BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Williams NX, Noyce S, Cardenas JA, Catenacci M, Wiley BJ, Franklin AD. Silver nanowire inks for direct-write electronic tattoo applications. Nanoscale 2019;11:14294-302. [PMID: 31318368 DOI: 10.1039/c9nr03378e] [Cited by in Crossref: 28] [Cited by in F6Publishing: 36] [Article Influence: 14.0] [Reference Citation Analysis]
Number Citing Articles
1 Rich SI, Lee S, Fukuda K, Someya T. Developing the Nondevelopable: Creating Curved-Surface Electronics from Nonstretchable Devices. Adv Mater 2022;34:e2106683. [PMID: 34626017 DOI: 10.1002/adma.202106683] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
2 Tan HW, Choong YYC, Kuo CN, Low HY, Chua CK. 3D printed electronics: Processes, materials and future trends. Progress in Materials Science 2022;127:100945. [DOI: 10.1016/j.pmatsci.2022.100945] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
3 Jin S, Kim Y, Son D, Shin M. Tissue Adhesive, Conductive, and Injectable Cellulose Hydrogel Ink for On-Skin Direct Writing of Electronics. Gels 2022;8:336. [DOI: 10.3390/gels8060336] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
4 Liu S, Rao Y, Jang H, Tan P, Lu N. Strategies for body-conformable electronics. Matter 2022;5:1104-36. [DOI: 10.1016/j.matt.2022.02.006] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
5 Tran QH, Chu DT, Hoang VH, Do QT, Pham SH, Leclère P, Nguyen TD, Nguyen DC. Enhancement of electrical and thermal properties of silver nanowire transparent conductive electrode by Ag coating. Materials Science and Engineering: B 2022;278:115640. [DOI: 10.1016/j.mseb.2022.115640] [Reference Citation Analysis]
6 Kelly AG, O'Reilly J, Gabbett C, Szydłowska B, O'Suilleabhain D, Khan U, Maughan J, Carey T, Sheil S, Stamenov P, Coleman JN. Highly Conductive Networks of Silver Nanosheets. Small 2022;:e2105996. [PMID: 35218146 DOI: 10.1002/smll.202105996] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Patel S, Ershad F, Lee J, Chacon‐alberty L, Wang Y, Morales‐garza MA, Haces‐garcia A, Jang S, Gonzalez L, Contreras L, Agarwal A, Rao Z, Liu G, Efimov IR, Zhang YS, Zhao M, Isseroff RR, Karim A, Elgalad A, Zhu W, Wu X, Yu C. Drawn‐on‐Skin Sensors from Fully Biocompatible Inks toward High‐Quality Electrophysiology. Small. [DOI: 10.1002/smll.202107099] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
8 Ye S, Williams NX, Franklin AD. Aerosol Jet Printing of SU-8 as a Passivation Layer Against Ionic Solutions. J Electron Mater . [DOI: 10.1007/s11664-021-09396-4] [Reference Citation Analysis]
9 Li W, Akhter Z, Vaseem M, Shamim A. Optically Transparent and Flexible Radio Frequency Electronics through Printing Technologies. Adv Materials Technologies 2022;7:2101277. [DOI: 10.1002/admt.202101277] [Reference Citation Analysis]
10 Jaynes TL. "Compoundless Anaesthesia", Controlled Administration, and Post-Operative Recovery Acceleration: Musings on Theoretical Nanomedicine Applications. J Clin Med 2022;11:256. [PMID: 35011997 DOI: 10.3390/jcm11010256] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Kalkal A, Kumar S, Kumar P, Pradhan R, Willander M, Packirisamy G, Kumar S, Malhotra BD. Recent advances in 3D printing technologies for wearable (bio)sensors. Additive Manufacturing 2021;46:102088. [DOI: 10.1016/j.addma.2021.102088] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 11.0] [Reference Citation Analysis]
12 Liu J, Yan D, Pang W, Zhang Y. Design, fabrication and applications of soft network materials. Materials Today 2021;49:324-50. [DOI: 10.1016/j.mattod.2021.05.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
13 Chen Z, Gao N, Chu Y, He Y, Wang Y. Ionic Network Based on Dynamic Ionic Liquids for Electronic Tattoo Application. ACS Appl Mater Interfaces 2021;13:33557-65. [PMID: 34250798 DOI: 10.1021/acsami.1c09278] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Wu P, Wang Z, Yao X, Fu J, He Y. Recyclable conductive nanoclay for direct in situ printing flexible electronics. Mater Horiz 2021;8:2006-17. [PMID: 34846477 DOI: 10.1039/d0mh02065f] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
15 Rich SI, Jiang Z, Fukuda K, Someya T. Well-rounded devices: the fabrication of electronics on curved surfaces - a review. Mater Horiz 2021;8:1926-58. [PMID: 34846471 DOI: 10.1039/d1mh00143d] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
16 Abdolmaleki H, Kidmose P, Agarwala S. Droplet-Based Techniques for Printing of Functional Inks for Flexible Physical Sensors. Adv Mater 2021;33:e2006792. [PMID: 33772919 DOI: 10.1002/adma.202006792] [Cited by in Crossref: 26] [Cited by in F6Publishing: 31] [Article Influence: 26.0] [Reference Citation Analysis]
17 Williams NX, Bullard G, Brooke N, Therien MJ, Franklin AD. Printable and recyclable carbon electronics using crystalline nanocellulose dielectrics. Nat Electron 2021;4:261-8. [DOI: 10.1038/s41928-021-00574-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
18 Cardenas JA, Lu S, Williams NX, Doherty JL, Franklin AD. In-Place Printing of Flexible Electrolyte-Gated Carbon Nanotube Transistors with Enhanced Stability. IEEE Electron Device Lett 2021;42:367-70. [PMID: 33746353 DOI: 10.1109/led.2021.3055787] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
19 Schrenker NJ, Xie Z, Schweizer P, Moninger M, Werner F, Karpstein N, Mačković M, Spyropoulos GD, Göbelt M, Christiansen S, Brabec CJ, Bitzek E, Spiecker E. Microscopic Deformation Modes and Impact of Network Anisotropy on the Mechanical and Electrical Performance of Five-fold Twinned Silver Nanowire Electrodes. ACS Nano 2021;15:362-76. [PMID: 33231422 DOI: 10.1021/acsnano.0c06480] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
20 Patil P, Patil S, Kate P, Kulkarni AA. Inkjet printing of silver nanowires on flexible surfaces and methodologies to improve the conductivity and stability of the printed patterns. Nanoscale Adv 2021;3:240-8. [DOI: 10.1039/d0na00684j] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
21 Williams NX, Carroll B, Noyce SG, Hobbie HA, Joh DY, Rogers JG, Franklin AD. Fully printed prothrombin time sensor for point-of-care testing. Biosens Bioelectron 2021;172:112770. [PMID: 33157410 DOI: 10.1016/j.bios.2020.112770] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
22 Martin A, Du C, Pauls AM, Ward T, Thuo M. Polydispersity‐Driven Printing of Conformal Solid Metal Traces on Non‐Adhering Biological Surfaces. Adv Mater Interfaces 2020;7:2001294. [DOI: 10.1002/admi.202001294] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
23 Lu S, Zheng J, Cardenas JA, Williams NX, Lin YC, Franklin AD. Uniform and Stable Aerosol Jet Printing of Carbon Nanotube Thin-Film Transistors by Ink Temperature Control. ACS Appl Mater Interfaces 2020;12:43083-9. [PMID: 32897054 DOI: 10.1021/acsami.0c12046] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 5.5] [Reference Citation Analysis]
24 Musino D, Rivard C, Novales B, Landrot G, Capron I. Tuning of Ag Nanoparticle Properties in Cellulose Nanocrystals/Ag Nanoparticle Hybrid Suspensions by H2O2 Redox Post-Treatment: The Role of the H2O2/AgNP Ratio. Nanomaterials (Basel) 2020;10:E1559. [PMID: 32784401 DOI: 10.3390/nano10081559] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
25 Ershad F, Thukral A, Yue J, Comeaux P, Lu Y, Shim H, Sim K, Kim NI, Rao Z, Guevara R, Contreras L, Pan F, Zhang Y, Guan YS, Yang P, Wang X, Wang P, Wu X, Yu C. Ultra-conformal drawn-on-skin electronics for multifunctional motion artifact-free sensing and point-of-care treatment. Nat Commun 2020;11:3823. [PMID: 32732934 DOI: 10.1038/s41467-020-17619-1] [Cited by in Crossref: 38] [Cited by in F6Publishing: 85] [Article Influence: 19.0] [Reference Citation Analysis]
26 Zhang SL, Roach DJ, Xu S, Wang P, Zhang W, Qi HJ, Wang ZL. Electromagnetic Pulse Powered by a Triboelectric Nanogenerator with Applications in Accurate Self‐Powered Sensing and Security. Adv Mater Technol 2020;5:2000368. [DOI: 10.1002/admt.202000368] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
27 Dao VH, Mapleback BJ. Generation of highly porous silver nanowire networks by plasma treatment and their direct application as supercapacitor electrodes. Nanoscale 2020;12:11868-77. [PMID: 32490465 DOI: 10.1039/d0nr02798g] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
28 Mishra S, Kim YS, Intarasirisawat J, Kwon YT, Lee Y, Mahmood M, Lim HR, Herbert R, Yu KJ, Ang CS, Yeo WH. Soft, wireless periocular wearable electronics for real-time detection of eye vergence in a virtual reality toward mobile eye therapies. Sci Adv 2020;6:eaay1729. [PMID: 32201718 DOI: 10.1126/sciadv.aay1729] [Cited by in Crossref: 37] [Cited by in F6Publishing: 51] [Article Influence: 18.5] [Reference Citation Analysis]
29 Lu S, Cardenas JA, Worsley R, Williams NX, Andrews JB, Casiraghi C, Franklin AD. Flexible, Print-in-Place 1D-2D Thin-Film Transistors Using Aerosol Jet Printing. ACS Nano 2019;13:11263-72. [PMID: 31578857 DOI: 10.1021/acsnano.9b04337] [Cited by in Crossref: 52] [Cited by in F6Publishing: 34] [Article Influence: 17.3] [Reference Citation Analysis]