BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Winkelman MA, Kim DY, Kakarla S, Grath A, Silvia N, Dai G. Interstitial flow enhances the formation, connectivity, and function of 3D brain microvascular networks generated within a microfluidic device. Lab Chip 2021;22:170-92. [PMID: 34881385 DOI: 10.1039/d1lc00605c] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 Wu Y, Zhao Y, Zhou Y, Islam K, Liu Y. Microfluidic Droplet-Assisted Fabrication of Vessel-Supported Tumors for Preclinical Drug Discovery. ACS Appl Mater Interfaces 2023. [PMID: 36920885 DOI: 10.1021/acsami.2c23305] [Reference Citation Analysis]
2 Fan Y, Xu C, Deng N, Gao Z, Jiang Z, Li X, Zhou Y, Pei H, Li L, Tang B. Understanding drug nanocarrier and blood-brain barrier interaction based on a microfluidic microphysiological model. Lab Chip 2023. [PMID: 36891748 DOI: 10.1039/d2lc01077a] [Reference Citation Analysis]
3 Fujimoto K, Erickson S, Nakayama M, Ihara H, Sugihara K, Nashimoto Y, Nishiyama K, Miura T, Yokokawa R. Pericytes and shear stress each alter the shape of a self-assembled vascular network. Lab Chip 2023;23:306-17. [PMID: 36537555 DOI: 10.1039/d2lc00605g] [Reference Citation Analysis]
4 Zhao F, Sharma D, Sharma A, Hu L, Chen T, Voon S, Bayless K, Goldman J, Walsh A. Perfusability and immunogenicity of implantable pre-vascularized tissues recapitulating native capillary network.. [DOI: 10.21203/rs.3.rs-2325499/v1] [Reference Citation Analysis]
5 Zhang S, Wan Z, Pavlou G, Zhong AX, Xu L, Kamm RD. Interstitial flow promotes the formation of functional microvascular networks in vitro through upregulation of matrix metalloproteinase-2. Adv Funct Mater 2022;32:2206767. [PMID: 36569597 DOI: 10.1002/adfm.202206767] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
6 Zhang S, Kan EL, Kamm RD. Integrating functional vasculature into organoid culture: A biomechanical perspective. APL Bioengineering 2022;6:030401. [DOI: 10.1063/5.0097967] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Laschke MW, Gu Y, Menger MD. Replacement in angiogenesis research: Studying mechanisms of blood vessel development by animal-free in vitro, in vivo and in silico approaches. Front Physiol 2022;13:981161. [DOI: 10.3389/fphys.2022.981161] [Reference Citation Analysis]
8 Tran KA, Baldwin-Leclair A, DeOre BJ, Antisell M, Galie PA. Oxygen gradients dictate angiogenesis but not barriergenesis in a 3D brain microvascular model. J Cell Physiol 2022. [PMID: 35901247 DOI: 10.1002/jcp.30840] [Reference Citation Analysis]
9 Shuchat S, Yossifon G, Huleihel M. Perfusion in Organ-on-Chip Models and Its Applicability to the Replication of Spermatogenesis In Vitro. Int J Mol Sci 2022;23:5402. [PMID: 35628214 DOI: 10.3390/ijms23105402] [Reference Citation Analysis]
10 Liu Y, Li J, Zhou J, Liu X, Li H, Lu Y, Lin B, Li X, Liu T. Angiogenesis and Functional Vessel Formation Induced by Interstitial Flow and Vascular Endothelial Growth Factor Using a Microfluidic Chip. Micromachines 2022;13:225. [DOI: 10.3390/mi13020225] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]