BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Xian S, Webber MJ. Temperature-responsive supramolecular hydrogels. J Mater Chem B 2020;8:9197-211. [PMID: 32924052 DOI: 10.1039/d0tb01814g] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 18.0] [Reference Citation Analysis]
Number Citing Articles
1 Yang Y, Feng G, Wang J, Zhang R, Zhong S, Wang J, Cui X. Injectable chitosan-based self-healing supramolecular hydrogels with temperature and pH dual-responsivenesses. Int J Biol Macromol 2023;227:1038-47. [PMID: 36460241 DOI: 10.1016/j.ijbiomac.2022.11.279] [Reference Citation Analysis]
2 Wu C, Teng L, Wang C, Qian T, Hu Z, Zeng Z. Engineering Hydrogels for Modulation of Dendritic Cell Function. Gels 2023;9:116. [DOI: 10.3390/gels9020116] [Reference Citation Analysis]
3 Rysin R, Shachar Y, Bilaus R, Shapira L, Skorochod R, Wolf Y. 3D soft tissue printing—from vision to reality—review of current concepts. Eur J Plast Surg 2022. [DOI: 10.1007/s00238-022-02018-0] [Reference Citation Analysis]
4 Li Q, Cao Y, Wang P. Recent Advances in Hydrogels for the Diagnosis and Treatment of Dry Eye Disease. Gels 2022;8. [PMID: 36547340 DOI: 10.3390/gels8120816] [Reference Citation Analysis]
5 Xian S, Vandenberg MA, Xiang Y, Yu S, Webber MJ. Glucose-Responsive Injectable Thermogels via Dynamic-Covalent Cross-Linking of Pluronic Micelles. ACS Biomater Sci Eng 2022;8:4873-4885. [DOI: 10.1021/acsbiomaterials.2c00979] [Reference Citation Analysis]
6 Oliveira CBP, Gomes V, Ferreira PMT, Martins JA, Jervis PJ. Peptide-Based Supramolecular Hydrogels as Drug Delivery Agents: Recent Advances. Gels 2022;8:706. [DOI: 10.3390/gels8110706] [Reference Citation Analysis]
7 Seo G, Kim T, Shen B, Kim J, Kim Y. Transformation of Supramolecular Membranes to Vesicles Driven by Spontaneous Gradual Deprotonation on Membrane Surfaces. J Am Chem Soc 2022. [PMID: 36099520 DOI: 10.1021/jacs.2c06941] [Reference Citation Analysis]
8 Wu Q, Fu Y, Yang W, Liu S. A Temperature/pH Double-Responsive and Physical Double-Crosslinked Hydrogel Based on PLA and Histidine. Gels 2022;8:570. [DOI: 10.3390/gels8090570] [Reference Citation Analysis]
9 Ranamalla SR, Porfire AS, Tomuță I, Banciu M. An Overview of the Supramolecular Systems for Gene and Drug Delivery in Tissue Regeneration. Pharmaceutics 2022;14:1733. [DOI: 10.3390/pharmaceutics14081733] [Reference Citation Analysis]
10 Xu J, Zhang M, Du W, Zhao J, Ling G, Zhang P. Chitosan-based high-strength supramolecular hydrogels for 3D bioprinting. Int J Biol Macromol 2022:S0141-8130(22)01647-6. [PMID: 35907459 DOI: 10.1016/j.ijbiomac.2022.07.206] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Wu B, Feng E, Liao Y, Liu H, Tang R, Tan Y. Brush-Modified Hydrogels: Preparations, Properties, and Applications. Chem Mater . [DOI: 10.1021/acs.chemmater.2c01666] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 García Schejtman SD, Mercadal PA, Picchio ML, Veglia AV, Coronado EA. In Situ Preparation of Plasmonic Gold Nanoparticle-Supramolecular Hydrogel Nanocomposites with Tunable Optical Properties: Correlating Theory and Experiments. J Phys Chem C. [DOI: 10.1021/acs.jpcc.2c02242] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Xue X, Hu Y, Wang S, Chen X, Jiang Y, Su J. Fabrication of physical and chemical crosslinked hydrogels for bone tissue engineering. Bioactive Materials 2022;12:327-39. [DOI: 10.1016/j.bioactmat.2021.10.029] [Cited by in Crossref: 29] [Cited by in F6Publishing: 33] [Article Influence: 29.0] [Reference Citation Analysis]
14 Yang L, Xie C, Ao T, Cui K, Jiang G, Bai B, Zhang Y, Yang J, Wang X, Tian W. Comprehensive evaluation of self-healing polyampholyte gel particles for the severe leakoff control of drilling fluids. Journal of Petroleum Science and Engineering 2022;212:110249. [DOI: 10.1016/j.petrol.2022.110249] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Bordbar-khiabani A, Gasik M. Smart Hydrogels for Advanced Drug Delivery Systems. IJMS 2022;23:3665. [DOI: 10.3390/ijms23073665] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 11.0] [Reference Citation Analysis]
16 Picci G, Mulvee MT, Caltagirone C, Lippolis V, Frontera A, Gomila RM, Steed JW. Anion-Responsive Fluorescent Supramolecular Gels. Molecules 2022;27:1257. [DOI: 10.3390/molecules27041257] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
17 Zhai Z, Ye S, Song Z, Shang S, Song J. Novel Temperature-Responsive Rosin-Derived Supramolecular Hydrogels Constructed by New Semicircular Aggregates. J Agric Food Chem 2022. [PMID: 35142497 DOI: 10.1021/acs.jafc.1c07397] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
18 Shibata M, Terashima T, Koga T. Micellar Aggregation and Thermogelation of Amphiphilic Random Copolymers in Water Hierarchically Dependent on Chain Length. European Polymer Journal 2022. [DOI: 10.1016/j.eurpolymj.2022.111091] [Reference Citation Analysis]
19 Zhu X, Yang C, Jian Y, Deng H, Du Y, Shi X. Ion-responsive chitosan hydrogel actuator inspired by carrotwood seed pod. Carbohydr Polym 2022;276:118759. [PMID: 34823783 DOI: 10.1016/j.carbpol.2021.118759] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
20 Ghosh S, Ghosh S, Baildya N, Ghosh K. Dehydroabietylamine-decorated imino-phenols: supramolecular gelation and gel phase selective detection of Fe 3+ , Cu 2+ and Hg 2+ ions under different experimental conditions. New J Chem 2022;46:8817-26. [DOI: 10.1039/d2nj00830k] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
21 Liu D, Yin G, Le X, Chen T. Supramolecular topological hydrogels: from material design to applications. Polym Chem . [DOI: 10.1039/d2py00243d] [Reference Citation Analysis]
22 Shao W, Chen R, Lin G, Ran K, Zhang Y, Yang J, Pan H, Shangguan J, Zhao Y, Xu H. In situ mucoadhesive hydrogel capturing tripeptide KPV: the anti-inflammatory, antibacterial and repairing effect on chemotherapy-induced oral mucositis. Biomater Sci 2021;10:227-42. [PMID: 34846053 DOI: 10.1039/d1bm01466h] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
23 El-Ghoul Y, Alminderej FM, Alsubaie FM, Alrasheed R, Almousa NH. Recent Advances in Functional Polymer Materials for Energy, Water, and Biomedical Applications: A Review. Polymers (Basel) 2021;13:4327. [PMID: 34960878 DOI: 10.3390/polym13244327] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
24 Pu L, Zhu M, Shen X, Wu S, Wei W, Li S. Stomata-inspired smart bilayer catalyst with the dual-responsive ability, capable of single/tandem catalysis. Polymer 2021;234:124238. [DOI: 10.1016/j.polymer.2021.124238] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
25 Abdelaty MSA. A Facile Method for the Preparation of Hydrophilic-Hydrophobic Functional Thermo-pH Responsive Terpolymers Based on Poly (NIPAAm-co-DMAA-co-DMAMVA) and Post-polymerization. J Polym Environ 2021;29:3227-41. [DOI: 10.1007/s10924-021-02117-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
26 Abdelaty MSA. Trends in the Phase Separation Temperature Optimization of a Functional and Thermo-pH Responsive Terpolymer of Poly (N-isopropylacrylamide-co-N-(2-(dimethylamino)ethyl) Acrylamide-co-vanillin Acrylate). J Polym Environ 2021;29:3116-29. [DOI: 10.1007/s10924-021-02096-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
27 Li L, Xie L, Zheng R, Sun R. Self-Assembly Dipeptide Hydrogel: The Structures and Properties. Front Chem 2021;9:739791. [PMID: 34540806 DOI: 10.3389/fchem.2021.739791] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
28 Stach OS, Breul K, Berač CM, Urschbach M, Seiffert S, Besenius P. Bridging Rigidity and Flexibility: Modulation of Supramolecular Hydrogels by Metal Complexation. Macromol Rapid Commun 2021;:e2100473. [PMID: 34505725 DOI: 10.1002/marc.202100473] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
29 Xie X, Ma W, Xie M, Sun R. Photoswitchable Ion-Conducting Supramolecular Hydrogel Showing Adverse Photoconductivity Triggered by Anion Exchange. ACS Appl Polym Mater 2021;3:4563-71. [DOI: 10.1021/acsapm.1c00634] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
30 Geiselhart CM, Mutlu H, Barner‐kowollik C. Vorbeugen oder Heilen – die beispiellose Notwendigkeit von selbstberichtenden Materialien. Angew Chem 2021;133:17430-17454. [DOI: 10.1002/ange.202012592] [Reference Citation Analysis]
31 Geiselhart CM, Mutlu H, Barner-Kowollik C. Prevent or Cure-The Unprecedented Need for Self-Reporting Materials. Angew Chem Int Ed Engl 2021;60:17290-313. [PMID: 33217121 DOI: 10.1002/anie.202012592] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
32 Fortunato A, Mba M. Metal Cation Triggered Peptide Hydrogels and Their Application in Food Freshness Monitoring and Dye Adsorption. Gels 2021;7:85. [PMID: 34287282 DOI: 10.3390/gels7030085] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
33 Li L, Sun R, Zheng R, Huang Y. Anions-responsive supramolecular gels: A review. Materials & Design 2021;205:109759. [DOI: 10.1016/j.matdes.2021.109759] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 11.0] [Reference Citation Analysis]
34 Constantinou AP, Georgiou TK. Pre‐clinical and clinical applications of thermoreversible hydrogels in biomedical engineering: a review. Polym Int 2021;70:1433-48. [DOI: 10.1002/pi.6266] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
35 Shibata M, Terashima T, Koga T. Thermoresponsive Gelation of Amphiphilic Random Copolymer Micelles in Water. Macromolecules 2021;54:5241-8. [DOI: 10.1021/acs.macromol.1c00406] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
36 Drozdov AD, deClaville Christiansen J. Thermo-Viscoelastic Response of Protein-Based Hydrogels. Bioengineering (Basel) 2021;8:73. [PMID: 34072950 DOI: 10.3390/bioengineering8060073] [Reference Citation Analysis]
37 Webber MJ, Pashuck ET. (Macro)molecular self-assembly for hydrogel drug delivery. Adv Drug Deliv Rev 2021;172:275-95. [PMID: 33450330 DOI: 10.1016/j.addr.2021.01.006] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 13.5] [Reference Citation Analysis]
38 Wang JW, Yu KX, Ji XY, Bai H, Zhang WH, Hu X, Tang G. Structural Insights into the Host-Guest Complexation between β-Cyclodextrin and Bio-Conjugatable Adamantane Derivatives. Molecules 2021;26:2412. [PMID: 33919170 DOI: 10.3390/molecules26092412] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
39 Jervis PJ, Hilliou L, Pereira RB, Pereira DM, Martins JA, Ferreira PMT. Evaluation of a Model Photo-Caged Dehydropeptide as a Stimuli-Responsive Supramolecular Hydrogel. Nanomaterials (Basel) 2021;11:704. [PMID: 33799670 DOI: 10.3390/nano11030704] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
40 Lei J, Li Z, Xu S, Liu Z. Recent advances of hydrogel network models for studies on mechanical behaviors. Acta Mech Sin 2021;37:367-86. [DOI: 10.1007/s10409-021-01058-2] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 17.0] [Reference Citation Analysis]
41 Fortunato A, Sanzone A, Mattiello S, Beverina L, Mba M. The pH- and salt-controlled self-assembly of [1]benzothieno[3,2-b][1]-benzothiophene–peptide conjugates in supramolecular hydrogels. New J Chem 2021;45:13389-13398. [DOI: 10.1039/d1nj02294f] [Reference Citation Analysis]