1 |
Brandolese A, Lamparelli DH, Pericàs MA, Kleij AW. Synthesis of Biorenewable Terpene Monomers Using Enzymatic Epoxidation under Heterogeneous Batch and Continuous Flow Conditions. ACS Sustainable Chem Eng 2023. [DOI: 10.1021/acssuschemeng.3c00370] [Reference Citation Analysis]
|
2 |
Santner P, Chanquia SN, Petrovai N, Benfeldt FV, Kara S, Eser BE. Biocatalytic Conversion of Fatty Acids into Drop-in Biofuels: Towards Sustainable Energy Sources. EFB Bioeconomy Journal 2023. [DOI: 10.1016/j.bioeco.2023.100049] [Reference Citation Analysis]
|
3 |
Ölçücü G, Krauss U, Jaeger K, Pietruszka J. Carrier‐Free Enzyme Immobilizates for Flow Chemistry. Chemie Ingenieur Technik 2023. [DOI: 10.1002/cite.202200167] [Reference Citation Analysis]
|
4 |
Laybourn A, Robertson K, Slater AG. Quid Pro Flow. J Am Chem Soc 2023;145:4355-65. [PMID: 36786813 DOI: 10.1021/jacs.2c13670] [Reference Citation Analysis]
|
5 |
Silva FMWG, Imarah AO, Takács O, Tuba L, Poppe L. Scalability of U-Shape Magnetic Nanoparticles-Based Microreactor–Lipase-Catalyzed Preparative Scale Kinetic Resolutions of Drug-like Fragments. Catalysts 2023;13:384. [DOI: 10.3390/catal13020384] [Reference Citation Analysis]
|
6 |
Šibalić D, Šalić A, Zelić B, Nam Tran N, Hessel V, Nigam KD, Tišma M. Synergism of ionic liquids and lipases for lignocellulosic biomass valorization. Chemical Engineering Journal 2023. [DOI: 10.1016/j.cej.2023.142011] [Reference Citation Analysis]
|
7 |
Ghéczy N, Tao S, Pour-Esmaeil S, Szymańska K, Jarzębski AB, Walde P. Performance of a Flow-Through Enzyme Reactor Prepared from a Silica Monolith and an α-Poly(D-Lysine)-Enzyme Conjugate. Macromol Biosci 2023;:e2200465. [PMID: 36598452 DOI: 10.1002/mabi.202200465] [Reference Citation Analysis]
|
8 |
Katharina N. Schwaiger, Bernd Nidetzky. Continuous process technology for bottom-up synthesis of soluble cello-oligosaccharides by immobilized cells co-expressing three saccharide phosphorylases. Microb Cell Fact 2022;21:265. [PMID: 36536394 DOI: 10.1186/s12934-022-01984-1] [Reference Citation Analysis]
|
9 |
García-lacuna J, Baumann M. Inline purification in continuous flow synthesis – opportunities and challenges. Beilstein J Org Chem 2022;18:1720-1740. [DOI: 10.3762/bjoc.18.182] [Reference Citation Analysis]
|
10 |
Meyer LE, Hobisch M, Kara S. Process intensification in continuous flow biocatalysis by up and downstream processing strategies. Curr Opin Biotechnol 2022;78:102835. [PMID: 36332339 DOI: 10.1016/j.copbio.2022.102835] [Reference Citation Analysis]
|
11 |
Rocha RA, North AJ, Speight RE, Williams CC, Scott C. Cofactor and Process Engineering for Nicotinamide Recycling and Retention in Intensified Biocatalysis. Catalysts 2022;12:1454. [DOI: 10.3390/catal12111454] [Reference Citation Analysis]
|
12 |
Haase S, Marschner S, Ayubi M, Lange M. Gas-liquid flow in small channels: Artificial neural network classifiers for flow regime prediction. Chemical Engineering and Processing - Process Intensification 2022;180:108687. [DOI: 10.1016/j.cep.2021.108687] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
13 |
Annunziata F, Contente ML, Anzi V, Donzella S, Conti P, Molinari F, Martino PA, Meroni G, Sora VM, Tamborini L, Pinto A. Enzymatic continuous-flow preparation of nature-inspired phenolic esters as antiradical and antimicrobial agents. Food Chem 2022;390:133195. [PMID: 35594770 DOI: 10.1016/j.foodchem.2022.133195] [Reference Citation Analysis]
|
14 |
De Santis P, Petrovai N, Meyer L, Hobisch M, Kara S. A holistic carrier-bound immobilization approach for unspecific peroxygenase. Front Chem 2022;10:985997. [DOI: 10.3389/fchem.2022.985997] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
15 |
Pei X, Luo Z, Qiao L, Xiao Q, Zhang P, Wang A, Sheldon RA. Putting precision and elegance in enzyme immobilisation with bio-orthogonal chemistry. Chem Soc Rev 2022;51:7281-304. [PMID: 35920313 DOI: 10.1039/d1cs01004b] [Reference Citation Analysis]
|
16 |
Rajendran DS, Venkataraman S, Kumar PS, Rangasamy G, Bhattacharya T, Nguyen Vo DV, Vaithyanathan VK, Cabana H, Kumar VV. Coimmobilized enzymes as versatile biocatalytic tools for biomass valorization and remediation of environmental contaminants - A review. Environ Res 2022;214:114012. [PMID: 35952747 DOI: 10.1016/j.envres.2022.114012] [Reference Citation Analysis]
|
17 |
Vernet G, Hobisch M, Kara S. Process intensification in oxidative biocatalysis. Current Opinion in Green and Sustainable Chemistry 2022. [DOI: 10.1016/j.cogsc.2022.100692] [Reference Citation Analysis]
|
18 |
Meyer L, Andersen MB, Kara S. A Deep Eutectic Solvent Thermomorphic Multiphasic System for Biocatalytic Applications. Angew Chem Int Ed 2022;61. [DOI: 10.1002/anie.202203823] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
19 |
Fryer T, Rogers JD, Mellor C, Kohler TN, Minter R, Hollfelder F. Gigavalent Display of Proteins on Monodisperse Polyacrylamide Hydrogels as a Versatile Modular Platform for Functional Assays and Protein Engineering. ACS Cent Sci . [DOI: 10.1021/acscentsci.2c00576] [Reference Citation Analysis]
|
20 |
Abd Razak NN, Cognet P, Pérès Y, Gew LT, Aroua MK. Kinetics and hydrodynamics of Candida antartica lipase-catalyzed synthesis of glycerol dioleate (GDO) in a continuous flow packed-bed millireactor. Journal of Cleaner Production 2022. [DOI: 10.1016/j.jclepro.2022.133816] [Reference Citation Analysis]
|
21 |
Bolivar JM, Woodley JM, Fernandez-Lafuente R. Is enzyme immobilization a mature discipline? Some critical considerations to capitalize on the benefits of immobilization. Chem Soc Rev 2022. [PMID: 35838107 DOI: 10.1039/d2cs00083k] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 15.0] [Reference Citation Analysis]
|
22 |
Ghéczy N, Xu W, Szymańska K, Jarzębski AB, Walde P. Controllable Enzyme Immobilization via Simple and Quantitative Adsorption of Dendronized Polymer–Enzyme Conjugates Inside a Silica Monolith for Enzymatic Flow-Through Reactor Applications. ACS Omega. [DOI: 10.1021/acsomega.2c02815] [Reference Citation Analysis]
|
23 |
García-marquina G, Langer J, Sánchez-costa M, Jiménez-osés G, López-gallego F. Immobilization and Stabilization of an Engineered Acyltransferase for the Continuous Biosynthesis of Simvastatin in Packed-Bed Reactors. ACS Sustainable Chem Eng . [DOI: 10.1021/acssuschemeng.2c02279] [Reference Citation Analysis]
|
24 |
Cho Y. Transient response of immobilized enzyme reactors - the effects of reactor type and shape of core-shell bio-catalytic pellets. Korean J Chem Eng . [DOI: 10.1007/s11814-022-1174-4] [Reference Citation Analysis]
|
25 |
Meyer L, Andersen MB, Kara S. Ein thermomorphes stark eutektisches Lösungsmittelmehrphasensystem für biokatalytische Anwendungen. Angewandte Chemie. [DOI: 10.1002/ange.202203823] [Reference Citation Analysis]
|
26 |
Souza ROMA, Leão RAC, Nascimento MA, França ADS, Miranda AS, Junior II. Chemo‐Enzymatic Cascade Reactions for the Synthesis of Chiral Intermediates and Nonaromatic Nitrogen Heterocycles. More Synthetic Approaches to Nonaromatic Nitrogen Heterocycles 2022. [DOI: 10.1002/9781119757153.ch2] [Reference Citation Analysis]
|
27 |
Ölçücü G, Baumer B, Küsters K, Möllenhoff K, Oldiges M, Pietruszka J, Jaeger KE, Krauss U. Catalytically Active Inclusion Bodies─Benchmarking and Application in Flow Chemistry. ACS Synth Biol 2022;11:1881-96. [PMID: 35500299 DOI: 10.1021/acssynbio.2c00035] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
28 |
Wang S, Shi T, Fang Z, Liu C, He W, Zhu N, Hu Y, Li X, Guo K. Enzymatic kinetic resolution in flow for chiral mandelic acids. J Flow Chem. [DOI: 10.1007/s41981-022-00219-z] [Reference Citation Analysis]
|
29 |
Cosgrove SC, Miller GJ. Advances in biocatalytic and chemoenzymatic synthesis of nucleoside analogues. Expert Opin Drug Discov 2022;17:355-64. [PMID: 35133222 DOI: 10.1080/17460441.2022.2039620] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
|
30 |
Burek BO, Dawood AWH, Hollmann F, Liese A, Holtmann D. Process Intensification as Game Changer in Enzyme Catalysis. Front Catal 2022;2:858706. [DOI: 10.3389/fctls.2022.858706] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
|
31 |
Du L, Yang M, Pan Y, Zheng L, Zhang S, Sheng Z, Chen P, Luo X. Continuous Flow Biocatalysis: Synthesis of Coumarin Carboxamide Derivatives by Lipase TL IM from Thermomyces lanuginosus. Catalysts 2022;12:339. [DOI: 10.3390/catal12030339] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
32 |
Greifenstein R, Ballweg T, Hashem T, Gottwald E, Achauer D, Kirschhöfer F, Nusser M, Brenner‐weiß G, Sedghamiz E, Wenzel W, Mittmann E, Rabe KS, Niemeyer CM, Franzreb M, Wöll C. In MOF eingebettete Enzyme für die kontinuierliche Durchflusskatalyse in wässrigen und organischen Lösungsmitteln. Angewandte Chemie 2022;134. [DOI: 10.1002/ange.202117144] [Reference Citation Analysis]
|
33 |
Bié J, Sepodes B, Fernandes PCB, Ribeiro MHL. Enzyme Immobilization and Co-Immobilization: Main Framework, Advances and Some Applications. Processes 2022;10:494. [DOI: 10.3390/pr10030494] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 11.0] [Reference Citation Analysis]
|
34 |
Williams V, Cui Y, Zhao J, Fu H, Jiao X, Ma Y, Li X, Du X, Zhang N. Highly Efficient Production of Optically Active ( R )-Tetrahydrothiophene-3-ol in Batch and Continuous Flow by Using Immobilized Ketoreductase. Org Process Res Dev . [DOI: 10.1021/acs.oprd.1c00383] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
35 |
Boodhoo K, Flickinger M, Woodley J, Emanuelsson E. Bioprocess intensification: A route to efficient and sustainable biocatalytic transformations for the future. Chemical Engineering and Processing - Process Intensification 2022;172:108793. [DOI: 10.1016/j.cep.2022.108793] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 10.0] [Reference Citation Analysis]
|
36 |
Tsubogo T. New Aspects of Immobilized Biocatalysis in Continuous-flow Syntheses. J Synth Org Chem Jpn 2022;80:158-9. [DOI: 10.5059/yukigoseikyokaishi.80.158] [Reference Citation Analysis]
|
37 |
Andrés-Sanz D, Diamanti E, Di Silvo D, Gurauskis J, López-Gallego F. Selective Coimmobilization of His-Tagged Enzymes on Yttrium-Stabilized Zirconia-Based Membranes for Continuous Asymmetric Bioreductions. ACS Appl Mater Interfaces 2022;14:4285-96. [PMID: 35020352 DOI: 10.1021/acsami.1c20738] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
38 |
Ribeaucourt D, Höfler GT, Yemloul M, Bissaro B, Lambert F, Berrin JG, Lafond M, Paul CE. Tunable Production of (R)- or (S)-Citronellal from Geraniol via a Bienzymatic Cascade Using a Copper Radical Alcohol Oxidase and Old Yellow Enzyme. ACS Catal 2022;12:1111-6. [PMID: 35096467 DOI: 10.1021/acscatal.1c05334] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
|
39 |
Chanquia SN, Valotta A, Gruber-woelfler H, Kara S. Photobiocatalysis in Continuous Flow. Front Catal 2022;1:816538. [DOI: 10.3389/fctls.2021.816538] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
|
40 |
Meyer L, Fogtmann Hauge B, Müller Kvorning T, De Santis P, Kara S. Continuous oxyfunctionalizations catalyzed by unspecific peroxygenase. Catal Sci Technol . [DOI: 10.1039/d2cy00650b] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
41 |
Chen Q, An Y, Feng M, Li J, Li Y, Tong F, Qu G, Sun Z, Wang Y, Luo G. An enzyme-assembled gel monolithic microreactor for continuous flow asymmetric synthesis of aryl alcohols. Green Chem 2022. [DOI: 10.1039/d2gc03082a] [Reference Citation Analysis]
|
42 |
Meyer J, Meyer L, Kara S. Enzyme immobilization in hydrogels: A perfect liaison for efficient and sustainable biocatalysis. Engineering in Life Sciences. [DOI: 10.1002/elsc.202100087] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
|
43 |
Hanefeld U, Hollmann F, Paul CE. Biocatalysis making waves in organic chemistry. Chem Soc Rev 2021. [PMID: 34929722 DOI: 10.1039/d1cs00100k] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
|
44 |
Liu K, Wang S, Duan L, Jiang L, Wang S. Effect of ionic liquids on catalytic characteristics of hyperthermophilic and halophilic phenylalanine dehydrogenase and mechanism study. Biochemical Engineering Journal 2021;176:108175. [DOI: 10.1016/j.bej.2021.108175] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
45 |
Žnidaršič-plazl P. Biocatalytic process intensification via efficient biocatalyst immobilization, miniaturization, and process integration. Current Opinion in Green and Sustainable Chemistry 2021;32:100546. [DOI: 10.1016/j.cogsc.2021.100546] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
|
46 |
Kracher D, Kourist R. Recent developments in compartmentalization of chemoenzymatic cascade reactions. Current Opinion in Green and Sustainable Chemistry 2021;32:100538. [DOI: 10.1016/j.cogsc.2021.100538] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
|
47 |
Coloma J, Guiavarc'h Y, Hagedoorn PL, Hanefeld U. Immobilisation and flow chemistry: tools for implementing biocatalysis. Chem Commun (Camb) 2021;57:11416-28. [PMID: 34636371 DOI: 10.1039/d1cc04315c] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
|
48 |
Neuburger J, Helmholz F, Tiedemann S, Lehmann P, Süss P, Menyes U, von Langermann J. Implementation and scale-up of a semi-continuous transaminase-catalyzed reactive crystallization for the preparation of (S)-(3-methoxyphenyl)ethylamine. Chemical Engineering and Processing - Process Intensification 2021;168:108578. [DOI: 10.1016/j.cep.2021.108578] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
49 |
Fryer T, Rogers JD, Mellor C, Minter R, Hollfelder F. Gigavalent display of proteins on monodisperse polyacrylamide hydrogels as a versatile modular platform for functional assays and protein engineering.. [DOI: 10.1101/2021.10.30.466587] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
50 |
Cavalcante FTT, Cavalcante ALG, de Sousa IG, Neto FS, dos Santos JCS. Current Status and Future Perspectives of Supports and Protocols for Enzyme Immobilization. Catalysts 2021;11:1222. [DOI: 10.3390/catal11101222] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 13.0] [Reference Citation Analysis]
|
51 |
Meyer L, Eser BE, Kara S. Coupling light with biocatalysis for sustainable synthesis—very recent developments and future perspectives. Current Opinion in Green and Sustainable Chemistry 2021;31:100496. [DOI: 10.1016/j.cogsc.2021.100496] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
|
52 |
Poznansky B, Cleary SE, Thompson LA, Reeve HA, Vincent KA. Boosting the Productivity of H2-Driven Biocatalysis in a Commercial Hydrogenation Flow Reactor Using H2 From Water Electrolysis. Front Chem Eng 2021;3:718257. [DOI: 10.3389/fceng.2021.718257] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
53 |
Adebar N, Nastke A, Löwe J, Gröger H. Segmentierte Flow‐Prozesse zur Überwindung von Limitierungen der Ganzzell‐Biokatalyse in Gegenwart von organischen Lösungsmitteln. Angew Chem 2021;133:15997-16004. [DOI: 10.1002/ange.202015887] [Reference Citation Analysis]
|
54 |
Zhang N, Steininger F, Meyer L, Koren K, Kara S. Can Deep Eutectic Solvents Sustain Oxygen-Dependent Bioprocesses?—Measurements of Oxygen Transfer Rates. ACS Sustainable Chem Eng 2021;9:8347-53. [DOI: 10.1021/acssuschemeng.1c03547] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
55 |
Sheldon RA, Brady D. Streamlining Design, Engineering, and Applications of Enzymes for Sustainable Biocatalysis. ACS Sustainable Chem Eng 2021;9:8032-52. [DOI: 10.1021/acssuschemeng.1c01742] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 13.0] [Reference Citation Analysis]
|
56 |
Kim S, Kwon K, Tae G, Kwon I. Nano-Entrapping Multiple Oxidoreductases and Cofactor for All-In-One Nanoreactors. ACS Sustainable Chem Eng 2021;9:6741-6747. [DOI: 10.1021/acssuschemeng.1c00843] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
57 |
Pietrek P, Kraut M, Dittmeyer R. Towards a Novel Computer-Aided Optimization of Microreactors: Techno-Economic Evaluation of an Immobilized Enzyme System. Symmetry 2021;13:524. [DOI: 10.3390/sym13030524] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
58 |
Moriyama J, Yoshimoto M. Efficient Entrapment of Carbonic Anhydrase in Alginate Hydrogels Using Liposomes for Continuous-Flow Catalytic Reactions. ACS Omega 2021;6:6368-78. [PMID: 33718727 DOI: 10.1021/acsomega.0c06299] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
59 |
Naramittanakul A, Buttranon S, Petchsuk A, Chaiyen P, Weeranoppanant N. Development of a continuous-flow system with immobilized biocatalysts towards sustainable bioprocessing. React Chem Eng 2021;6:1771-90. [DOI: 10.1039/d1re00189b] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
|
60 |
Cardoso Marques MP, Lorente-arevalo A, Bolivar JM. Biocatalysis in Continuous-Flow Microfluidic Reactors. Microfluidics in Biotechnology 2021. [DOI: 10.1007/10_2020_160] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
61 |
Petermeier P, Kara S. Enzyme Cascade Reaction Engineering. Enzyme Cascade Design and Modelling 2021. [DOI: 10.1007/978-3-030-65718-5_7] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
62 |
Peñafiel I, Cosgrove SC. Biocatalysis in Flow for Drug Discovery. Topics in Medicinal Chemistry 2021. [DOI: 10.1007/7355_2021_116] [Reference Citation Analysis]
|
63 |
Sheldon RA. Biocatalysis in ionic liquids: state-of-the-union. Green Chem 2021;23:8406-27. [DOI: 10.1039/d1gc03145g] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
|
64 |
Porcar R, Lavandera I, Lozano P, Altava B, Luis SV, Gotor-fernández V, García-verdugo E. Supported ionic liquid-like phases as efficient solid ionic solvents for the immobilisation of alcohol dehydrogenases towards the development of stereoselective bioreductions. Green Chem 2021;23:5609-17. [DOI: 10.1039/d1gc01767e] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
|
65 |
Benítez-mateos AI, Contente ML, Roura Padrosa D, Paradisi F. Flow biocatalysis 101: design, development and applications. React Chem Eng 2021;6:599-611. [DOI: 10.1039/d0re00483a] [Cited by in Crossref: 26] [Cited by in F6Publishing: 30] [Article Influence: 13.0] [Reference Citation Analysis]
|