BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bernetti M, Cavalli A, Mollica L. Protein-ligand (un)binding kinetics as a new paradigm for drug discovery at the crossroad between experiments and modelling. Medchemcomm 2017;8:534-50. [PMID: 30108770 DOI: 10.1039/c6md00581k] [Cited by in Crossref: 45] [Cited by in F6Publishing: 41] [Article Influence: 9.0] [Reference Citation Analysis]
Number Citing Articles
1 Odstrcil RE, Dutta P, Liu J. LINES: Log-Probability Estimation via Invertible Neural Networks for Enhanced Sampling. J Chem Theory Comput 2022. [PMID: 36099438 DOI: 10.1021/acs.jctc.2c00254] [Reference Citation Analysis]
2 Wu X, Xu LY, Li EM, Dong G. Application of molecular dynamics simulation in biomedicine. Chem Biol Drug Des 2022;99:789-800. [PMID: 35293126 DOI: 10.1111/cbdd.14038] [Reference Citation Analysis]
3 Zhou Y, Jiang Y, Chen S. RNA –ligand molecular docking: Advances and challenges. WIREs Comput Mol Sci 2022;12. [DOI: 10.1002/wcms.1571] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Shinobu A, Re S, Sugita Y. Practical Protocols for Efficient Sampling of Kinase-Inhibitor Binding Pathways Using Two-Dimensional Replica-Exchange Molecular Dynamics. Front Mol Biosci 2022;9:878830. [DOI: 10.3389/fmolb.2022.878830] [Reference Citation Analysis]
5 Badaoui M, Buigues PJ, Berta D, Mandana GM, Gu H, Földes T, Dickson CJ, Hornak V, Kato M, Molteni C, Parsons S, Rosta E. Combined Free-Energy Calculation and Machine Learning Methods for Understanding Ligand Unbinding Kinetics. J Chem Theory Comput 2022. [PMID: 35195418 DOI: 10.1021/acs.jctc.1c00924] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Alves Ferreira-Bravo I, DeStefano JJ. Xeno-Nucleic Acid (XNA) 2'-Fluoro-Arabino Nucleic Acid (FANA) Aptamers to the Receptor-Binding Domain of SARS-CoV-2 S Protein Block ACE2 Binding. Viruses 2021;13:1983. [PMID: 34696413 DOI: 10.3390/v13101983] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
7 Wright EB, Fukuda S, Li M, Li Y, O'Doherty GA, Lannigan DA. Identifying requirements for RSK2 specific inhibitors. J Enzyme Inhib Med Chem 2021;36:1798-809. [PMID: 34348556 DOI: 10.1080/14756366.2021.1957862] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Brandt AAML, Rodrigues-da-Silva RN, Lima-Junior JC, Alves CR, de Souza-Silva F. Combining Well-Tempered Metadynamics Simulation and SPR Assays to Characterize the Binding Mechanism of the Universal T-Lymphocyte Tetanus Toxin Epitope TT830-843. Biomed Res Int 2021;2021:5568980. [PMID: 34285916 DOI: 10.1155/2021/5568980] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Chen X, Lisi F, Bakthavathsalam P, Longatte G, Hoque S, Tilley RD, Gooding JJ. Impact of the Coverage of Aptamers on a Nanoparticle on the Binding Equilibrium and Kinetics between Aptamer and Protein. ACS Sens 2021;6:538-45. [PMID: 33296177 DOI: 10.1021/acssensors.0c02212] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
10 Salo-ahen OMH, Alanko I, Bhadane R, Bonvin AMJJ, Honorato RV, Hossain S, Juffer AH, Kabedev A, Lahtela-kakkonen M, Larsen AS, Lescrinier E, Marimuthu P, Mirza MU, Mustafa G, Nunes-alves A, Pantsar T, Saadabadi A, Singaravelu K, Vanmeert M. Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development. Processes 2021;9:71. [DOI: 10.3390/pr9010071] [Cited by in Crossref: 14] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]
11 Decherchi S, Cavalli A. Thermodynamics and Kinetics of Drug-Target Binding by Molecular Simulation. Chem Rev 2020;120:12788-833. [PMID: 33006893 DOI: 10.1021/acs.chemrev.0c00534] [Cited by in Crossref: 18] [Cited by in F6Publishing: 40] [Article Influence: 9.0] [Reference Citation Analysis]
12 Hall R, Dixon T, Dickson A. On Calculating Free Energy Differences Using Ensembles of Transition Paths. Front Mol Biosci 2020;7:106. [PMID: 32582764 DOI: 10.3389/fmolb.2020.00106] [Cited by in Crossref: 3] [Cited by in F6Publishing: 13] [Article Influence: 1.5] [Reference Citation Analysis]
13 Stadmiller SS, Aguilar JS, Waudby CA, Pielak GJ. Rapid Quantification of Protein-Ligand Binding via 19F NMR Lineshape Analysis. Biophys J 2020;118:2537-48. [PMID: 32348722 DOI: 10.1016/j.bpj.2020.03.031] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
14 Zhou Y, Zou R, Kuang G, Långström B, Halldin C, Ågren H, Tu Y. Enhanced Sampling Simulations of Ligand Unbinding Kinetics Controlled by Protein Conformational Changes. J Chem Inf Model 2019;59:3910-8. [DOI: 10.1021/acs.jcim.9b00523] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
15 Re S, Oshima H, Kasahara K, Kamiya M, Sugita Y. Encounter complexes and hidden poses of kinase-inhibitor binding on the free-energy landscape. Proc Natl Acad Sci U S A 2019;116:18404-9. [PMID: 31451651 DOI: 10.1073/pnas.1904707116] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 6.7] [Reference Citation Analysis]
16 Zhou S, Weiß RG, Cheng LT, Dzubiella J, McCammon JA, Li B. Variational implicit-solvent predictions of the dry-wet transition pathways for ligand-receptor binding and unbinding kinetics. Proc Natl Acad Sci U S A 2019;116:14989-94. [PMID: 31270236 DOI: 10.1073/pnas.1902719116] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
17 Kouza M, Banerji A, Kolinski A, Buhimschi I, Kloczkowski A. Role of Resultant Dipole Moment in Mechanical Dissociation of Biological Complexes. Molecules 2018;23:E1995. [PMID: 30103417 DOI: 10.3390/molecules23081995] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
18 Knoepfel T, Furet P, Mah R, Buschmann N, Leblanc C, Ripoche S, Graus-porta D, Wartmann M, Galuba I, Fairhurst RA. 2-Formylpyridyl Ureas as Highly Selective Reversible-Covalent Inhibitors of Fibroblast Growth Factor Receptor 4. ACS Med Chem Lett 2018;9:215-20. [DOI: 10.1021/acsmedchemlett.7b00485] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 6.5] [Reference Citation Analysis]
19 Gioia D, Bertazzo M, Recanatini M, Masetti M, Cavalli A. Dynamic Docking: A Paradigm Shift in Computational Drug Discovery. Molecules 2017;22:E2029. [PMID: 29165360 DOI: 10.3390/molecules22112029] [Cited by in Crossref: 60] [Cited by in F6Publishing: 63] [Article Influence: 12.0] [Reference Citation Analysis]