BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hossain MA, Kocan M, Yao ST, Royce SG, Nair VB, Siwek C, Patil NA, Harrison IP, Rosengren KJ, Selemidis S, Summers RJ, Wade JD, Bathgate RAD, Samuel CS. A single-chain derivative of the relaxin hormone is a functionally selective agonist of the G protein-coupled receptor, RXFP1. Chem Sci 2016;7:3805-19. [PMID: 30155023 DOI: 10.1039/c5sc04754d] [Cited by in Crossref: 38] [Cited by in F6Publishing: 44] [Article Influence: 6.3] [Reference Citation Analysis]
Number Citing Articles
1 Zhang L, Li Z, Wang F, Chen Q, Zu M, Li X, Wan J, Yao X, Lou X, Shi Y, Sheng Y, Wang M, Yang J, Wang X, Qin Z, Ji T. Integrin‐Enriched Membrane Nanocarrier for the Specific Delivery of RGD‐modified Relaxin Analog to Inhibit Pancreatic Cancer Liver Metastasis through Reversing Hepatic Stellate Cell Activation. Adv Funct Materials. [DOI: 10.1002/adfm.202208404] [Reference Citation Analysis]
2 D'ercole A, Nistri S, Pacini L, Carotenuto A, Santoro F, Papini AM, Bathgate RAD, Bani D, Rovero P. Synthetic short-chain peptide analogues of H1 relaxin lack affinity for the RXFP1 receptor and relaxin-like bioactivity. Clues to a better understanding of relaxin agonist design. Front Pharmacol 2022;13:942178. [DOI: 10.3389/fphar.2022.942178] [Reference Citation Analysis]
3 Tapia Cáceres F, Gaspari TA, Hossain MA, Samuel CS. Relaxin Inhibits the Cardiac Myofibroblast NLRP3 Inflammasome as Part of Its Anti-Fibrotic Actions via the Angiotensin Type 2 and ATP (P2X7) Receptors. IJMS 2022;23:7074. [DOI: 10.3390/ijms23137074] [Reference Citation Analysis]
4 Speck D, Kleinau G, Meininghaus M, Erbe A, Einfeldt A, Szczepek M, Scheerer P, Pütter V. Expression and Characterization of Relaxin Family Peptide Receptor 1 Variants. Front Pharmacol 2022;12:826112. [DOI: 10.3389/fphar.2021.826112] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Samuel CS, Bennett RG. Relaxin as an anti-fibrotic treatment: Perspectives, challenges and future directions. Biochem Pharmacol 2021;197:114884. [PMID: 34968489 DOI: 10.1016/j.bcp.2021.114884] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
6 Abboud C, Brochoire L, Drouet A, Hossain MA, Hleihel W, Gundlach AL, Landry M. Analgesic effect of central relaxin receptor activation on persistent inflammatory pain in mice: behavioral and neurochemical data. Pain Rep 2021;6:e937. [PMID: 34159282 DOI: 10.1097/PR9.0000000000000937] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
7 Mallart S, Ingenito R, Bianchi E, Bresciani A, Esposito S, Gallo M, Magotti P, Monteagudo E, Orsatti L, Roversi D, Santoprete A, Tucci F, Veneziano M, Bartsch R, Boehm C, Brasseur D, Bruneau P, Corbier A, Froissant J, Gauzy-Lazo L, Gervat V, Marguet F, Menguy I, Minoletti C, Nicolas MF, Pasquier O, Poirier B, Raux A, Riva L, Janiak P, Strobel H, Duclos O, Illiano S. Identification of Potent and Long-Acting Single-Chain Peptide Mimetics of Human Relaxin-2 for Cardiovascular Diseases. J Med Chem 2021;64:2139-50. [PMID: 33555858 DOI: 10.1021/acs.jmedchem.0c01533] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
8 Deadder NP, Gillam HJ, Wilson BC, Hogan MJ. Relaxin peptides reduce cellular damage in cultured brain slices exposed to transient oxygen–glucose deprivation: an effect mediated by nitric oxide. FACETS 2021;6:118-30. [DOI: 10.1139/facets-2020-0029] [Reference Citation Analysis]
9 Welch NG, Winkler DA, Thissen H. Antifibrotic strategies for medical devices. Adv Drug Deliv Rev 2020;167:109-20. [PMID: 32553685 DOI: 10.1016/j.addr.2020.06.008] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
10 D'ercole A, Sabatino G, Pacini L, Impresari E, Capecchi I, Papini AM, Rovero P. On‐resin microwave‐assisted copper‐catalyzed azide‐alkyne cycloaddition of H1‐relaxin B single chain ‘stapled’ analogues. Peptide Science 2020;112. [DOI: 10.1002/pep2.24159] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
11 Devarakonda T, Mauro AG, Guzman G, Hovsepian S, Cain C, Das A, Praveen P, Hossain MA, Salloum FN. B7-33, a Functionally Selective Relaxin Receptor 1 Agonist, Attenuates Myocardial Infarction-Related Adverse Cardiac Remodeling in Mice. J Am Heart Assoc 2020;9:e015748. [PMID: 32295457 DOI: 10.1161/JAHA.119.015748] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
12 Chen TY, Li X, Hung CH, Bahudhanapati H, Tan J, Kass DJ, Zhang Y. The relaxin family peptide receptor 1 (RXFP1): An emerging player in human health and disease. Mol Genet Genomic Med 2020;8:e1194. [PMID: 32100955 DOI: 10.1002/mgg3.1194] [Cited by in Crossref: 2] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
13 Xie H, Xie C. A Six-Gene Signature Predicts Survival of Adenocarcinoma Type of Non-Small-Cell Lung Cancer Patients: A Comprehensive Study Based on Integrated Analysis and Weighted Gene Coexpression Network. Biomed Res Int 2019;2019:4250613. [PMID: 31886214 DOI: 10.1155/2019/4250613] [Cited by in Crossref: 12] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
14 Welch NG, Mukherjee S, Hossain MA, Praveen P, Werkmeister JA, Wade JD, Bathgate RAD, Winkler DA, Thissen H. Coatings Releasing the Relaxin Peptide Analogue B7-33 Reduce Fibrotic Encapsulation. ACS Appl Mater Interfaces 2019;11:45511-9. [PMID: 31713411 DOI: 10.1021/acsami.9b17859] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
15 Chow BSM, Kocan M, Shen M, Wang Y, Han L, Chew JY, Wang C, Bosnyak S, Mirabito-Colafella KM, Barsha G, Wigg B, Johnstone EKM, Hossain MA, Pfleger KDG, Denton KM, Widdop RE, Summers RJ, Bathgate RAD, Hewitson TD, Samuel CS. AT1R-AT2R-RXFP1 Functional Crosstalk in Myofibroblasts: Impact on the Therapeutic Targeting of Renal and Cardiac Fibrosis. J Am Soc Nephrol 2019;30:2191-207. [PMID: 31511361 DOI: 10.1681/ASN.2019060597] [Cited by in Crossref: 11] [Cited by in F6Publishing: 17] [Article Influence: 3.7] [Reference Citation Analysis]
16 Kanai AJ, Konieczko EM, Bennett RG, Samuel CS, Royce SG. Relaxin and fibrosis: Emerging targets, challenges, and future directions. Mol Cell Endocrinol 2019;487:66-74. [PMID: 30772373 DOI: 10.1016/j.mce.2019.02.005] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
17 Ng HH, Shen M, Samuel CS, Schlossmann J, Bennett RG. Relaxin and extracellular matrix remodeling: Mechanisms and signaling pathways. Mol Cell Endocrinol 2019;487:59-65. [PMID: 30660699 DOI: 10.1016/j.mce.2019.01.015] [Cited by in Crossref: 9] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
18 Valkovic AL, Leckey MB, Whitehead AR, Hossain MA, Inoue A, Kocan M, Bathgate RAD. Real-time examination of cAMP activity at relaxin family peptide receptors using a BRET-based biosensor. Pharmacol Res Perspect 2018;6:e00432. [PMID: 30263124 DOI: 10.1002/prp2.432] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
19 Haugaard-Kedström LM, Lee HS, Jones MV, Song A, Rathod V, Hossain MA, Bathgate RAD, Rosengren KJ. Binding conformation and determinants of a single-chain peptide antagonist at the relaxin-3 receptor RXFP3. J Biol Chem 2018;293:15765-76. [PMID: 30131342 DOI: 10.1074/jbc.RA118.002611] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
20 Ikeda Y, Zabbarova IV, Birder LA, Wipf P, Getchell SE, Tyagi P, Fry CH, Drake MJ, Kanai AJ. Relaxin-2 therapy reverses radiation-induced fibrosis and restores bladder function in mice. Neurourol Urodyn 2018;37:2441-51. [PMID: 29806709 DOI: 10.1002/nau.23721] [Cited by in Crossref: 15] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
21 McBride A, Hoy AM, Bamford MJ, Mossakowska DE, Ruediger MP, Griggs J, Desai S, Simpson K, Caballero-Hernandez I, Iredale JP, Pell T, Aucott RL, Holmes DS, Webster SP, Fallowfield JA. In search of a small molecule agonist of the relaxin receptor RXFP1 for the treatment of liver fibrosis. Sci Rep 2017;7:10806. [PMID: 28883402 DOI: 10.1038/s41598-017-10521-9] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 2.6] [Reference Citation Analysis]
22 Kocan M, Sarwar M, Ang SY, Xiao J, Marugan JJ, Hossain MA, Wang C, Hutchinson DS, Samuel CS, Agoulnik AI, Bathgate RAD, Summers RJ. ML290 is a biased allosteric agonist at the relaxin receptor RXFP1. Sci Rep 2017;7:2968. [PMID: 28592882 DOI: 10.1038/s41598-017-02916-5] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 4.4] [Reference Citation Analysis]
23 Patil NA, Rosengren KJ, Separovic F, Wade JD, Bathgate RAD, Hossain MA. Relaxin family peptides: structure-activity relationship studies. Br J Pharmacol 2017;174:950-61. [PMID: 27922185 DOI: 10.1111/bph.13684] [Cited by in Crossref: 46] [Cited by in F6Publishing: 44] [Article Influence: 9.2] [Reference Citation Analysis]
24 Agoulnik AI, Agoulnik IU, Hu X, Marugan J. Synthetic non-peptide low molecular weight agonists of the relaxin receptor 1. Br J Pharmacol 2017;174:977-89. [PMID: 27771940 DOI: 10.1111/bph.13656] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
25 Samuel CS, Royce SG, Hewitson TD, Denton KM, Cooney TE, Bennett RG. Anti-fibrotic actions of relaxin. Br J Pharmacol 2017;174:962-76. [PMID: 27250825 DOI: 10.1111/bph.13529] [Cited by in Crossref: 55] [Cited by in F6Publishing: 63] [Article Influence: 9.2] [Reference Citation Analysis]