BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shan H, Dou W, Zhang Y, Qi M. Targeted ferritin nanoparticle encapsulating CpG oligodeoxynucleotides induces tumor-associated macrophage M2 phenotype polarization into M1 phenotype and inhibits tumor growth. Nanoscale 2020;12:22268-80. [PMID: 33146206 DOI: 10.1039/d0nr04520a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 27] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhang B, Chen X, Tang G, Zhang R, Li J, Sun G, Yan X, Fan K. Constructing a nanocage-based universal carrier for delivering TLR-activating nucleic acids to enhance antitumor immunotherapy. Nano Today 2022;46:101564. [DOI: 10.1016/j.nantod.2022.101564] [Reference Citation Analysis]
2 Hu J, Yang Q, Yue Z, Liao B, Cheng H, Li W, Zhang H, Wang S, Tian Q. Emerging advances in engineered macrophages for tumor immunotherapy. Cytotherapy 2022:S1465-3249(22)00732-0. [PMID: 36008206 DOI: 10.1016/j.jcyt.2022.07.001] [Reference Citation Analysis]
3 Deng K, Yang D, Zhou Y. Nanotechnology-Based siRNA Delivery Systems to Overcome Tumor Immune Evasion in Cancer Immunotherapy. Pharmaceutics 2022;14:1344. [DOI: 10.3390/pharmaceutics14071344] [Reference Citation Analysis]
4 Huang L, Ge X, Liu Y, Li H, Zhang Z. The Role of Toll-like Receptor Agonists and Their Nanomedicines for Tumor Immunotherapy. Pharmaceutics 2022;14:1228. [PMID: 35745800 DOI: 10.3390/pharmaceutics14061228] [Reference Citation Analysis]
5 Donoso‐meneses D, Figueroa‐valdés AI, Georges N, Tobar HE, Alcayaga‐miranda F. Turning adversity into opportunity: Small extracellular vesicles as nanocarriers for tumor‐associated macrophages re‐education. Bioengineering & Transla Med. [DOI: 10.1002/btm2.10349] [Reference Citation Analysis]
6 Yamazaki J, Inoue I, Arakawa A, Karakawa S, Takahashi K, Nakayama A. Simultaneous quantification of oligo-nucleic acids and a ferritin nanocage by size-exclusion chromatography hyphenated to inductively coupled plasma mass spectrometry for developing drug delivery systems. Anal Methods 2022. [PMID: 35616084 DOI: 10.1039/d2ay00068g] [Reference Citation Analysis]
7 Xu X, Tian K, Lou X, Du Y. Potential of Ferritin-Based Platforms for Tumor Immunotherapy. Molecules 2022;27:2716. [DOI: 10.3390/molecules27092716] [Reference Citation Analysis]
8 Haegebaert RM, Kempers M, Ceelen W, Lentacker I, Remaut K. Nanoparticle mediated targeting of toll-like receptors to treat colorectal cancer. European Journal of Pharmaceutics and Biopharmaceutics 2022;172:16-30. [DOI: 10.1016/j.ejpb.2022.01.002] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Li X, Wang R, Zhang Y, Han S, Gan Y, Liang Q, Ma X, Rong P, Wang W, Li W. Molecular imaging of tumor-associated macrophages in cancer immunotherapy. Ther Adv Med Oncol 2022;14:175883592210761. [DOI: 10.1177/17588359221076194] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Zheng Y, Han Y, Sun Q, Li Z. Harnessing anti‐tumor and tumor‐tropism functions of macrophages via nanotechnology for tumor immunotherapy. Exploration. [DOI: 10.1002/exp.20210166] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
11 Kumari N, Choi SH. Tumor-associated macrophages in cancer: recent advancements in cancer nanoimmunotherapies. J Exp Clin Cancer Res 2022;41. [DOI: 10.1186/s13046-022-02272-x] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
12 Shen Y, Guo D, Ji X, Zhou Y, Liu S, Huang J, Song H. Homotypic targeting of immunomodulatory nanoparticles for enhanced peripheral and central immunity. Cell Prolif 2022;:e13192. [PMID: 35084069 DOI: 10.1111/cpr.13192] [Reference Citation Analysis]
13 Zhou C, Liu Q, Xiang Y, Gou X, Li W. Role of the tumor immune microenvironment in tumor immunotherapy. Oncol Lett 2022;23:53. [PMID: 34992685 DOI: 10.3892/ol.2021.13171] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
14 Sudheesh MS, Pavithran K, M S. Revisiting the outstanding questions in cancer nanomedicine with a future outlook. Nanoscale Adv 2022;4:634-53. [DOI: 10.1039/d1na00810b] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Zlotnikov ID, Kudryashova EV. Computer simulation of the Receptor-Ligand Interactions of Mannose Receptor CD206 in Comparison with the Lectin Concanavalin A Model. Biochemistry (Mosc) 2022;87:54-69. [PMID: 35491020 DOI: 10.1134/S0006297922010059] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Mainini F, Bonizzi A, Sevieri M, Sitia L, Truffi M, Corsi F, Mazzucchelli S. Protein-Based Nanoparticles for the Imaging and Treatment of Solid Tumors: The Case of Ferritin Nanocages, a Narrative Review. Pharmaceutics 2021;13:2000. [PMID: 34959283 DOI: 10.3390/pharmaceutics13122000] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
17 Shin S, Lee J, Han J, Li F, Ling D, Park W. Tumor Microenvironment Modulating Functional Nanoparticles for Effective Cancer Treatments. Tissue Eng Regen Med 2021. [PMID: 34674182 DOI: 10.1007/s13770-021-00403-7] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
18 Tang L, Mei Y, Shen Y, He S, Xiao Q, Yin Y, Xu Y, Shao J, Wang W, Cai Z. Nanoparticle-Mediated Targeted Drug Delivery to Remodel Tumor Microenvironment for Cancer Therapy. Int J Nanomedicine 2021;16:5811-29. [PMID: 34471353 DOI: 10.2147/IJN.S321416] [Cited by in Crossref: 1] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
19 Medrano-Bosch M, Moreno-Lanceta A, Melgar-Lesmes P. Nanoparticles to Target and Treat Macrophages: The Ockham's Concept? Pharmaceutics 2021;13:1340. [PMID: 34575416 DOI: 10.3390/pharmaceutics13091340] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
20 Lin X, Fang Y, Jin X, Zhang M, Shi K. Modulating Repolarization of Tumor-Associated Macrophages with Targeted Therapeutic Nanoparticles as a Potential Strategy for Cancer Therapy. ACS Appl Bio Mater 2021;4:5871-96. [PMID: 35006894 DOI: 10.1021/acsabm.1c00461] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Du X, Li Y, Long J, Zhang W, Wang D, Li C, Zhao M, Lai Y. Fabrication of cisplatin-loaded polydopamine nanoparticles via supramolecular self-assembly for photoacoustic imaging guided chemo-photothermal cancer therapy. Applied Materials Today 2021;23:101019. [DOI: 10.1016/j.apmt.2021.101019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
22 Viana IMO, Roussel S, Defrêne J, Lima EM, Barabé F, Bertrand N. Innate and adaptive immune responses toward nanomedicines. Acta Pharm Sin B 2021;11:852-70. [PMID: 33747756 DOI: 10.1016/j.apsb.2021.02.022] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 11.0] [Reference Citation Analysis]
23 Zhao Z, Chen X, Chen Y, Li H, Fang K, Chen H, Li X, Qian P. A Self-Assembling Ferritin Nanoplatform for Designing Classical Swine Fever Vaccine: Elicitation of Potent Neutralizing Antibody. Vaccines (Basel) 2021;9:45. [PMID: 33451123 DOI: 10.3390/vaccines9010045] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]