apis mellifera L.) caste development mitigates ROS-mediated oxidative damage in queen larvae. Genet Mol Biol 2020;43:e20200173. [PMID: 33306776 DOI: 10.1590/1678-4685-GMB-2020-0173] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
17 Panov AV, Dikalov SI, Darenskaya MA, Rychkova LV, Kolesnikova LI, Kolesnikov SI. Mitochondria: Aging, Metabolic Syndrome and Cardiovascular Diseases. Formation of a New Paradigm. Acta biomedica scientifica 2020;5:33-44. [DOI: 10.29413/abs.2020-5.4.5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
18 Li-byarlay H, Cleare XL. Current trends in the oxidative stress and ageing of social hymenopterans. Advances in Insect Physiology 2020. [DOI: 10.1016/bs.aiip.2020.09.002] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]