BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wallings RL, Tansey MG. LRRK2 regulation of immune-pathways and inflammatory disease. Biochem Soc Trans 2019;47:1581-95. [PMID: 31769472 DOI: 10.1042/BST20180463] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 14.0] [Reference Citation Analysis]
Number Citing Articles
1 Wallings RL, Herrick MK, Tansey MG. LRRK2 at the Interface Between Peripheral and Central Immune Function in Parkinson's. Front Neurosci 2020;14:443. [PMID: 32508566 DOI: 10.3389/fnins.2020.00443] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 8.5] [Reference Citation Analysis]
2 Harms AS, Ferreira SA, Romero-Ramos M. Periphery and brain, innate and adaptive immunity in Parkinson's disease. Acta Neuropathol 2021;141:527-45. [PMID: 33555429 DOI: 10.1007/s00401-021-02268-5] [Cited by in Crossref: 39] [Cited by in F6Publishing: 25] [Article Influence: 39.0] [Reference Citation Analysis]
3 Cabezudo D, Baekelandt V, Lobbestael E. Multiple-Hit Hypothesis in Parkinson's Disease: LRRK2 and Inflammation. Front Neurosci 2020;14:376. [PMID: 32410948 DOI: 10.3389/fnins.2020.00376] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
4 Mourenza Á, Gil JA, Mateos LM, Letek M. Novel Treatments against Mycobacterium tuberculosis Based on Drug Repurposing. Antibiotics (Basel) 2020;9:E550. [PMID: 32872158 DOI: 10.3390/antibiotics9090550] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
5 Madureira M, Connor-Robson N, Wade-Martins R. "LRRK2: Autophagy and Lysosomal Activity". Front Neurosci 2020;14:498. [PMID: 32523507 DOI: 10.3389/fnins.2020.00498] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
6 Wallings RL, Herrick MK, Tansey MG. Linking mitochondria to the immune response. Elife 2020;9:e56214. [PMID: 32293561 DOI: 10.7554/eLife.56214] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
7 Mabrouk OS, Chen S, Edwards AL, Yang M, Hirst WD, Graham DL. Quantitative Measurements of LRRK2 in Human Cerebrospinal Fluid Demonstrates Increased Levels in G2019S Patients. Front Neurosci 2020;14:526. [PMID: 32523511 DOI: 10.3389/fnins.2020.00526] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
8 Russo I, Bubacco L, Greggio E. LRRK2 as a target for modulating immune system responses. Neurobiology of Disease 2022. [DOI: 10.1016/j.nbd.2022.105724] [Reference Citation Analysis]
9 Lopez G, Lazzeri G, Rappa A, Isimbaldi G, Cribiù FM, Guerini-Rocco E, Ferrero S, Vaira V, Di Fonzo A. Comprehensive Genomic Analysis Reveals the Prognostic Role of LRRK2 Copy-Number Variations in Human Malignancies. Genes (Basel) 2020;11:E846. [PMID: 32722212 DOI: 10.3390/genes11080846] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Schilder BM, Raj T. Fine-mapping of Parkinson's disease susceptibility loci identifies putative causal variants. Hum Mol Genet 2021:ddab294. [PMID: 34617105 DOI: 10.1093/hmg/ddab294] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 San Luciano M, Tanner CM, Meng C, Marras C, Goldman SM, Lang AE, Tolosa E, Schüle B, Langston JW, Brice A, Corvol JC, Goldwurm S, Klein C, Brockman S, Berg D, Brockmann K, Ferreira JJ, Tazir M, Mellick GD, Sue CM, Hasegawa K, Tan EK, Bressman S, Saunders-Pullman R; Michael J. Fox Foundation LRRK2 Cohort Consortium. Nonsteroidal Anti-inflammatory Use and LRRK2 Parkinson's Disease Penetrance. Mov Disord 2020;35:1755-64. [PMID: 32662532 DOI: 10.1002/mds.28189] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
12 Burmeister AR, Gordevicius J, Paul EN, Houck C, George S, Escobar Galvis ML, Sha Q, Brundin P, Pospisilik JA, Racicot K, Brundin L. Maternal Herpesviridae infection during pregnancy alters midbrain dopaminergic signatures in adult offspring. Neurobiology of Disease 2022. [DOI: 10.1016/j.nbd.2022.105720] [Reference Citation Analysis]
13 Mamais A, Kluss JH, Bonet-Ponce L, Landeck N, Langston RG, Smith N, Beilina A, Kaganovich A, Ghosh MC, Pellegrini L, Kumaran R, Papazoglou I, Heaton GR, Bandopadhyay R, Maio N, Kim C, LaVoie MJ, Gershlick DC, Cookson MR. Mutations in LRRK2 linked to Parkinson disease sequester Rab8a to damaged lysosomes and regulate transferrin-mediated iron uptake in microglia. PLoS Biol 2021;19:e3001480. [PMID: 34914695 DOI: 10.1371/journal.pbio.3001480] [Reference Citation Analysis]
14 Kluss JH, Mazza MC, Li Y, Manzoni C, Lewis PA, Cookson MR, Mamais A. Preclinical modeling of chronic inhibition of the Parkinson's disease associated kinase LRRK2 reveals altered function of the endolysosomal system in vivo. Mol Neurodegener 2021;16:17. [PMID: 33741046 DOI: 10.1186/s13024-021-00441-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
15 Iannotta L, Greggio E. LRRK2 signaling in neurodegeneration: two decades of progress. Essays Biochem 2021:EBC20210013. [PMID: 34897411 DOI: 10.1042/EBC20210013] [Reference Citation Analysis]
16 Cogo S, Ho FY, Tosoni E, Tomkins JE, Tessari I, Iannotta L, Montine TJ, Manzoni C, Lewis PA, Bubacco L, Chartier Harlin M, Taymans J, Kortholt A, Nichols J, Cendron L, Civiero L, Greggio E. The Roc domain of LRRK2 as a hub for protein-protein interactions: a focus on PAK6 and its impact on RAB phosphorylation. Brain Research 2022. [DOI: 10.1016/j.brainres.2022.147781] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Scheiblich H, Dansokho C, Mercan D, Schmidt SV, Bousset L, Wischhof L, Eikens F, Odainic A, Spitzer J, Griep A, Schwartz S, Bano D, Latz E, Melki R, Heneka MT. Microglia jointly degrade fibrillar alpha-synuclein cargo by distribution through tunneling nanotubes. Cell 2021;184:5089-5106.e21. [PMID: 34555357 DOI: 10.1016/j.cell.2021.09.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
18 Das R, Rauf A, Akhter S, Islam MN, Emran TB, Mitra S, Khan IN, Mubarak MS. Role of Withaferin A and Its Derivatives in the Management of Alzheimer's Disease: Recent Trends and Future Perspectives. Molecules 2021;26:3696. [PMID: 34204308 DOI: 10.3390/molecules26123696] [Reference Citation Analysis]
19 García-García R, Martín-Herrero L, Blanca-Pariente L, Pérez-Cabello J, Roodveldt C. Immune Signaling Kinases in Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD). Int J Mol Sci 2021;22:13280. [PMID: 34948077 DOI: 10.3390/ijms222413280] [Reference Citation Analysis]
20 Cai HY, Fu XX, Jiang H, Han S. Adjusting vascular permeability, leukocyte infiltration, and microglial cell activation to rescue dopaminergic neurons in rodent models of Parkinson's disease. NPJ Parkinsons Dis 2021;7:91. [PMID: 34625569 DOI: 10.1038/s41531-021-00233-3] [Reference Citation Analysis]
21 Chang KH, Huang CY, Ou-Yang CH, Ho CH, Lin HY, Hsu CL, Chen YT, Chou YC, Chen YJ, Chen Y, Lin JL, Wang JK, Lin PW, Lin YR, Lin MH, Tseng CK, Lin CH. In vitro genome editing rescues parkinsonism phenotypes in induced pluripotent stem cells-derived dopaminergic neurons carrying LRRK2 p.G2019S mutation. Stem Cell Res Ther 2021;12:508. [PMID: 34551822 DOI: 10.1186/s13287-021-02585-2] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Logie E, Vanden Berghe W. Tackling Chronic Inflammation with Withanolide Phytochemicals-A Withaferin a Perspective. Antioxidants (Basel) 2020;9:E1107. [PMID: 33182809 DOI: 10.3390/antiox9111107] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
23 Wang J, Shen C, Li R, Wang C, Xiao Y, Kuang Y, Lao M, Xu S, Shi M, Cai X, Liang L, Xu H. Increased long noncoding RNA LINK-A contributes to rheumatoid synovial inflammation and aggression. JCI Insight 2021;6:e146757. [PMID: 34877935 DOI: 10.1172/jci.insight.146757] [Reference Citation Analysis]
24 Sanchez-burgos L, Gómez-lópez G, Al-shahrour F, Fernandez-capetillo O. An in silico analysis identifies drugs potentially modulating the cytokine storm triggered by SARS-CoV-2 infection. Sci Rep 2022;12. [DOI: 10.1038/s41598-022-05597-x] [Reference Citation Analysis]
25 Taylor M, Alessi DR. Advances in elucidating the function of leucine-rich repeat protein kinase-2 in normal cells and Parkinson's disease. Curr Opin Cell Biol 2020;63:102-13. [PMID: 32036294 DOI: 10.1016/j.ceb.2020.01.001] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 17.0] [Reference Citation Analysis]
26 Tan JSY, Chao YX, Rötzschke O, Tan EK. New Insights into Immune-Mediated Mechanisms in Parkinson's Disease. Int J Mol Sci 2020;21:E9302. [PMID: 33291304 DOI: 10.3390/ijms21239302] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
27 Brown EG, Chahine LM, Goldman SM, Korell M, Mann E, Kinel DR, Arnedo V, Marek KL, Tanner CM. The Effect of the COVID-19 Pandemic on People with Parkinson's Disease. J Parkinsons Dis 2020;10:1365-77. [PMID: 32925107 DOI: 10.3233/JPD-202249] [Cited by in Crossref: 28] [Cited by in F6Publishing: 19] [Article Influence: 14.0] [Reference Citation Analysis]
28 Yang CC, Meng GX, Dong ZR, Li T. Role of Rab GTPases in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021;8:1389-97. [PMID: 34824998 DOI: 10.2147/JHC.S336251] [Reference Citation Analysis]
29 Li T, Ning B, Kong L, Dai B, He X, Thomas JM, Sawa A, Ross CA, Smith WW. A LRRK2 GTP Binding Inhibitor, 68, Reduces LPS-Induced Signaling Events and TNF-α Release in Human Lymphoblasts. Cells 2021;10:480. [PMID: 33672296 DOI: 10.3390/cells10020480] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Thome AD, Atassi F, Wang J, Faridar A, Zhao W, Thonhoff JR, Beers DR, Lai EC, Appel SH. Ex vivo expansion of dysfunctional regulatory T lymphocytes restores suppressive function in Parkinson's disease. NPJ Parkinsons Dis 2021;7:41. [PMID: 33986285 DOI: 10.1038/s41531-021-00188-5] [Reference Citation Analysis]
31 Ho DH, Nam D, Seo M, Park SW, Seol W, Son I. LRRK2 Inhibition Mitigates the Neuroinflammation Caused by TLR2-Specific α-Synuclein and Alleviates Neuroinflammation-Derived Dopaminergic Neuronal Loss. Cells 2022;11:861. [PMID: 35269482 DOI: 10.3390/cells11050861] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Nazish I, Arber C, Piers TM, Warner TT, Hardy JA, Lewis PA, Pocock JM, Bandopadhyay R. Abrogation of LRRK2 dependent Rab10 phosphorylation with TLR4 activation and alterations in evoked cytokine release in immune cells. Neurochem Int 2021;147:105070. [PMID: 34004238 DOI: 10.1016/j.neuint.2021.105070] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
33 Kluss JH, Lewis PA, Greggio E. Leucine-rich repeat kinase 2 (LRRK2): an update on the potential therapeutic target for Parkinson's disease. Expert Opin Ther Targets 2022;:1-10. [PMID: 35642531 DOI: 10.1080/14728222.2022.2082937] [Reference Citation Analysis]
34 Tansey MG, Wallings RL, Houser MC, Herrick MK, Keating CE, Joers V. Inflammation and immune dysfunction in Parkinson disease. Nat Rev Immunol 2022. [PMID: 35246670 DOI: 10.1038/s41577-022-00684-6] [Reference Citation Analysis]
35 Lin CH, Lin HY, Ho EP, Ke YC, Cheng MF, Shiue CY, Wu CH, Liao PH, Hsu AY, Chu LA, Liu YD, Lin YH, Tai YC, Shun CT, Chiu HM, Wu MS. Mild Chronic Colitis Triggers Parkinsonism in LRRK2 Mutant Mice Through Activating TNF-α Pathway. Mov Disord 2021. [PMID: 34918781 DOI: 10.1002/mds.28890] [Reference Citation Analysis]