BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tang W, Fan W, Lau J, Deng L, Shen Z, Chen X. Emerging blood–brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem Soc Rev 2019;48:2967-3014. [DOI: 10.1039/c8cs00805a] [Cited by in Crossref: 229] [Cited by in F6Publishing: 242] [Article Influence: 57.3] [Reference Citation Analysis]
Number Citing Articles
1 Duo Y, Yang Y, Xu T, Zhou R, Wang R, Luo G, Zhong Tang B. Aggregation-induced emission: An illuminator in the brain. Coordination Chemistry Reviews 2023;482:215070. [DOI: 10.1016/j.ccr.2023.215070] [Reference Citation Analysis]
2 Li X, Oh JS, Lee Y, Lee EC, Yang M, Kwon N, Ha TW, Hong DY, Song Y, Kim HK, Song BH, Choi S, Lee MR, Yoon J. Albumin-binding photosensitizer capable of targeting glioma via the SPARC pathway. Biomater Res 2023;27:23. [PMID: 36945032 DOI: 10.1186/s40824-023-00360-3] [Reference Citation Analysis]
3 Li Q, Wang C, Hu J, Jiao W, Tang Z, Song X, Wu Y, Dai J, Gao P, Du L, Jin Y. Cannabidiol-loaded biomimetic macrophage membrane vesicles against post-traumatic stress disorder assisted by ultrasound. Int J Pharm 2023;:122872. [PMID: 36958611 DOI: 10.1016/j.ijpharm.2023.122872] [Reference Citation Analysis]
4 Zhang H, Guan S, Wei T, Wang T, Zhang J, You Y, Wang Z, Dai Z. Homotypic Membrane-Enhanced Blood-Brain Barrier Crossing and Glioblastoma Targeting for Precise Surgical Resection and Photothermal Therapy. J Am Chem Soc 2023;145:5930-40. [PMID: 36867864 DOI: 10.1021/jacs.2c13701] [Reference Citation Analysis]
5 Castagnola V, Deleye L, Podestà A, Jaho E, Loiacono F, Debellis D, Trevisani M, Ciobanu DZ, Armirotti A, Pisani F, Flahaut E, Vazquez E, Bramini M, Cesca F, Benfenati F. Interactions of Graphene Oxide and Few-Layer Graphene with the Blood-Brain Barrier. Nano Lett 2023. [PMID: 36917703 DOI: 10.1021/acs.nanolett.3c00377] [Reference Citation Analysis]
6 Xue D, Wang Y, Zhang H. Advances of NIR Light Responsive Materials for Diagnosis and Treatment of Brain Diseases. Advanced Optical Materials 2023. [DOI: 10.1002/adom.202202888] [Reference Citation Analysis]
7 Zhang J, Han L, Wu H, Zhong Y, Shangguan P, Liu Y, He M, Sun H, Song C, Wang X, Liu Y, Wang J, Zheng L, Shi B, Tang BZ. A Brain-Targeting NIR-II Ferroptosis System: Effective Visualization and Oncotherapy for Orthotopic Glioblastoma. Adv Sci (Weinh) 2023;:e2206333. [PMID: 36869410 DOI: 10.1002/advs.202206333] [Reference Citation Analysis]
8 Li T, Tan S, Li M, Luo J, Zhang Y, Jiang Z, Deng Y, Han L, Ke H, Shen J, Tang Y, Liu F, Chen H, Yang T. Holographically Activatable Nanoprobe via Glutathione/Albumin-Mediated Exponential Signal Amplification for High-Contrast Tumor Imaging. Adv Mater 2023;35:e2209603. [PMID: 36524741 DOI: 10.1002/adma.202209603] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Lilius TO, Mortensen KN, Deville C, Lohela TJ, Stæger FF, Sigurdsson B, Fiordaliso EM, Rosenholm M, Kamphuis C, Beekman FJ, Jensen AI, Nedergaard M. Glymphatic-assisted perivascular brain delivery of intrathecal small gold nanoparticles. J Control Release 2023;355:135-48. [PMID: 36731802 DOI: 10.1016/j.jconrel.2023.01.054] [Reference Citation Analysis]
10 Wu H, Liu L, Ma M, Zhang Y. Modulation of blood-brain tumor barrier for delivery of magnetic hyperthermia to brain cancer. J Control Release 2023;355:248-58. [PMID: 36736432 DOI: 10.1016/j.jconrel.2023.01.072] [Reference Citation Analysis]
11 Qiao L, Shen Y, Zhang S, Wang M, Lv G, Dou Q, Li C. H 2 O 2 ‐responsive multifunctional nanocomposite for the inhibition of amyloid‐β and Tau aggregation in Alzheimer's disease. BMEMat 2023. [DOI: 10.1002/bmm2.12011] [Reference Citation Analysis]
12 Angolkar M, Paramshetti S, Halagali P, Jain V, Patil AB, Somanna P. Nanotechnological advancements in the brain tumor therapy: a novel approach. Ther Deliv 2023. [PMID: 36802944 DOI: 10.4155/tde-2022-0035] [Reference Citation Analysis]
13 Chen H, Li T, Liu Z, Tang S, Tong J, Tao Y, Zhao Z, Li N, Mao C, Shen J, Wan M. A nitric-oxide driven chemotactic nanomotor for enhanced immunotherapy of glioblastoma. Nat Commun 2023;14:941. [PMID: 36804924 DOI: 10.1038/s41467-022-35709-0] [Reference Citation Analysis]
14 Ma X, Kuang L, Yin Y, Tang L, Zhang Y, Fan Q, Wang B, Dong Z, Wang W, Yin T, Wang Y. Tumor-Antigen Activated Dendritic Cell Membrane-Coated Biomimetic Nanoparticles with Orchestrating Immune Responses Promote Therapeutic Efficacy against Glioma. ACS Nano 2023;17:2341-55. [PMID: 36688797 DOI: 10.1021/acsnano.2c09033] [Reference Citation Analysis]
15 Zhang J, Sun X, Li H, Ma H, Duan F, Wu Z, Zhu B, Chen R, Nie L. In vivo characterization and analysis of glioblastoma at different stages using multiscale photoacoustic molecular imaging. Photoacoustics 2023;30:100462. [PMID: 36865670 DOI: 10.1016/j.pacs.2023.100462] [Reference Citation Analysis]
16 Guan J, Liu C, Ji C, Zhang W, Fan Z, He P, Ouyang Q, Qin M, Yin M. NIR-II Perylene Monoimide-Based Photothermal Agent with Strengthened Donor-Acceptor Conjugation for Deep Orthotopic Glioblastoma Phototheranostics. Small 2023;:e2300203. [PMID: 36775955 DOI: 10.1002/smll.202300203] [Reference Citation Analysis]
17 Ge J, Zuo M, Wang Q, Li Z. Near-infrared light triggered in situ release of CO for enhanced therapy of glioblastoma. J Nanobiotechnology 2023;21:48. [PMID: 36759881 DOI: 10.1186/s12951-023-01802-9] [Reference Citation Analysis]
18 Zeng M, Guo D, Fernández-Varo G, Zhang X, Fu S, Ju S, Yang H, Liu X, Wang YC, Zeng Y, Casals G, Casals E. The Integration of Nanomedicine with Traditional Chinese Medicine: Drug Delivery of Natural Products and Other Opportunities. Mol Pharm 2023;20:886-904. [PMID: 36563052 DOI: 10.1021/acs.molpharmaceut.2c00882] [Reference Citation Analysis]
19 Bian Y, Wang Y, Chen X, Zhang Y, Xiong S, Su D. Image‐guided diagnosis and treatment of glioblastoma. VIEW 2023. [DOI: 10.1002/viw.20220069] [Reference Citation Analysis]
20 Anand R, Kumar L, Mohan L, Bharadvaja N. Nano-inspired smart medicines targeting brain cancer: diagnosis and treatment. J Biol Inorg Chem 2023;28:1-15. [PMID: 36449063 DOI: 10.1007/s00775-022-01981-0] [Reference Citation Analysis]
21 Li X, Oh JS, Lee Y, Lee EC, Yang M, Kwon N, Ha TW, Hong D, Song Y, Kim HK, Song BH, Choi S, Yoon J, Lee MR. Albumin-binding photosensitizer capable of targeting glioma via the SPARC pathway.. [DOI: 10.21203/rs.3.rs-2437118/v1] [Reference Citation Analysis]
22 Kim KR, Lee AS, Kim SM, Heo HR, Kim CS. Virus-like nanoparticles as a theranostic platform for cancer. Front Bioeng Biotechnol 2022;10:1106767. [PMID: 36714624 DOI: 10.3389/fbioe.2022.1106767] [Reference Citation Analysis]
23 Chen H, Zhang S, Fang Q, He H, Ren J, Sun D, Lai J, Ma A, Chen Z, Liu L, Liang R, Cai L. Biomimetic Nanosonosensitizers Combined with Noninvasive Ultrasound Actuation to Reverse Drug Resistance and Sonodynamic-Enhanced Chemotherapy against Orthotopic Glioblastoma. ACS Nano 2023;17:421-36. [PMID: 36573683 DOI: 10.1021/acsnano.2c08861] [Reference Citation Analysis]
24 Cai X, Fan B, Thang SH, Drummond CJ, Tran N, Zhai J. Paclitaxel-loaded cubosome lipid nanocarriers stabilised with pH and hydrogen peroxide-responsive steric stabilisers as drug delivery vehicles. J Mater Chem B 2023;11:403-14. [PMID: 36511883 DOI: 10.1039/d2tb01530g] [Reference Citation Analysis]
25 Mehrabian A, Dadpour S, Mashreghi M, Zarqi J, Askarizadeh A, Badiee A, Arabi L, Moosavian SA, Jaafari MR. The comparison of biodistribution of glutathione PEGylated nanoliposomal doxorubicin formulations prepared by pre-insertion and post-insertion methods for brain delivery in normal mice. IET Nanobiotechnol 2023. [PMID: 36594666 DOI: 10.1049/nbt2.12111] [Reference Citation Analysis]
26 Liu D, Dai X, Zhang W, Zhu X, Zha Z, Qian H, Cheng L, Wang X. Liquid exfoliation of ultrasmall zirconium carbide nanodots as a noninflammatory photothermal agent in the treatment of glioma. Biomaterials 2023;292:121917. [PMID: 36470160 DOI: 10.1016/j.biomaterials.2022.121917] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
27 Yao Y, Ji P, Chen H, Ge J, Xu Y, Wang P, Xu L, Yan Z. Ferroptosis-based drug delivery system as a new therapeutic opportunity for brain tumors. Front Oncol 2023;13:1084289. [PMID: 36910646 DOI: 10.3389/fonc.2023.1084289] [Reference Citation Analysis]
28 Bahadur S, Prakash A. A Comprehensive Review on Nanomedicine: Promising Approach for Treatment of Brain Tumor through Intranasal Administration. Curr Drug Targets 2023;24:71-88. [PMID: 36278468 DOI: 10.2174/1389450124666221019141044] [Reference Citation Analysis]
29 Fan Z, Jiang C. Engineered extracellular vesicles as drug delivery systems for the next generation of nanomedicine. Novel Platforms for Drug Delivery Applications 2023. [DOI: 10.1016/b978-0-323-91376-8.00010-0] [Reference Citation Analysis]
30 Yang S, Chen Z, Zhou P, Xia J, Deng T, Yu C. Carbon dots based on endogenous nutrients with visible and NIR fluorescence to penetrate blood-brain barrier. Carbon 2023;202:130-140. [DOI: 10.1016/j.carbon.2022.10.067] [Reference Citation Analysis]
31 Kandimalla R, Saeed M, Tyagi N, Gupta RC, Aqil F. Exosome-based approaches in the management of Alzheimer's disease. Neurosci Biobehav Rev 2023;144:104974. [PMID: 36435392 DOI: 10.1016/j.neubiorev.2022.104974] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Brar HK, Jose J, Wu Z, Sharma M. Tyrosine Kinase Inhibitors for Glioblastoma Multiforme: Challenges and Opportunities for Drug Delivery. Pharmaceutics 2022;15. [PMID: 36678688 DOI: 10.3390/pharmaceutics15010059] [Reference Citation Analysis]
33 Zhao P, Tian Y, Lu Y, Zhang J, Tao A, Xiang G, Liu Y. Biomimetic calcium carbonate nanoparticles delivered IL-12 mRNA for targeted glioblastoma sono-immunotherapy by ultrasound-induced necroptosis. J Nanobiotechnology 2022;20:525. [PMID: 36496387 DOI: 10.1186/s12951-022-01731-z] [Reference Citation Analysis]
34 Pawar B, Vasdev N, Gupta T, Mhatre M, More A, Anup N, Tekade RK. Current Update on Transcellular Brain Drug Delivery. Pharmaceutics 2022;14. [PMID: 36559214 DOI: 10.3390/pharmaceutics14122719] [Reference Citation Analysis]
35 Wu Y, Hu D, Gao D, Liu C, Zheng H, Sheng Z. Miniature NIR-II Nanoprobes for Active-Targeted Phototheranostics of Brain Tumors. Adv Healthc Mater 2022;11:e2202379. [PMID: 36314394 DOI: 10.1002/adhm.202202379] [Reference Citation Analysis]
36 Liu HJ, Xu P. Strategies to overcome/penetrate the BBB for systemic nanoparticle delivery to the brain/brain tumor. Adv Drug Deliv Rev 2022;191:114619. [PMID: 36372301 DOI: 10.1016/j.addr.2022.114619] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
37 Panda S, Hajra S, Kaushik A, Rubahn H, Mishra Y, Kim H. Smart nanomaterials as the foundation of a combination approach for efficient cancer theranostics. Materials Today Chemistry 2022;26:101182. [DOI: 10.1016/j.mtchem.2022.101182] [Reference Citation Analysis]
38 Guo Y, Leng H, Chen Q, Su J, Shi W, Xia C, Zhang L, Yan J. Development of novel near-infrared GFP chromophore-based fluorescent probes for imaging of amyloid-β plaque and viscosity. Sensors and Actuators B: Chemical 2022;372:132648. [DOI: 10.1016/j.snb.2022.132648] [Reference Citation Analysis]
39 Cong Y, Baimanov D, Zhou Y, Chen C, Wang L. Penetration and translocation of functional inorganic nanomaterials into biological barriers. Adv Drug Deliv Rev 2022;191:114615. [PMID: 36356929 DOI: 10.1016/j.addr.2022.114615] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Han Y, Yi H, Wang Y, Li Z, Chu X, Jiang JH. Ultrathin Zinc Selenide Nanoplatelets Boosting Photoacoustic Imaging of In Situ Copper Exchange in Alzheimer's Disease Mice. ACS Nano 2022;16:19053-66. [PMID: 36349982 DOI: 10.1021/acsnano.2c08094] [Reference Citation Analysis]
41 Malhotra M, Pardasani M, Srika P, Abraham N, jayakannan M. Star-Polymer Unimolecular Micelles for Brain Specific Delivery of Anticancer Drug.. [DOI: 10.21203/rs.3.rs-2251762/v1] [Reference Citation Analysis]
42 Zhang S, Zhang W, Wu B, Xia L, Li L, Jin K, Zou Y, Sun C. Hub gene target of glioblastoma: LOX, SERPINH1 and TGFBI. Medicine (Baltimore) 2022;101:e31418. [PMID: 36397358 DOI: 10.1097/MD.0000000000031418] [Reference Citation Analysis]
43 Zhang L, Liu Y, Huang H, Xie H, Zhang B, Xia W, Guo B. Multifunctional nanotheranostics for near infrared optical imaging-guided treatment of brain tumors. Adv Drug Deliv Rev 2022;190:114536. [PMID: 36108792 DOI: 10.1016/j.addr.2022.114536] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
44 Alharbi KS, Javed Shaikh MA, Afzal O, Alfawaz Altamimi AS, Hassan almalki W, Kazmi I, Al-abbasi FA, Alzarea SI, Babu MR, Singh SK, Chellappan DK, Dua K, Gupta G. Oligonucleotides: A novel area of interest for drug delivery in neurodegenerative diseases. Journal of Drug Delivery Science and Technology 2022;77:103849. [DOI: 10.1016/j.jddst.2022.103849] [Reference Citation Analysis]
45 Choudhury H, Pandey M, Mohgan R, Jong JSJ, David RN, Ngan WY, Chin TL, Ting S, Kesharwani P, Gorain B. Dendrimer-based delivery of macromolecules for the treatment of brain tumor. Biomaterials Advances 2022;141:213118. [DOI: 10.1016/j.bioadv.2022.213118] [Reference Citation Analysis]
46 Zhang H, Shi C, Han F, Li M, Ma H, Sui R, Long S, Sun W, Du J, Fan J, Piao H, Peng X. Precise gliomas therapy: Hypoxia-activated prodrugs sensitized by nano-photosensitizers. Biomaterials 2022;289:121770. [DOI: 10.1016/j.biomaterials.2022.121770] [Reference Citation Analysis]
47 Liu N, O’connor P, Gujrati V, Anzenhofer P, Klemm U, Kleigrewe K, Sattler M, Plettenburg O, Ntziachristos V. Multifunctional croconaine nanoparticles for efficient optoacoustic imaging of deep tumors and photothermal therapy. Nanophotonics 2022;0. [DOI: 10.1515/nanoph-2022-0469] [Reference Citation Analysis]
48 Yadav P, Ambudkar SV, Rajendra Prasad N. Emerging nanotechnology-based therapeutics to combat multidrug-resistant cancer. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01626-z] [Reference Citation Analysis]
49 Wang Y, Minden A. Current Molecular Combination Therapies Used for the Treatment of Breast Cancer. IJMS 2022;23:11046. [DOI: 10.3390/ijms231911046] [Reference Citation Analysis]
50 Kong J, Sun Y, Ge X, Mao M, Yu H, Wang Y. A Chlorotoxin‐Directed Diselenide‐Bridged Tumor‐Homing Persistent Luminescence Nanoprobes Mediating Inhibition of Oxidative Phosphorylation for Long‐Term Near‐Infrared Imaging and Therapy of Glioblastoma. Adv Funct Materials. [DOI: 10.1002/adfm.202209579] [Reference Citation Analysis]
51 Du X, Chen C, Yang L, Cui Y, Tan B. Bibliometric and visualized analysis of the application of nanotechnology in glioma. Front Pharmacol 2022;13:995512. [DOI: 10.3389/fphar.2022.995512] [Reference Citation Analysis]
52 Wei W, Qiu Z. Diagnostics and theranostics of central nervous system diseases based on aggregation-induced emission luminogens. Biosens Bioelectron 2022;217:114670. [PMID: 36126555 DOI: 10.1016/j.bios.2022.114670] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
53 Chakraborty P, Das SS, Dey A, Chakraborty A, Bhattacharyya C, Kandimalla R, Mukherjee B, Gopalakrishnan AV, Singh SK, Kant S, Nand P, Ojha S, Kumar P, Jha NK, Jha SK, Dewanjee S. Quantum dots: The cutting-edge nanotheranostics in brain cancer management. J Control Release 2022;350:698-715. [PMID: 36057397 DOI: 10.1016/j.jconrel.2022.08.047] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
54 Wang P, Yu L, Gong J, Xiong J, Zi S, Xie H, Zhang F, Mao Z, Liu Z, Kim JS. An Activity‐Based Fluorescent Probe for Imaging Fluctuations of Peroxynitrite (ONOO ) in the Alzheimer's Disease Brain. Angew Chem Int Ed 2022;61. [DOI: 10.1002/anie.202206894] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
55 Sun R, Liu M, Lu J, Chu B, Yang Y, Song B, Wang H, He Y. Bacteria loaded with glucose polymer and photosensitive ICG silicon-nanoparticles for glioblastoma photothermal immunotherapy. Nat Commun 2022;13:5127. [PMID: 36050316 DOI: 10.1038/s41467-022-32837-5] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
56 Vinnitskiy DZ, Luss AL, Krylov VB, Ustyuzhanina NE, Goryachaya AV, Nechaeva AM, Shtilman MI, Nifantiev NE, Mezhuev YO. Synthesis of Vectorized Nanoparticles Based on a Copolymer of N-Vinyl-2-Pyrrolidone with Allyl Glycidyl Ether and a Carbohydrate Vector. J Compos Sci 2022;6:247. [DOI: 10.3390/jcs6090247] [Reference Citation Analysis]
57 Tsedev U, Lin CW, Hess GT, Sarkaria JN, Lam FC, Belcher AM. Phage Particles of Controlled Length and Genome for In Vivo Targeted Glioblastoma Imaging and Therapeutic Delivery. ACS Nano 2022;16:11676-91. [PMID: 35830573 DOI: 10.1021/acsnano.1c08720] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
58 Dabbagh F, Schroten H, Schwerk C. In Vitro Models of the Blood–Cerebrospinal Fluid Barrier and Their Applications in the Development and Research of (Neuro)Pharmaceuticals. Pharmaceutics 2022;14:1729. [DOI: 10.3390/pharmaceutics14081729] [Reference Citation Analysis]
59 Zhuo S, He G, Chen T, Li X, Liang Y, Wu W, Weng L, Feng J, Gao Z, Yang K. Emerging role of ferroptosis in glioblastoma: Therapeutic opportunities and challenges. Front Mol Biosci 2022;9:974156. [DOI: 10.3389/fmolb.2022.974156] [Reference Citation Analysis]
60 Barzegar Behrooz A, Talaie Z, Syahir A. Nanotechnology-Based Combinatorial Anti-Glioblastoma Therapies: Moving from Terminal to Treatable. Pharmaceutics 2022;14:1697. [DOI: 10.3390/pharmaceutics14081697] [Reference Citation Analysis]
61 Lohela TJ, Lilius TO, Nedergaard M. The glymphatic system: implications for drugs for central nervous system diseases. Nat Rev Drug Discov 2022. [PMID: 35948785 DOI: 10.1038/s41573-022-00500-9] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
62 Yang J, Wang H, Yin Z, Zhang S, Xu J, Zhang X. Emulsion interfacial polymerization of anticancer peptides: fabricating polypeptide nanospheres with high drug-loading efficiency and enhanced anticancer activity. Sci China Chem . [DOI: 10.1007/s11426-022-1311-3] [Reference Citation Analysis]
63 Zhang S, Jiao X, Heger M, Gao S, He M, Xu N, Zhang J, Zhang M, Yu Y, Ding B, Ding X. A tumor microenvironment-responsive micelle co-delivered radiosensitizer Dbait and doxorubicin for the collaborative chemo-radiotherapy of glioblastoma. Drug Deliv 2022;29:2658-70. [PMID: 35975300 DOI: 10.1080/10717544.2022.2108937] [Reference Citation Analysis]
64 Zhang J, Chen Z, Shan D, Wu Y, Zhao Y, Li C, Shu Y, Linghu X, Wang B. Adverse effects of exposure to fine particles and ultrafine particles in the environment on different organs of organisms. Journal of Environmental Sciences 2022. [DOI: 10.1016/j.jes.2022.08.013] [Reference Citation Analysis]
65 Yu Y, Wang M, Li M, Zhang L, Zhao J, Cao J, Wang W. Controlled Recognition and Corona Formation by Cascade Micellar Nanoprobes: for Boosting Glioma Theranostics. Anal Chem 2022. [PMID: 35880859 DOI: 10.1021/acs.analchem.2c02501] [Reference Citation Analysis]
66 Luo W, Zhang L, Li X, Zheng J, Chen Q, Yang Z, Cheng M, Chen Y, Wu Y, Zhang W, Tang T, Wang Y. Green functional carbon dots derived from herbal medicine ameliorate blood—brain barrier permeability following traumatic brain injury. Nano Res . [DOI: 10.1007/s12274-022-4616-8] [Reference Citation Analysis]
67 Lu G, Wang X, Li F, Wang S, Zhao J, Wang J, Liu J, Lyu C, Ye P, Tan H, Li W, Ma G, Wei W. Engineered biomimetic nanoparticles achieve targeted delivery and efficient metabolism-based synergistic therapy against glioblastoma. Nat Commun 2022;13:4214. [PMID: 35864093 DOI: 10.1038/s41467-022-31799-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
68 Ruan Y, Xiong Y, Fang W, Yu Q, Mai Y, Cao Z, Wang K, Lei M, Xu J, Liu Y, Zhang X, Liao W, Liu J. Highly sensitive Curcumin-conjugated nanotheranostic platform for detecting amyloid-beta plaques by magnetic resonance imaging and reversing cognitive deficits of Alzheimer's disease via NLRP3-inhibition. J Nanobiotechnology 2022;20:322. [PMID: 35836190 DOI: 10.1186/s12951-022-01524-4] [Reference Citation Analysis]
69 Balyasnikova IV, Zannikou M, Wang G, Li Y, Duffy JT, Levine RN, Seblani M, Gaikwad H, Simberg D. Indocarbocyanine nanoparticles extravasate and distribute better than liposomes in brain tumors. J Control Release 2022;349:413-24. [PMID: 35817279 DOI: 10.1016/j.jconrel.2022.07.008] [Reference Citation Analysis]
70 Li L, Li S, Fan Z, Huang G, Tang J, Nie L. Current Strategies of Photoacoustic Imaging Assisted Cancer Theragnostics toward Clinical Studies. ACS Photonics. [DOI: 10.1021/acsphotonics.2c00440] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
71 Yuan M, Harnett MC, Yan T, Georgas E, Qin Y, Zhou H, Wang Y. Progress, Opportunities, and Challenges of Magneto-Plasmonic Nanoparticles under Remote Magnetic and Light Stimulation for Brain-Tissue and Cellular Regeneration. Nanomaterials 2022;12:2242. [DOI: 10.3390/nano12132242] [Reference Citation Analysis]
72 Neganova ME, Aleksandrova YR, Sukocheva OA, Klochkov SG. Benefits and limitations of nanomedicine treatment of brain cancers and age-dependent neurodegenerative disorders. Semin Cancer Biol 2022:S1044-579X(22)00155-9. [PMID: 35779712 DOI: 10.1016/j.semcancer.2022.06.011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
73 Chen W, Chen H, Huang Y, Tan Y, Tan C, Xie Y, Yin J. Molecular Design and Photothermal Application of Thienoisoindigo Dyes with Aggregation-Induced Emission. ACS Appl Bio Mater 2022. [PMID: 35748563 DOI: 10.1021/acsabm.2c00363] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
74 Sun R, Liu M, Xu Z, Song B, He Y, Wang H. Silicon-based nanoprobes cross the blood—brain barrier for photothermal therapy of glioblastoma. Nano Res . [DOI: 10.1007/s12274-022-4367-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
75 Tang Q, Chen Z, Xie J, Mo C, Lu J, Zhang Q, Wang Z, Wu W, Wang H. Transcriptome Analysis and Single-Cell Sequencing Analysis Constructed the Ubiquitination-Related Signature in Glioma and Identified USP4 as a Novel Biomarker. Front Immunol 2022;13:915709. [DOI: 10.3389/fimmu.2022.915709] [Reference Citation Analysis]
76 Li J, Wang M, Xu S, Li Y, Li J, Yu J, Zhu H. The Strategies and Mechanisms of Immune Checkpoint Inhibitors for Brain Metastases in NSCLC. Front Pharmacol 2022;13:841623. [PMID: 35656295 DOI: 10.3389/fphar.2022.841623] [Reference Citation Analysis]
77 Łasińska I, Zielińska A, Mackiewicz J, Souto EB. Basal Cell Carcinoma: Pathology, Current Clinical Treatment, and Potential Use of Lipid Nanoparticles. Cancers 2022;14:2778. [DOI: 10.3390/cancers14112778] [Reference Citation Analysis]
78 Li B, Chen X, Qiu W, Zhao R, Duan J, Zhang S, Pan Z, Zhao S, Guo Q, Qi Y, Wang W, Deng L, Ni S, Sang Y, Xue H, Liu H, Li G. Synchronous Disintegration of Ferroptosis Defense Axis via Engineered Exosome-Conjugated Magnetic Nanoparticles for Glioblastoma Therapy. Adv Sci (Weinh) 2022;9:e2105451. [PMID: 35508804 DOI: 10.1002/advs.202105451] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
79 Eriyagama DN, Yin Y, Fang S. Automated stepwise PEG synthesis using a base-labile protecting group. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132861] [Reference Citation Analysis]
80 Gao X, Xu J, Yao T, Liu X, Zhang H, Zhan C. Peptide-decorated nanocarriers penetrating the blood-brain barrier for imaging and therapy of brain diseases. Adv Drug Deliv Rev 2022;187:114362. [PMID: 35654215 DOI: 10.1016/j.addr.2022.114362] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
81 Liang R, Wu C, Liu S, Zhao W. Targeting interleukin-13 receptor α2 (IL-13Rα2) for glioblastoma therapy with surface functionalized nanocarriers. Drug Deliv 2022;29:1620-30. [PMID: 35612318 DOI: 10.1080/10717544.2022.2075986] [Reference Citation Analysis]
82 Wu Q, Li Y, Wang L, Wang D, Tang BZ. Aggregation-induced emission: An emerging concept in brain science. Biomaterials 2022;286:121581. [PMID: 35633591 DOI: 10.1016/j.biomaterials.2022.121581] [Reference Citation Analysis]
83 Wang X, Wu C, Liu S, Peng D. Combinatorial therapeutic strategies for enhanced delivery of therapeutics to brain cancer cells through nanocarriers: current trends and future perspectives. Drug Deliv 2022;29:1370-83. [PMID: 35532094 DOI: 10.1080/10717544.2022.2069881] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
84 Qiao L, Yang H, Shao X, Yin Q, Fu X, Wei Q. Research Progress on Nanoplatforms and Nanotherapeutic Strategies in Treating Glioma. Mol Pharmaceutics. [DOI: 10.1021/acs.molpharmaceut.1c00856] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
85 Tang Y, Yu Z, Lu X, Fan Q, Huang W. Overcoming Vascular Barriers to Improve the Theranostic Outcomes of Nanomedicines. Adv Sci (Weinh) 2022;9:e2103148. [PMID: 35246962 DOI: 10.1002/advs.202103148] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
86 Vetter VC, Wagner E. Targeting nucleic acid-based therapeutics to tumors: Challenges and strategies for polyplexes. J Control Release 2022:S0168-3659(22)00207-3. [PMID: 35436520 DOI: 10.1016/j.jconrel.2022.04.013] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
87 Cheng G, Liu Y, Ma R, Cheng G, Guan Y, Chen X, Wu Z, Chen T. Anti-Parkinsonian Therapy: Strategies for Crossing the Blood-Brain Barrier and Nano-Biological Effects of Nanomaterials. Nanomicro Lett 2022;14:105. [PMID: 35426525 DOI: 10.1007/s40820-022-00847-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
88 Wu T, Liu Y, Cao Y, Liu Z. Engineering Macrophage Exosome Disguised Biodegradable Nanoplatform for Enhanced Sonodynamic Therapy of Glioblastoma. Adv Mater 2022;34:e2110364. [PMID: 35133042 DOI: 10.1002/adma.202110364] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
89 Li X, Geng X, Chen Z, Yuan Z. Recent advances in glioma microenvironment-response nanoplatforms for phototherapy and sonotherapy. Pharmacological Research 2022. [DOI: 10.1016/j.phrs.2022.106218] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
90 Li Y, Wu H, Jiang X, Dong Y, Zheng J, Gao J. New idea to promote the clinical applications of stem cells or their extracellular vesicles in central nervous system disorders: Combining with intranasal delivery. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.04.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
91 Wang X, Ding H, Li Z, Peng Y, Tan H, Wang C, Huang G, Li W, Ma G, Wei W. Exploration and functionalization of M1-macrophage extracellular vesicles for effective accumulation in glioblastoma and strong synergistic therapeutic effects. Signal Transduct Target Ther 2022;7:74. [PMID: 35292619 DOI: 10.1038/s41392-022-00894-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
92 Gong J, Holt MG, Hoet PHM, Ghosh M. Neurotoxicity of four frequently used nanoparticles: a systematic review to reveal the missing data. Arch Toxicol. [DOI: 10.1007/s00204-022-03233-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
93 Kim Y, An JM, Kim J, Chowdhury T, Yu HJ, Kim K, Kang H, Park C, Joung JF, Park S, Kim D. Pyridine-NBD: A homocysteine-selective fluorescent probe for glioblastoma (GBM) diagnosis based on a blood test. Analytica Chimica Acta 2022. [DOI: 10.1016/j.aca.2022.339678] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
94 Kong D, Hong W, Yu M, Li Y, Zheng Y, Ying X. Multifunctional Targeting Liposomes of Epirubicin Plus Resveratrol Improved Therapeutic Effect on Brain Gliomas. IJN 2022;Volume 17:1087-110. [DOI: 10.2147/ijn.s346948] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
95 Liu Y, Zeng S, Qian W, Tao M, Zhu Y, Li J. DNTTIP2 Expression is Associated with Macrophage Infiltration and Malignant Characteristics in Low-Grade Glioma. PGPM 2022;Volume 15:261-75. [DOI: 10.2147/pgpm.s356326] [Reference Citation Analysis]
96 Xue Y, Che J, Ji X, Li Y, Xie J, Chen X. Recent advances in biomaterial-boosted adoptive cell therapy. Chem Soc Rev 2022. [PMID: 35170589 DOI: 10.1039/d1cs00786f] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
97 Habib S, Singh M. Angiopep-2-Modified Nanoparticles for Brain-Directed Delivery of Therapeutics: A Review. Polymers 2022;14:712. [DOI: 10.3390/polym14040712] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
98 Cheng B, Ahn H, Nam H, Jiang Z, Gao FJ, Minn I, Pomper MG. A Unique Core–Shell Structured, Glycol Chitosan-Based Nanoparticle Achieves Cancer-Selective Gene Delivery with Reduced Off-Target Effects. Pharmaceutics 2022;14:373. [DOI: 10.3390/pharmaceutics14020373] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
99 Wang J, Liu Y, Morsch M, Lu Y, Shangguan P, Han L, Wang Z, Chen X, Song C, Liu S, Shi B, Tang BZ. Brain-Targeted Aggregation-Induced-Emission Nanoparticles with Near-Infrared Imaging at 1550 nm Boosts Orthotopic Glioblastoma Theranostics. Adv Mater 2022;34:e2106082. [PMID: 34713508 DOI: 10.1002/adma.202106082] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 13.0] [Reference Citation Analysis]
100 Wang B, Guo H, Xu H, Chen Y, Zhao G, Yu H. The Role of Graphene Oxide Nanocarriers in Treating Gliomas. Front Oncol 2022;12:736177. [DOI: 10.3389/fonc.2022.736177] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
101 Wu D, Yang K, Zhang Z, Feng Y, Rao L, Chen X, Yu G. Metal-free bioorthogonal click chemistry in cancer theranostics. Chem Soc Rev 2022. [PMID: 35050284 DOI: 10.1039/d1cs00451d] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
102 Wu D, Fei F, Zhang Q, Wang X, Gong Y, Chen X, Zheng Y, Tan B, Xu C, Xie H, Fang W, Chen Z, Wang Y. Nanoengineered on-demand drug delivery system improves efficacy of pharmacotherapy for epilepsy. Sci Adv 2022;8:eabm3381. [PMID: 35020438 DOI: 10.1126/sciadv.abm3381] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
103 Mishra N, Ashique S, Garg A, Rai VK, Dua K, Goyal A, Bhatt S. Role of siRNA-based nanocarriers for the treatment of neurodegenerative diseases. Drug Discov Today 2022:S1359-6446(22)00003-4. [PMID: 35017085 DOI: 10.1016/j.drudis.2022.01.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
104 N AK, Annasamy G, Rekulapally P, S N S, Krishnan S. Nanotechnology interventions in neuroscience: current perspectives and strategies. Applications of Nanotechnology in Drug Discovery and Delivery 2022. [DOI: 10.1016/b978-0-12-824408-1.00015-6] [Reference Citation Analysis]
105 Fu S, Li G, Zang W, Zhou X, Shi K, Zhai Y. Pure drug nano-assemblies: A facile carrier-free nanoplatform for efficient cancer therapy. Acta Pharm Sin B 2022;12:92-106. [PMID: 35127374 DOI: 10.1016/j.apsb.2021.08.012] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 11.0] [Reference Citation Analysis]
106 Amadasu E, Kang R, Usmani A, Borlongan CV. Effects of Lovastatin on Brain Cancer Cells. Cell Transplant 2022;31:9636897221102903. [PMID: 35670207 DOI: 10.1177/09636897221102903] [Reference Citation Analysis]
107 Ranjan A, Arora J, Chauhan A, Kumari A, Rajput VD, Sushkova S, Mandzhieva S, Natalia S, Lobzenko I, Dudnikova T, Jindal T. Applications and Implications of Nanoparticles in Food Industries. Sustainable Plant Nutrition in a Changing World 2022. [DOI: 10.1007/978-3-030-97389-6_10] [Reference Citation Analysis]
108 Aggarwal N, Choudhury S, Chibh S, Panda JJ. Aptamer-nanoconjugates as emerging theranostic systems in neurodegenerative disorders. Colloid and Interface Science Communications 2022;46:100554. [DOI: 10.1016/j.colcom.2021.100554] [Reference Citation Analysis]
109 Ramachandran M, Ma Z, Lin K, De Souza C, Li Y. Transformable nanoparticles to bypass biological barriers in cancer treatment. Nanoscale Adv . [DOI: 10.1039/d2na00485b] [Reference Citation Analysis]
110 Mehrabian A, Mashreghi M, Dadpour S, Badiee A, Arabi L, Hoda Alavizadeh S, Alia Moosavian S, Reza Jaafari M. Nanocarriers Call the Last Shot in the Treatment of Brain Cancers. Technol Cancer Res Treat 2022;21:15330338221080974. [PMID: 35253549 DOI: 10.1177/15330338221080974] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
111 Mashouf LA, Wu JY, Shah P, Kannapadi N, Lim M. Applying Synthetic Biology with Rational Design to Nature’s Greatest Challenges: Bioengineering Immunotherapeutics for the Treatment of Glioblastoma. Immuno 2022;2:40-51. [DOI: 10.3390/immuno2010004] [Reference Citation Analysis]
112 Zhang Y, Yang H, Wei D, Zhang X, Wang J, Wu X, Chang J. Mitochondria‐targeted nanoparticles in treatment of neurodegenerative diseases. Exploration 2021;1:20210115. [DOI: 10.1002/exp.20210115] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 13.5] [Reference Citation Analysis]
113 Mikesell L, Eriyagama DNAM, Yin Y, Lu B, Fang S. Stepwise PEG synthesis featuring deprotection and coupling in one pot. Beilstein J Org Chem 2021;17:2976-82. [DOI: 10.3762/bjoc.17.207] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
114 Thangam R, Paulmurugan R, Kang H. Functionalized Nanomaterials as Tailored Theranostic Agents in Brain Imaging. Nanomaterials (Basel) 2021;12:18. [PMID: 35009968 DOI: 10.3390/nano12010018] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
115 Tang W, Zhang Y, Zhu G. Pulmonary delivery of mucosal nanovaccines. Nanoscale 2021. [PMID: 34918733 DOI: 10.1039/d1nr06512b] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
116 Wang Y, Minden A. The Use of Nanomedicine to Target Signaling by the PAK Kinases for Disease Treatment. Cells 2021;10:3565. [PMID: 34944073 DOI: 10.3390/cells10123565] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
117 Jafari Z, Bigham A, Sadeghi S, Dehdashti SM, Rabiee N, Abedivash A, Bagherzadeh M, Nasseri B, Karimi-Maleh H, Sharifi E, Varma RS, Makvandi P. Nanotechnology-Abetted Astaxanthin Formulations in Multimodel Therapeutic and Biomedical Applications. J Med Chem 2021. [PMID: 34919379 DOI: 10.1021/acs.jmedchem.1c01144] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
118 Kuruppu AI, Turyanska L, Bradshaw TD, Manickam S, Galhena BP, Paranagama P, De Silva R. Apoferritin and Dps as drug delivery vehicles: Some selected examples in oncology. Biochim Biophys Acta Gen Subj 2021;1866:130067. [PMID: 34896255 DOI: 10.1016/j.bbagen.2021.130067] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
119 Wu Z, Dai L, Tang K, Ma Y, Song B, Zhang Y, Li J, Lui S, Gong Q, Wu M. Advances in magnetic resonance imaging contrast agents for glioblastoma-targeting theranostics. Regen Biomater 2021;8:rbab062. [PMID: 34868634 DOI: 10.1093/rb/rbab062] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
120 Wu JY, Li YJ, Wang J, Hu XB, Huang S, Luo S, Xiang DX. Multifunctional exosome-mimetics for targeted anti-glioblastoma therapy by manipulating protein corona. J Nanobiotechnology 2021;19:405. [PMID: 34872569 DOI: 10.1186/s12951-021-01153-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
121 Nance E, Pun SH, Saigal R, Sellers DL. Drug delivery to the central nervous system. Nat Rev Mater. [DOI: 10.1038/s41578-021-00394-w] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
122 Shipunova VO, Nikitin MP, Belova MM, Deyev SM. Label-free methods of multiparametric surface plasmon resonance and MPQ-cytometry for quantitative real-time measurements of targeted magnetic nanoparticles complexation with living cancer cells. Materials Today Communications 2021;29:102978. [DOI: 10.1016/j.mtcomm.2021.102978] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
123 Ribovski L, Hamelmann NM, Paulusse JMJ. Polymeric Nanoparticles Properties and Brain Delivery. Pharmaceutics 2021;13:2045. [PMID: 34959326 DOI: 10.3390/pharmaceutics13122045] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
124 Rabha B, Bharadwaj KK, Pati S, Choudhury BK, Sarkar T, Kari ZA, Edinur HA, Baishya D, Atanase LI. Development of Polymer-Based Nanoformulations for Glioblastoma Brain Cancer Therapy and Diagnosis: An Update. Polymers (Basel) 2021;13:4114. [PMID: 34883617 DOI: 10.3390/polym13234114] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
125 Medina-Castro D, Vega-Carrillo HR, Galicia-Aragón J, Soto-Bernal TG, Baltazar-Raigosa A. Beam port filters in a TRIGA MARK III nuclear reactor to produce epithermal neutrons for BNCT. Appl Radiat Isot 2022;179:110018. [PMID: 34749092 DOI: 10.1016/j.apradiso.2021.110018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
126 Wang Y, Xu X, Chen X, Li J. Multifunctional Biomedical Materials Derived from Biological Membranes. Adv Mater 2021;:e2107406. [PMID: 34739155 DOI: 10.1002/adma.202107406] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
127 Goda T. Chemically Induced pH Perturbations for Analyzing Biological Barriers Using Ion-Sensitive Field-Effect Transistors. Sensors (Basel) 2021;21:7277. [PMID: 34770587 DOI: 10.3390/s21217277] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
128 Patil R, Sun T, Rashid MH, Israel LL, Ramesh A, Davani S, Black KL, Ljubimov AV, Holler E, Ljubimova JY. Multifunctional Nanopolymers for Blood-Brain Barrier Delivery and Inhibition of Glioblastoma Growth through EGFR/EGFRvIII, c-Myc, and PD-1. Nanomaterials (Basel) 2021;11:2892. [PMID: 34835657 DOI: 10.3390/nano11112892] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
129 Lv S. Research fronts of Chemical Biology. Pure and Applied Chemistry 2021;93:1473-85. [DOI: 10.1515/pac-2020-1004] [Reference Citation Analysis]
130 Loh JS, Tan LKS, Lee WL, Ming LC, How CW, Foo JB, Kifli N, Goh BH, Ong YS. Do Lipid-based Nanoparticles Hold Promise for Advancing the Clinical Translation of Anticancer Alkaloids? Cancers (Basel) 2021;13:5346. [PMID: 34771511 DOI: 10.3390/cancers13215346] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
131 Xiong B, Wang Y, Chen Y, Xing S, Liao Q, Chen Y, Li Q, Li W, Sun H. Strategies for Structural Modification of Small Molecules to Improve Blood-Brain Barrier Penetration: A Recent Perspective. J Med Chem 2021;64:13152-73. [PMID: 34505508 DOI: 10.1021/acs.jmedchem.1c00910] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
132 Ma L, Yang S, Ma Y, Chen Y, Wang Z, James TD, Wang X, Wang Z. Benzothiazolium Derivative-Capped Silica Nanocomposites for β-Amyloid Imaging In Vivo. Anal Chem 2021;93:12617-27. [PMID: 34494815 DOI: 10.1021/acs.analchem.1c02289] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
133 Rizvi SFA, Shahid S, Mu S, Zhang H. Hybridization of tumor homing and mitochondria-targeting peptide domains to design novel dual-imaging self-assembled peptide nanoparticles for theranostic applications. Drug Deliv Transl Res 2021. [PMID: 34535874 DOI: 10.1007/s13346-021-01066-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
134 Guan Z, Lan H, Cai X, Zhang Y, Liang A, Li J. Blood-Brain Barrier, Cell Junctions, and Tumor Microenvironment in Brain Metastases, the Biological Prospects and Dilemma in Therapies. Front Cell Dev Biol 2021;9:722917. [PMID: 34504845 DOI: 10.3389/fcell.2021.722917] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
135 Zhang Y, Guo P, Ma Z, Lu P, Kebebe D, Liu Z. Combination of cell-penetrating peptides with nanomaterials for the potential therapeutics of central nervous system disorders: a review. J Nanobiotechnology 2021;19:255. [PMID: 34425832 DOI: 10.1186/s12951-021-01002-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
136 C de S L Oliveira AL, Schomann T, de Geus-Oei LF, Kapiteijn E, Cruz LJ, de Araújo Junior RF. Nanocarriers as a Tool for the Treatment of Colorectal Cancer. Pharmaceutics 2021;13:1321. [PMID: 34452282 DOI: 10.3390/pharmaceutics13081321] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
137 Lundy DJ, Nguyễn H, Hsieh PCH. Emerging Nano-Carrier Strategies for Brain Tumor Drug Delivery and Considerations for Clinical Translation. Pharmaceutics 2021;13:1193. [PMID: 34452156 DOI: 10.3390/pharmaceutics13081193] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
138 Zhang L, Sun H, Zhao J, Lee J, Ee Low L, Gong L, Chen Y, Wang N, Zhu C, Lin P, Liang Z, Wei M, Ling D, Li F. Dynamic nanoassemblies for imaging and therapy of neurological disorders. Adv Drug Deliv Rev 2021;175:113832. [PMID: 34146626 DOI: 10.1016/j.addr.2021.113832] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
139 Li Z, Wang C, Zhang M, Li S, Mao Z, Liu Z. Activatable luminescent probes for imaging brain diseases. Nano Today 2021;39:101239. [DOI: 10.1016/j.nantod.2021.101239] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
140 Hanif S, Muhammad P, Niu Z, Ismail M, Morsch M, Zhang X, Li M, Shi B. Nanotechnology‐Based Strategies for Early Diagnosis of Central Nervous System Disorders. Adv NanoBio Res 2021;1:2100008. [DOI: 10.1002/anbr.202100008] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
141 Yin C, Li X, Wang Y, Liang Y, Zhou S, Zhao P, Lee C, Fan Q, Huang W. Organic Semiconducting Macromolecular Dyes for NIR‐II Photoacoustic Imaging and Photothermal Therapy. Adv Funct Mater 2021;31:2104650. [DOI: 10.1002/adfm.202104650] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 15.0] [Reference Citation Analysis]
142 Kim HN. Engineered models for studying blood-brain-barrier-associated brain physiology and pathology. Organoid 2021;1:e10. [DOI: 10.51335/organoid.2021.1.e10] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
143 Divito KA, Luo J, Rogers KE, Sundaram S, Roberts S, Dahal B, Van Hoek M, Kehn-hall K, Delehanty JB, Adams AA. Hydrodynamic Focusing-Enabled Blood Vessel Fabrication for in Vitro Modeling of Neural Surrogates. J Med Biol Eng 2021;41:456-69. [DOI: 10.1007/s40846-021-00629-9] [Reference Citation Analysis]
144 Luo X, Wang H, Ji D. Carbon nanotubes (CNT)-loaded ginsenosides Rb3 suppresses the PD-1/PD-L1 pathway in triple-negative breast cancer. Aging (Albany NY) 2021;13:17177-89. [PMID: 34111025 DOI: 10.18632/aging.203131] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
145 Chen L, Hong W, Ren W, Xu T, Qian Z, He Z. Recent progress in targeted delivery vectors based on biomimetic nanoparticles. Signal Transduct Target Ther 2021;6:225. [PMID: 34099630 DOI: 10.1038/s41392-021-00631-2] [Cited by in Crossref: 50] [Cited by in F6Publishing: 47] [Article Influence: 25.0] [Reference Citation Analysis]
146 Singh AV, Chandrasekar V, Janapareddy P, Mathews DE, Laux P, Luch A, Yang Y, Garcia-Canibano B, Balakrishnan S, Abinahed J, Al Ansari A, Dakua SP. Emerging Application of Nanorobotics and Artificial Intelligence To Cross the BBB: Advances in Design, Controlled Maneuvering, and Targeting of the Barriers. ACS Chem Neurosci 2021;12:1835-53. [PMID: 34008957 DOI: 10.1021/acschemneuro.1c00087] [Cited by in Crossref: 28] [Cited by in F6Publishing: 32] [Article Influence: 14.0] [Reference Citation Analysis]
147 Wang Y, Zhang F, Xiong N, Xu H, Chai S, Wang H, Wang J, Zhao H, Jiang X, Fu P, Xiang W. Remodelling and Treatment of the Blood-Brain Barrier in Glioma. Cancer Manag Res 2021;13:4217-32. [PMID: 34079374 DOI: 10.2147/CMAR.S288720] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
148 Zhu FD, Hu YJ, Yu L, Zhou XG, Wu JM, Tang Y, Qin DL, Fan QZ, Wu AG. Nanoparticles: A Hope for the Treatment of Inflammation in CNS. Front Pharmacol 2021;12:683935. [PMID: 34122112 DOI: 10.3389/fphar.2021.683935] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
149 Tu L, Luo Z, Wu YL, Huo S, Liang XJ. Gold-based nanomaterials for the treatment of brain cancer. Cancer Biol Med 2021:j. [PMID: 34002583 DOI: 10.20892/j.issn.2095-3941.2020.0524] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
150 Zhai K, Siddiqui M, Abdellatif B, Liskova A, Kubatka P, Büsselberg D. Natural Compounds in Glioblastoma Therapy: Preclinical Insights, Mechanistic Pathways, and Outlook. Cancers (Basel) 2021;13:2317. [PMID: 34065960 DOI: 10.3390/cancers13102317] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
151 Liu Y. Observation on Nursing Effect of Nano Trauma Patch for Intravenous Indwelling Needle Fixation. Integrated Ferroelectrics 2021;216:1-15. [DOI: 10.1080/10584587.2021.1911238] [Reference Citation Analysis]
152 Zhao W, Yu X, Peng S, Luo Y, Li J, Lu L. Construction of nanomaterials as contrast agents or probes for glioma imaging. J Nanobiotechnology 2021;19:125. [PMID: 33941206 DOI: 10.1186/s12951-021-00866-9] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
153 Yang S, Wallach M, Krishna A, Kurmasheva R, Sridhar S. Recent Developments in Nanomedicine for Pediatric Cancer. J Clin Med 2021;10:1437. [PMID: 33916177 DOI: 10.3390/jcm10071437] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
154 Liu N, Gujrati V, Malekzadeh-Najafabadi J, Werner JPF, Klemm U, Tang L, Chen Z, Prakash J, Huang Y, Stiel A, Mettenleiter G, Aichler M, Blutke A, Walch A, Kleigrewe K, Razansky D, Sattler M, Ntziachristos V. Croconaine-based nanoparticles enable efficient optoacoustic imaging of murine brain tumors. Photoacoustics 2021;22:100263. [PMID: 33948433 DOI: 10.1016/j.pacs.2021.100263] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
155 Kumarasamy M, Sosnik A. Heterocellular spheroids of the neurovascular blood-brain barrier as a platform for personalized nanoneuromedicine. iScience 2021;24:102183. [PMID: 33718835 DOI: 10.1016/j.isci.2021.102183] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 9.5] [Reference Citation Analysis]
156 Jiang M, Wan P, Tang K, Liu M, Kan C. An electrically driven whispering gallery polariton microlaser. Nanoscale 2021;13:5448-59. [PMID: 33683235 DOI: 10.1039/d0nr08168j] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
157 Tsai TH, Lieu AS, Wang YW, Yang SF, Hsu YC, Lin CL. Therapeutic Potential of RTA 404 in Human Brain Malignant Glioma Cell Lines via Cell Cycle Arrest via p21/AKT Signaling. Biomed Res Int 2021;2021:5552226. [PMID: 33763472 DOI: 10.1155/2021/5552226] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
158 Ximendes E, Benayas A, Jaque D, Marin R. Quo Vadis, Nanoparticle-Enabled In Vivo Fluorescence Imaging? ACS Nano 2021;15:1917-41. [PMID: 33465306 DOI: 10.1021/acsnano.0c08349] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
159 Yu X, Liu X, Yang K, Chen X, Li W. Pnictogen Semimetal (Sb, Bi)-Based Nanomaterials for Cancer Imaging and Therapy: A Materials Perspective. ACS Nano 2021;15:2038-67. [PMID: 33486944 DOI: 10.1021/acsnano.0c07899] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
160 Feng L, Dou C, Xia Y, Li B, Zhao M, Yu P, Zheng Y, El-Toni AM, Atta NF, Galal A, Cheng Y, Cai X, Wang Y, Zhang F. Neutrophil-like Cell-Membrane-Coated Nanozyme Therapy for Ischemic Brain Damage and Long-Term Neurological Functional Recovery. ACS Nano 2021;15:2263-80. [PMID: 33426885 DOI: 10.1021/acsnano.0c07973] [Cited by in Crossref: 51] [Cited by in F6Publishing: 62] [Article Influence: 25.5] [Reference Citation Analysis]
161 Jindal A, Sarkar S, Alam A. Nanomaterials-Mediated Immunomodulation for Cancer Therapeutics. Front Chem 2021;9:629635. [PMID: 33708759 DOI: 10.3389/fchem.2021.629635] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
162 Zhou Z, Sun T, Jiang C. Recent advances on drug delivery nanocarriers for cerebral disorders. Biomed Mater 2021;16:024104. [PMID: 33455956 DOI: 10.1088/1748-605X/abdc97] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
163 Zhu M, Wang S. Functional Nucleic‐Acid‐Decorated Spherical Nanoparticles: Preparation Strategies and Current Applications in Cancer Therapy. Small Science 2021;1:2000056. [DOI: 10.1002/smsc.202000056] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
164 Xu Y, Wang S, Chen Z, Hu R, Li S, Zhao Y, Liu L, Qu J. Highly stable organic photothermal agent based on near-infrared-II fluorophores for tumor treatment. J Nanobiotechnology 2021;19:37. [PMID: 33541369 DOI: 10.1186/s12951-021-00782-y] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
165 Bell M, Rooks CP, Agrahari V. Drug Delivery Approaches and Imaging Techniques for Brain Tumor. Neuromethods 2021. [DOI: 10.1007/978-1-0716-1052-7_4] [Reference Citation Analysis]
166 Xu Y, Dang D, Zhu H, Jing X, Zhu X, Zhang N, Li C, Zhao Y, Zhang P, Yang Z, Meng L. Boosting the AIEgen-based photo-theranostic platform by balancing radiative decay and non-radiative decay. Mater Chem Front 2021;5:4182-92. [DOI: 10.1039/d0qm01035a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
167 Xu L, Zhou Q, Shao S, Shen Y. Transcytosis-inducing biomaterials for actively translocating nanomedicines. Reference Module in Materials Science and Materials Engineering 2021. [DOI: 10.1016/b978-0-12-822425-0.00021-x] [Reference Citation Analysis]
168 Sohail S, Fakhar-ud-din. Nanotheranostics: The Future Remedy of Neurological Disorders. Nanotechnology in the Life Sciences 2021. [DOI: 10.1007/978-3-030-76263-6_5] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
169 Wei W, Wang X, Li Y, Cheng Y, Fung AA, Yang X, Shi L. Advances in optical imaging of drug delivery across the blood-brain barrier. Progress in Optics 2021. [DOI: 10.1016/bs.po.2021.01.002] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
170 Wei R, Liu Y, Gao J, Yong VW, Xue M. Small functionalized iron oxide nanoparticles for dual brain magnetic resonance imaging and fluorescence imaging. RSC Adv 2021;11:12867-75. [DOI: 10.1039/d0ra10392f] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
171 Mhaske A, Dighe S, Ghosalkar S, Tanna V, Ravikumar P, Sawarkar SP. Limitations of Current Cancer Theranostics. Nanotechnology in the Life Sciences 2021. [DOI: 10.1007/978-3-030-76263-6_12] [Reference Citation Analysis]
172 Parihar VK. Nano-pharmacokinetics and cancer theranostics. Nano-Pharmacokinetics and Theranostics 2021. [DOI: 10.1016/b978-0-323-85050-6.00014-1] [Reference Citation Analysis]
173 Bania R, Borah P, Deka S, Dahabiyeh LA, Singh V, Al-shar’i NA, Nair AB, Goyal M, Venugopala KN, Tekade RK, Deb PK. Current strategies in targeted anticancer drug delivery systems to brain. Advanced Drug Delivery Systems in the Management of Cancer 2021. [DOI: 10.1016/b978-0-323-85503-7.00038-9] [Reference Citation Analysis]
174 Rizvi SFA, Ali A, Ahmad M, Mu S, Zhang H. Multifunctional self-assembled peptide nanoparticles for multimodal imaging-guided enhanced theranostic applications against glioblastoma multiforme. Nanoscale Adv 2021;3:5959-5967. [DOI: 10.1039/d1na00597a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
175 Haque S, Norbert CC, Patra CR. Nanomedicine: future therapy for brain cancers. Nano Drug Delivery Strategies for the Treatment of Cancers 2021. [DOI: 10.1016/b978-0-12-819793-6.00003-5] [Reference Citation Analysis]
176 Narang JK, Dogra A, Ali J, Baboota S, Narang R. Polymeric nanocarriers for delivery of combination drugs. Nanocarriers for the Delivery of Combination Drugs 2021. [DOI: 10.1016/b978-0-12-820779-6.00007-4] [Reference Citation Analysis]
177 Li Y, Chu J, Wang D, Zhu L, Kong D. DNA nanolantern as biocompatible drug carrier for simple preparation of a porphyrin/G-quadruplex nanocomposite photosensitizer with high photodynamic efficacy. Mater Chem Front 2021;5:3139-48. [DOI: 10.1039/d1qm00141h] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
178 Najahi-Missaoui W, Arnold RD, Cummings BS. Safe Nanoparticles: Are We There Yet? Int J Mol Sci 2020;22:E385. [PMID: 33396561 DOI: 10.3390/ijms22010385] [Cited by in Crossref: 58] [Cited by in F6Publishing: 63] [Article Influence: 19.3] [Reference Citation Analysis]
179 Hao H, Chen Y, Wu M. Biomimetic nanomedicine toward personalized disease theranostics. Nano Res 2021;14:2491-511. [DOI: 10.1007/s12274-020-3265-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
180 Faustova M, Nikolskaya E, Sokol M, Fomicheva M, Petrov R, Yabbarov N. Metalloporphyrins in Medicine: From History to Recent Trends. ACS Appl Bio Mater 2020;3:8146-71. [PMID: 35019597 DOI: 10.1021/acsabm.0c00941] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
181 Thangudu S, Cheng FY, Su CH. Advancements in the Blood-Brain Barrier Penetrating Nanoplatforms for Brain Related Disease Diagnostics and Therapeutic Applications. Polymers (Basel) 2020;12:E3055. [PMID: 33419339 DOI: 10.3390/polym12123055] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 8.7] [Reference Citation Analysis]
182 Liu M, Wang F, Zhang X, Mao X, Wang L, Tian Y, Fan C, Li Q. Tracking endocytosis and intracellular distribution of spherical nucleic acids with correlative single-cell imaging. Nat Protoc 2021;16:383-404. [PMID: 33288954 DOI: 10.1038/s41596-020-00420-1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
183 Iturrioz-Rodríguez N, Bertorelli R, Ciofani G. Lipid-Based Nanocarriers for The Treatment of Glioblastoma. Adv Nanobiomed Res 2021;1:2000054. [PMID: 33623931 DOI: 10.1002/anbr.202000054] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
184 Zhang X, Ye D, Yang L, Yue Y, Sultan D, Pacia CP, Pang H, Detering L, Heo GS, Luehmann H, Choksi A, Sethi A, Limbrick DD, Becher OJ, Tai YC, Rubin JB, Chen H, Liu Y. Magnetic Resonance Imaging-Guided Focused Ultrasound-Based Delivery of Radiolabeled Copper Nanoclusters to Diffuse Intrinsic Pontine Glioma. ACS Appl Nano Mater 2020;3:11129-34. [PMID: 34337344 DOI: 10.1021/acsanm.0c02297] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
185 Ingle AP, Golińska P, Yadav A, Razzaghi‐abyaneh M, Patel M, Patel R, Plekhanova Y, Reshetilov A, Rai M. Nanotechnology. Nanobiotechnology in Diagnosis, Drug Delivery, and Treatment 2020. [DOI: 10.1002/9781119671732.ch1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
186 Luo H, Shusta EV. Blood-Brain Barrier Modulation to Improve Glioma Drug Delivery. Pharmaceutics 2020;12:E1085. [PMID: 33198244 DOI: 10.3390/pharmaceutics12111085] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 10.0] [Reference Citation Analysis]
187 Luo Y, Liu X, Liang K, Chen Q, Liu T, Yin B, Chen H. Disulfide Bond Reversible Strategy Enables GSH Responsive‐Transferrin Nanoparticles for Precise Chemotherapy. Adv Therap 2020;3:2000064. [DOI: 10.1002/adtp.202000064] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
188 Joshi BS, Zuhorn IS. Heparan sulfate proteoglycan-mediated dynamin-dependent transport of neural stem cell exosomes in an in vitro blood-brain barrier model. Eur J Neurosci 2021;53:706-19. [PMID: 32939863 DOI: 10.1111/ejn.14974] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
189 Maysinger D, Zhang Q, Kakkar A. Dendrimers as Modulators of Brain Cells. Molecules 2020;25:E4489. [PMID: 33007959 DOI: 10.3390/molecules25194489] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
190 Deng G, Peng X, Sun Z, Zheng W, Yu J, Du L, Chen H, Gong P, Zhang P, Cai L, Tang BZ. Natural-Killer-Cell-Inspired Nanorobots with Aggregation-Induced Emission Characteristics for Near-Infrared-II Fluorescence-Guided Glioma Theranostics. ACS Nano 2020;14:11452-62. [PMID: 32820907 DOI: 10.1021/acsnano.0c03824] [Cited by in Crossref: 83] [Cited by in F6Publishing: 89] [Article Influence: 27.7] [Reference Citation Analysis]
191 Men X, Yuan Z. Polymer Dots for Precision Photothermal Therapy of Brain Tumors in the Second Near-Infrared Window: A Mini-Review. ACS Appl Polym Mater 2020;2:4319-30. [DOI: 10.1021/acsapm.0c00715] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
192 Huang R, Boltze J, Li S. Strategies for Improved Intra-arterial Treatments Targeting Brain Tumors: a Systematic Review. Front Oncol 2020;10:1443. [PMID: 32983974 DOI: 10.3389/fonc.2020.01443] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
193 Kumarasamy M, Sosnik A. Multicellular Organoids of the Neurovascular Blood-Brain Barrier: A New Platform for Precision Neuronanomedicine.. [DOI: 10.1101/2020.08.14.249326] [Reference Citation Analysis]
194 Xiao F, Chen Z, Wei Z, Tian L. Hydrophobic Interaction: A Promising Driving Force for the Biomedical Applications of Nucleic Acids. Adv Sci (Weinh) 2020;7:2001048. [PMID: 32832360 DOI: 10.1002/advs.202001048] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 11.0] [Reference Citation Analysis]
195 Lee CS, Leong KW. Advances in microphysiological blood-brain barrier (BBB) models towards drug delivery. Curr Opin Biotechnol 2020;66:78-87. [PMID: 32711361 DOI: 10.1016/j.copbio.2020.06.009] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 11.3] [Reference Citation Analysis]
196 Zhang C, Wu J, Liu W, Zheng X, Zhang W, Lee CS, Wang P. Hypocrellin-Based Multifunctional Phototheranostic Agent for NIR-Triggered Targeted Chemo/Photodynamic/Photothermal Synergistic Therapy against Glioblastoma. ACS Appl Bio Mater 2020;3:3817-26. [PMID: 35025252 DOI: 10.1021/acsabm.0c00386] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
197 Teixeira MI, Amaral MH, Costa PC, Lopes CM, Lamprou DA. Recent Developments in Microfluidic Technologies for Central Nervous System Targeted Studies. Pharmaceutics 2020;12:E542. [PMID: 32545276 DOI: 10.3390/pharmaceutics12060542] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
198 Belykh E, Shaffer KV, Lin C, Byvaltsev VA, Preul MC, Chen L. Blood-Brain Barrier, Blood-Brain Tumor Barrier, and Fluorescence-Guided Neurosurgical Oncology: Delivering Optical Labels to Brain Tumors. Front Oncol 2020;10:739. [PMID: 32582530 DOI: 10.3389/fonc.2020.00739] [Cited by in Crossref: 66] [Cited by in F6Publishing: 73] [Article Influence: 22.0] [Reference Citation Analysis]
199 Auzmendi-Iriarte J, Saenz-Antoñanzas A, Mikelez-Alonso I, Carrasco-Garcia E, Tellaetxe-Abete M, Lawrie CH, Sampron N, Cortajarena AL, Matheu A. Characterization of a new small-molecule inhibitor of HDAC6 in glioblastoma. Cell Death Dis 2020;11:417. [PMID: 32488056 DOI: 10.1038/s41419-020-2586-x] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
200 Yang Z, Du Y, Sun Q, Peng Y, Wang R, Zhou Y, Wang Y, Zhang C, Qi X. Albumin-Based Nanotheranostic Probe with Hypoxia Alleviating Potentiates Synchronous Multimodal Imaging and Phototherapy for Glioma. ACS Nano 2020;14:6191-212. [PMID: 32320600 DOI: 10.1021/acsnano.0c02249] [Cited by in Crossref: 57] [Cited by in F6Publishing: 60] [Article Influence: 19.0] [Reference Citation Analysis]
201 Li C, Feng K, Xie N, Zhao W, Ye L, Chen B, Tung C, Wu L. Mesoporous Silica-Coated Gold Nanorods with Designable Anchor Peptides for Chemo-Photothermal Cancer Therapy. ACS Appl Nano Mater 2020;3:5070-8. [DOI: 10.1021/acsanm.0c00311] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
202 Buten C, Kortekaas L, Ravoo BJ. Design of Active Interfaces Using Responsive Molecular Components. Adv Mater 2020;32:e1904957. [PMID: 31573115 DOI: 10.1002/adma.201904957] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
203 Wang C, Wu B, Wu Y, Song X, Zhang S, Liu Z. Camouflaging Nanoparticles with Brain Metastatic Tumor Cell Membranes: A New Strategy to Traverse Blood–Brain Barrier for Imaging and Therapy of Brain Tumors. Adv Funct Mater 2020;30:1909369. [DOI: 10.1002/adfm.201909369] [Cited by in Crossref: 68] [Cited by in F6Publishing: 72] [Article Influence: 22.7] [Reference Citation Analysis]
204 Zhou H, Qiu X, Shen Z. [T1-weighted magnetic resonance imaging contrast agents and their theranostic nanoprobes]. Nan Fang Yi Ke Da Xue Xue Bao 2020;40:427-44. [PMID: 32376585 DOI: 10.12122/j.issn.1673-4254.2020.03.24] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
205 Cunha A, Prévot G, Mousli Y, Barthélémy P, Crauste-Manciet S, Dehay B, Desvergnes V. Synthesis and Intracellular Uptake of Rhodamine-Nucleolipid Conjugates into a Nanoemulsion Vehicle. ACS Omega 2020;5:5815-23. [PMID: 32226861 DOI: 10.1021/acsomega.9b03992] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
206 An F, Yang Z, Zheng M, Mei T, Deng G, Guo P, Li Y, Sheng R. Rationally assembled albumin/indocyanine green nanocomplex for enhanced tumor imaging to guide photothermal therapy. J Nanobiotechnology 2020;18:49. [PMID: 32183838 DOI: 10.1186/s12951-020-00603-8] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 10.3] [Reference Citation Analysis]
207 Ding S, Khan AI, Cai X, Song Y, Lyu Z, Du D, Dutta P, Lin Y. Overcoming blood-brain barrier transport: Advances in nanoparticle-based drug delivery strategies. Mater Today (Kidlington) 2020;37:112-25. [PMID: 33093794 DOI: 10.1016/j.mattod.2020.02.001] [Cited by in Crossref: 89] [Cited by in F6Publishing: 97] [Article Influence: 29.7] [Reference Citation Analysis]
208 Yang J, Shi Z, Liu R, Wu Y, Zhang X. Combined-therapeutic strategies synergistically potentiate glioblastoma multiforme treatment via nanotechnology. Theranostics 2020;10:3223-39. [PMID: 32194864 DOI: 10.7150/thno.40298] [Cited by in Crossref: 36] [Cited by in F6Publishing: 39] [Article Influence: 12.0] [Reference Citation Analysis]
209 Lai Y, Zhu Y, Xu Z, Hu X, Saeed M, Yu H, Chen X, Liu J, Zhang W. Engineering Versatile Nanoparticles for Near‐Infrared Light‐Tunable Drug Release and Photothermal Degradation of Amyloid β. Adv Funct Mater 2020;30:1908473. [DOI: 10.1002/adfm.201908473] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
210 Cavaco M, Gaspar D, Arb Castanho M, Neves V. Antibodies for the Treatment of Brain Metastases, a Dream or a Reality? Pharmaceutics 2020;12:E62. [PMID: 31940974 DOI: 10.3390/pharmaceutics12010062] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
211 Shen Z, Liu T, Yang Z, Zhou Z, Tang W, Fan W, Liu Y, Mu J, Li L, Bregadze VI, Mandal SK, Druzina AA, Wei Z, Qiu X, Wu A, Chen X. Small-sized gadolinium oxide based nanoparticles for high-efficiency theranostics of orthotopic glioblastoma. Biomaterials 2020;235:119783. [PMID: 31981762 DOI: 10.1016/j.biomaterials.2020.119783] [Cited by in Crossref: 33] [Cited by in F6Publishing: 39] [Article Influence: 11.0] [Reference Citation Analysis]
212 Shakeri S, Ashrafizadeh M, Zarrabi A, Roghanian R, Afshar EG, Pardakhty A, Mohammadinejad R, Kumar A, Thakur VK. Multifunctional Polymeric Nanoplatforms for Brain Diseases Diagnosis, Therapy and Theranostics. Biomedicines 2020;8:E13. [PMID: 31941057 DOI: 10.3390/biomedicines8010013] [Cited by in Crossref: 52] [Cited by in F6Publishing: 61] [Article Influence: 17.3] [Reference Citation Analysis]
213 Mauri E. Novel strategies to improve delivery performances. Nanomaterials for Theranostics and Tissue Engineering 2020. [DOI: 10.1016/b978-0-12-817838-6.00003-6] [Reference Citation Analysis]
214 Chen C, Tang Y, Ding D. Intramolecular motion-associated biomaterials for image-guided cancer surgery. Smart Materials in Medicine 2020;1:24-31. [DOI: 10.1016/j.smaim.2020.05.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
215 Bryukhovetskiy I, Sharma A, Zhang Z, Sharma HS. Preface. International Review of Neurobiology 2020. [DOI: 10.1016/s0074-7742(20)30078-7] [Reference Citation Analysis]
216 Sharma HS, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Tian ZR, Sahib S, Bryukhovetskiy I, Bryukhovetskiy A, Buzoianu AD, Patnaik R, Wiklund L, Sharma A. Pathophysiology of blood-brain barrier in brain tumor. Novel therapeutic advances using nanomedicine. International Review of Neurobiology 2020. [DOI: 10.1016/bs.irn.2020.03.001] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
217 Zhao M, van Straten D, Broekman MLD, Préat V, Schiffelers RM. Nanocarrier-based drug combination therapy for glioblastoma. Theranostics 2020;10:1355-72. [PMID: 31938069 DOI: 10.7150/thno.38147] [Cited by in Crossref: 102] [Cited by in F6Publishing: 108] [Article Influence: 34.0] [Reference Citation Analysis]
218 Morad G, Carman CV, Hagedorn EJ, Perlin JR, Zon LI, Mustafaoglu N, Park TE, Ingber DE, Daisy CC, Moses MA. Tumor-Derived Extracellular Vesicles Breach the Intact Blood-Brain Barrier via Transcytosis. ACS Nano 2019;13:13853-65. [PMID: 31479239 DOI: 10.1021/acsnano.9b04397] [Cited by in Crossref: 191] [Cited by in F6Publishing: 198] [Article Influence: 47.8] [Reference Citation Analysis]
219 Qu F, Wang P, Zhang K, Shi Y, Li Y, Li C, Lu J, Liu Q, Wang X. Manipulation of Mitophagy by "All-in-One" nanosensitizer augments sonodynamic glioma therapy. Autophagy 2020;16:1413-35. [PMID: 31674265 DOI: 10.1080/15548627.2019.1687210] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 10.3] [Reference Citation Analysis]
220 Liu X, Jiang J, Meng H. Transcytosis - An effective targeting strategy that is complementary to "EPR effect" for pancreatic cancer nano drug delivery. Theranostics 2019;9:8018-25. [PMID: 31754378 DOI: 10.7150/thno.38587] [Cited by in Crossref: 59] [Cited by in F6Publishing: 62] [Article Influence: 14.8] [Reference Citation Analysis]
221 Jung S, Jung S, Kim DM, Lim SH, Shim YH, Kwon H, Kim DH, Lee CM, Kim BH, Jeong YI. Hyaluronic Acid-Conjugated with Hyperbranched Chlorin e6 Using Disulfide Linkage and Its Nanophotosensitizer for Enhanced Photodynamic Therapy of Cancer Cells. Materials (Basel) 2019;12:E3080. [PMID: 31546620 DOI: 10.3390/ma12193080] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
222 Xie J, Shen Z, Anraku Y, Kataoka K, Chen X. Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials 2019;224:119491. [PMID: 31546096 DOI: 10.1016/j.biomaterials.2019.119491] [Cited by in Crossref: 146] [Cited by in F6Publishing: 156] [Article Influence: 36.5] [Reference Citation Analysis]
223 Li J, Chen L, Yan L, Gu Z, Chen Z, Zhang A, Zhao F. A Novel Drug Design Strategy: An Inspiration from Encaging Tumor by Metallofullerenol Gd@C82(OH)22. Molecules 2019;24:E2387. [PMID: 31252662 DOI: 10.3390/molecules24132387] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]