1 |
Zhang M, Roth P. Flow photochemistry — from microreactors to large-scale processing. Current Opinion in Chemical Engineering 2023;39:100897. [DOI: 10.1016/j.coche.2023.100897] [Reference Citation Analysis]
|
2 |
Laybourn A, Robertson K, Slater AG. Quid Pro Flow. J Am Chem Soc 2023;145:4355-65. [PMID: 36786813 DOI: 10.1021/jacs.2c13670] [Reference Citation Analysis]
|
3 |
Di Filippo M, Baumann M. Carbene-controlled regioselectivity in photochemical cascades. Org Biomol Chem 2023. [PMID: 36745509 DOI: 10.1039/d3ob00122a] [Reference Citation Analysis]
|
4 |
Comito M, Monguzzi R, Tagliapietra S, Palmisano G, Cravotto G. Towards Antibiotic Synthesis in Continuous-Flow Processes. Molecules 2023;28. [PMID: 36771086 DOI: 10.3390/molecules28031421] [Reference Citation Analysis]
|
5 |
Nagy BS, Fu G, Hone CA, Kappe CO, Ötvös SB. Harnessing a Continuous-Flow Persulfuric Acid Generator for Direct Oxidative Aldehyde Esterifications. ChemSusChem 2023;16:e202201868. [PMID: 36377674 DOI: 10.1002/cssc.202201868] [Reference Citation Analysis]
|
6 |
Dubois MAJ, Carreras V, Adams MR, Kairouz V, Vincent-rocan J, Riley JG, Charette AB. Process Intensification and Increased Safety for the On-Demand Continuous Flow Synthesis of Dithiothreitol, a Crucial Component in Polymerase Chain Reaction Testing Kits. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00345] [Reference Citation Analysis]
|
7 |
Reynard G, Wimmer E, Richelet J, Fourquez J, Lebel H. Chemoselective borylation of bromoiodoarene in continuous flow: synthesis of bromoarylboronic acids. J Flow Chem 2022. [DOI: 10.1007/s41981-022-00246-w] [Reference Citation Analysis]
|
8 |
Borra S, Chae S, Kim HY, Oh K. Continuous Flow Synthesis of 1,4-Benzothiazines Using Ambivalent Reactivity of (E)-β-Chlorovinyl Ketones: A Point of Reaction Control Enabled by Flow Chemistry. Org Lett 2022. [PMID: 35848887 DOI: 10.1021/acs.orglett.2c01865] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
9 |
Rodriguez-zubiri M, Felpin F. Analytical Tools Integrated in Continuous-Flow Reactors: Which One for What? Org Process Res Dev 2022;26:1766-93. [DOI: 10.1021/acs.oprd.2c00102] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
10 |
Xue H, Ji M, Huang S, Zhang Y. Application of multi-wall carbon nanotubes supported L-proline in continuous flow catalysis. Tetrahedron Letters 2022. [DOI: 10.1016/j.tetlet.2022.153926] [Reference Citation Analysis]
|
11 |
Donnelly K, Baumann M. Flow synthesis of oxadiazoles coupled with sequential in-line extraction and chromatography. Beilstein J Org Chem 2022;18:232-9. [DOI: 10.3762/bjoc.18.27] [Reference Citation Analysis]
|
12 |
Shan C, Cao L, Yang J, Cheng R, Yao X, Liang C, Sun M, Ye J. Construction of an α-chiral pyrrolidine library with a rapid and scalable continuous flow protocol. React Chem Eng . [DOI: 10.1039/d2re00145d] [Reference Citation Analysis]
|
13 |
Chaudhari MB, Gupta P, Llanes P, Zhou L, Zanda N, Pericàs MA. An enantio- and diastereoselective approach to indoloquinolizidines in continuous flow. Org Biomol Chem 2022;20:8273-8279. [DOI: 10.1039/d2ob01462a] [Reference Citation Analysis]
|
14 |
Di Filippo M, Baumann M. Continuous Flow Synthesis of Anticancer Drugs. Molecules 2021;26:6992. [PMID: 34834084 DOI: 10.3390/molecules26226992] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|