BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang Q, Yan B, Feng L, Zheng J, You B, Chen J, Zhao X, Zhang C, Jiang S, He S. Progress in the use of organic potassium salts for the synthesis of porous carbon nanomaterials: microstructure engineering for advanced supercapacitors. Nanoscale 2022;14:8216-44. [PMID: 35665796 DOI: 10.1039/d2nr01986h] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 10.0] [Reference Citation Analysis]
Number Citing Articles
1 Mendoza R, Oliva J, Padmasree K, Mtz-enriquez A, Zakhidov A, Encinas A. Using the amorphous‑carbon derived from cigarette filters for the fabrication of highly efficient flexible supercapacitors and role of the Sr3.2Y0.8Fe1.5Co1.5O10 layered perovskite to enhance their electrochemical performance. Journal of Energy Storage 2023;60:106539. [DOI: 10.1016/j.est.2022.106539] [Reference Citation Analysis]
2 Jia H, Sun J, Zhu J, Zhang F, Li S, Zhang Y, Hu F, Xie X. Heteroatoms co-doped carbon from biowaste for capacitive energy storage: Dependence of physicochemical properties and electrochemical performances on precursor grain sizes. Journal of Energy Storage 2023;60:106594. [DOI: 10.1016/j.est.2022.106594] [Reference Citation Analysis]
3 Zhang C, Chen J, Chen W, Liu J, Chen D. Hydrothermal synthesis of Cu2O/CuO/hierarchical porous N-doped activated carbon with exceptional electrochemical performance. Journal of Energy Storage 2023;60:106600. [DOI: 10.1016/j.est.2022.106600] [Reference Citation Analysis]
4 Artigas-arnaudas J, Sánchez-romate XF, Sánchez M, Ureña A. Effect of electrode surface treatment on carbon fiber based structural supercapacitors: Electrochemical analysis, mechanical performance and proof-of-concept. Journal of Energy Storage 2023;59:106599. [DOI: 10.1016/j.est.2022.106599] [Reference Citation Analysis]
5 Luan M, Fang S, Zhao S, Hu J, Meng L. In-situ isomorphous recombination method to prepare isomorphic NiCo(CO3)(OH)2-Co(CO3)0.5(OH) nanowires for high-performance supercapacitors. Journal of Alloys and Compounds 2023. [DOI: 10.1016/j.jallcom.2023.169129] [Reference Citation Analysis]
6 Qin J, Ji R, Sun Q, Li W, Cheng H, Han J, Jiang X, Song Y, Xue J. Self-activation of potassium/iron citrate-assisted production of porous carbon/porous biochar composites from macroalgae for high-performance sorption of sulfamethoxazole. Bioresour Technol 2023;369:128361. [PMID: 36423753 DOI: 10.1016/j.biortech.2022.128361] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Xiao J, Zhang H, Wang Y, Zhang C, He S, Jiang S. Hierarchical porous carbon derived from one-step self-activation of zinc gluconate for symmetric supercapacitors with high energy density. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2250-3] [Reference Citation Analysis]
8 Liu Q, He X, Wang K, Li D. Biochar drives humus formation during composting by regulating the specialized metabolic features of microbiome. Chemical Engineering Journal 2023. [DOI: 10.1016/j.cej.2023.141380] [Reference Citation Analysis]
9 Li Y, Zhang H, Tian T, Weng Q, Zan L, Zhao S, Liu T, Tang Z, Tang H. Boosting High-Rate Zn-ion Storage Capability of α-MnO2 through Tri-ion Co-intercalation. Journal of Alloys and Compounds 2023. [DOI: 10.1016/j.jallcom.2023.168813] [Reference Citation Analysis]
10 Yan B, Feng L, Zheng J, Zhang Q, Zhang C, Ding Y, Han J, Jiang S, He S. In situ growth of N/O-codoped carbon nanotubes in wood-derived thick carbon scaffold to boost the capacitive performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2023. [DOI: 10.1016/j.colsurfa.2023.131018] [Reference Citation Analysis]
11 Liu D, Xu G, Yuan X, Ding Y, Fan B. Pore size distribution modulation of waste cotton-derived carbon materials via citrate activator to boost supercapacitive performance. Fuel 2023;332:126044. [DOI: 10.1016/j.fuel.2022.126044] [Reference Citation Analysis]
12 Grebel H, Yu S, Zhang Y. Active carbon based supercapacitors with Au colloids: the case of placing the colloids in close proximity to the electrode interface. Nanoscale Adv 2022;5:179-90. [PMID: 36605810 DOI: 10.1039/d2na00794k] [Reference Citation Analysis]
13 Kim E, Lee B, Park J, Choi J, Yun J. Hierarchically porous carbon materials synthesized from sustainable tannic acid with sodium citrate via ice-templating and carbonization for high-performance supercapacitors. Materials Today Sustainability 2022;20:100238. [DOI: 10.1016/j.mtsust.2022.100238] [Reference Citation Analysis]
14 Al-Zahrani FAM, Al-Shehri BM, El-Shishtawy RM, Awwad NS, Khan KA, Sayed MA, Siddeeg SM. Characterization of Date Seed Powder Derived Porous Graphene Oxide and Its Application as an Environmental Functional Material to Remove Dye from Aqueous Solutions. Materials (Basel) 2022;15. [PMID: 36431622 DOI: 10.3390/ma15228136] [Reference Citation Analysis]
15 He Y, Wei Q, An N, Meng C, Hu Z. Organic Small-Molecule Electrodes: Emerging Organic Composite Materials in Supercapacitors for Efficient Energy Storage. Molecules 2022;27. [PMID: 36431793 DOI: 10.3390/molecules27227692] [Reference Citation Analysis]
16 Gaurav A, Jain A, Tripathi SK. Review on Fluorescent Carbon/Graphene Quantum Dots: Promising Material for Energy Storage and Next-Generation Light-Emitting Diodes. Materials (Basel) 2022;15. [PMID: 36431372 DOI: 10.3390/ma15227888] [Reference Citation Analysis]
17 Zhou J, Yang K, Kang Q, Liu C, Li X, Chen N, Lu C, Wang X, Peng L, Guo X, Ding W, Hou W. Fast Electrochemical Redox Kinetics of Two-Dimensional TiO2/Ti3C2T (MXene) Heterostructure for High-Performance Lithium-ion Capacitor. Journal of Electroanalytical Chemistry 2022. [DOI: 10.1016/j.jelechem.2022.117034] [Reference Citation Analysis]
18 Zhang Z, Deng S, Wang D, Qing Y, Yan G, Li L, Wu Y. A Hierarchical Low-Tortuous Aligned Channels Carbon Electrode Derived From Wood@ZIF-67 for High-Performance Supercapacitors. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.140410] [Reference Citation Analysis]
19 Gu F, Ji R, Sun Q, Chen S, Bai R, Shen Y, Liu X, Song Y, Han J, Jiang X, Cheng H, Xue J. Coassisted carbonization with HCOOK/(HCOO)2Ca for the fabrication of bamboo-derived oxygen-doped porous carbons exhibiting high-performance sorption of diethyl phthalate from aqueous solutions. Bioresource Technology 2022. [DOI: 10.1016/j.biortech.2022.128310] [Reference Citation Analysis]
20 Duan G, Zhao L, Zhang C, Chen L, Zhang Q, Liu K, Wang F. Pyrolysis of zinc salt-treated flax fiber: Hierarchically porous carbon electrode for supercapacitor. Diamond and Related Materials 2022;129:109339. [DOI: 10.1016/j.diamond.2022.109339] [Cited by in Crossref: 5] [Article Influence: 5.0] [Reference Citation Analysis]
21 Jin P, Li L, Gu X, Hu Y, Zhang X, Lin X, Ma X, He X. S-doped porous carbon fibers with superior electrode behaviors in lithium ion batteries and fuel cells. Materials Reports: Energy 2022. [DOI: 10.1016/j.matre.2022.100160] [Reference Citation Analysis]
22 Zheng J, Yan B, Feng L, Zhang Q, Zhang C, Yang W, Han J, Jiang S, He S. Potassium citrate assisted synthesis of hierarchical porous carbon materials for high performance supercapacitors. Diamond and Related Materials 2022;128:109247. [DOI: 10.1016/j.diamond.2022.109247] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 11.0] [Reference Citation Analysis]
23 Shan X, Song K, Huang S, Wang J, Shi F, Zhao D. Novel porous nitrogen-doped carbon composite with CNTs/Cu-Ni as high-performance supercapacitor electrode. Journal of Electroanalytical Chemistry 2022;920:116610. [DOI: 10.1016/j.jelechem.2022.116610] [Reference Citation Analysis]
24 Li D, Lv Q, Zhang C, Zhou W, Guo H, Jiang S, Li Z. The Effect of Electrode Thickness on the High-Current Discharge and Long-Term Cycle Performance of a Lithium-Ion Battery. Batteries 2022;8:101. [DOI: 10.3390/batteries8080101] [Reference Citation Analysis]
25 Damiri F, Andra S, Kommineni N, Balu SK, Bulusu R, Boseila AA, Akamo DO, Ahmad Z, Khan FS, Rahman MH, Berrada M, Cavalu S. Recent Advances in Adsorptive Nanocomposite Membranes for Heavy Metals Ion Removal from Contaminated Water: A Comprehensive Review. Materials (Basel) 2022;15:5392. [PMID: 35955327 DOI: 10.3390/ma15155392] [Reference Citation Analysis]
26 Li Y, Zhang J, Chen Z, Chen M. Nickel-based materials: Toward practical application of the aqueous hybrid supercapacitors. Sustainable Materials and Technologies 2022. [DOI: 10.1016/j.susmat.2022.e00479] [Reference Citation Analysis]
27 Selinger J, Stock S, Schlemmer W, Hobisch M, Kostoglou N, Abbas Q, Paris O, Mitterer C, Hummel M, Spirk S. Nanoporous Carbon Electrodes Derived from Coffee Side Streams for Supercapacitors in Aqueous Electrolytes. Nanomaterials 2022;12:2647. [DOI: 10.3390/nano12152647] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Huang M, Li L, Ai Z, Gao X, Qian J, Xu H, Su X, Wu J, Gao Y. One-Step Fabrication of Ice-Templated Pure Polypyrrole Nanoparticle Hydrogels for High-Rate Supercapacitors. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c02957] [Reference Citation Analysis]
29 Zhang G, Zhao Y, Hu J, Liu H, Chen T, Yu H, Duan H. Freestanding ultralight metallic micromesh for high-energy density flexible transparent supercapacitors. J Mater Chem A 2022;10:22182-22193. [DOI: 10.1039/d2ta06251h] [Cited by in F6Publishing: 1] [Reference Citation Analysis]