BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mojica L, de Mejía EG. Optimization of enzymatic production of anti-diabetic peptides from black bean (Phaseolus vulgaris L.) proteins, their characterization and biological potential. Food Funct 2016;7:713-27. [PMID: 26824775 DOI: 10.1039/c5fo01204j] [Cited by in Crossref: 70] [Cited by in F6Publishing: 73] [Article Influence: 10.0] [Reference Citation Analysis]
Number Citing Articles
1 Rahmi A, Arcot J. In Vitro Assessment Methods for Antidiabetic Peptides from Legumes: A Review. Foods 2023;12:631. [DOI: 10.3390/foods12030631] [Reference Citation Analysis]
2 Zhang Y, Wu F, He Z, Fang X, Liu X. Optimization and Molecular Mechanism of Novel α-Glucosidase Inhibitory Peptides Derived from Camellia Seed Cake through Enzymatic Hydrolysis. Foods 2023;12. [PMID: 36673484 DOI: 10.3390/foods12020393] [Reference Citation Analysis]
3 Alfieri F, Ververis E, Precup G, Julio-gonzalez LC, Noriega Fernández E. Proteins From Pulses: Food Processing and Applications. Reference Module in Food Science 2023. [DOI: 10.1016/b978-0-12-823960-5.00041-x] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 Garcés-Rimón M, Morales D, Miguel-Castro M. Potential Role of Bioactive Proteins and Peptides Derived from Legumes towards Metabolic Syndrome. Nutrients 2022;14. [PMID: 36558429 DOI: 10.3390/nu14245271] [Reference Citation Analysis]
5 Dary Guerra-fajardo L, Pavón-pérez J, Vallejos-almirall A, Jorquera-pereira D. Advances in analytical techniques coupled to in vitro bioassays in the search for new peptides with functional activity in effect-directed analysis. Food Chemistry 2022;397:133784. [DOI: 10.1016/j.foodchem.2022.133784] [Reference Citation Analysis]
6 Carrera-Alvarado G, Toldrá F, Mora L. DPP-IV Inhibitory Peptides GPF, IGL, and GGGW Obtained from Chicken Blood Hydrolysates. Int J Mol Sci 2022;23. [PMID: 36430616 DOI: 10.3390/ijms232214140] [Reference Citation Analysis]
7 Darewicz M, Pliszka M, Borawska-Dziadkiewicz J, Minkiewicz P, Iwaniak A. Multi-Bioactivity of Protein Digests and Peptides from Oat (Avena sativa L.) Kernels in the Prevention of the Cardiometabolic Syndrome. Molecules 2022;27. [PMID: 36432008 DOI: 10.3390/molecules27227907] [Reference Citation Analysis]
8 Allouche R, Genay M, Dary-Mourot A, Hafeez Z, Miclo L. Cell Proteins Obtained by Peptic Shaving of Two Phenotypically Different Strains of Streptococcus thermophilus as a Source of Anti-Inflammatory Peptides. Nutrients 2022;14. [PMID: 36432464 DOI: 10.3390/nu14224777] [Reference Citation Analysis]
9 Farias TC, de Souza TSP, Fai AEC, Koblitz MGB. Critical Review for the Production of Antidiabetic Peptides by a Bibliometric Approach. Nutrients 2022;14:4275. [DOI: 10.3390/nu14204275] [Reference Citation Analysis]
10 Karami Z, Duangmal K. Health Promoting and Functional Activities of Peptides from Vigna Bean and Common Bean Hydrolysates: Process to Increase Activities and Challenges. Food Reviews International. [DOI: 10.1080/87559129.2022.2122988] [Reference Citation Analysis]
11 Mani S, Bhatt SB, Vasudevan V, Prabhu D, Rajamanikandan S, Velusamy P, Ramasamy P, Raman P. The Updated Review on Plant Peptides and Their Applications in Human Health. Int J Pept Res Ther 2022;28:135. [PMID: 35911180 DOI: 10.1007/s10989-022-10437-7] [Reference Citation Analysis]
12 Sharma S, Pradhan R, Manickavasagan A, Thimmanagari M, Dutta A. Corn distillers solubles as a novel bioresource of bioactive peptides with ACE and DPP IV inhibition activity: characterization, in silico evaluation, and molecular docking. Food Funct 2022;13:8179-203. [PMID: 35829682 DOI: 10.1039/d1fo04109f] [Reference Citation Analysis]
13 Kehinde BA, Majid I, Hussain S. Isolation of bioactive peptides and multiple nutraceuticals of antidiabetic and antioxidant functionalities through sprouting: Recent advances. J Food Biochem 2022;:e14317. [PMID: 35867040 DOI: 10.1111/jfbc.14317] [Reference Citation Analysis]
14 Chen X, Huang J, He B. AntiDMPpred: a web service for identifying anti-diabetic peptides. PeerJ 2022;10:e13581. [PMID: 35722269 DOI: 10.7717/peerj.13581] [Reference Citation Analysis]
15 Abioye RO, Okagu IU, Udenigwe CC. Targeting Glucose Transport Proteins for Diabetes Management: Regulatory Roles of Food-Derived Compounds. J Agric Food Chem 2022;70:5284-90. [PMID: 35439410 DOI: 10.1021/acs.jafc.2c00817] [Reference Citation Analysis]
16 Maleki S, Razavi SH, Yadav H. Diabetes and seeds: New horizon to promote human nutrition and anti-diabetics compounds in grains by germination. Crit Rev Food Sci Nutr 2022;:1-21. [PMID: 35442121 DOI: 10.1080/10408398.2022.2063793] [Reference Citation Analysis]
17 Wang X, Fan Y, Xu F, Xie J, Gao X, Li L, Tian Y, Sheng J. Characterization of the structure, stability, and activity of hypoglycemic peptides from Moringa oleifera seed protein hydrolysates. Food Funct 2022;13:3481-94. [PMID: 35246675 DOI: 10.1039/d1fo03413h] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
18 Free-Manjarrez S, Mojica L, Espinosa-Andrews H, Morales-Hernández N. Sensory and Biological Potential of Encapsulated Common Bean Protein Hydrolysates Incorporated in a Greek-Style Yogurt Matrix. Polymers (Basel) 2022;14:854. [PMID: 35267677 DOI: 10.3390/polym14050854] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Racovita S, Popa M, Atanase LI, Vasiliu S. Synthetic macromolecules with biological activity. Biological Macromolecules 2022. [DOI: 10.1016/b978-0-323-85759-8.00014-2] [Reference Citation Analysis]
20 Sandate-flores L, Méndez-zamora G, Morales-celaya MF, Lara-reyes JA, Aguirre-arzola VE, Gutiérrez-diez A, Torres-castillo JA, Sinagawa-garcía SR. Biofunctional properties of the bioactive peptide from protein isolates of jiotilla (Escontria chiotilla) and pitaya (Stenocereus pruinosus) seeds. Food Sci Technol 2022;42:e57922. [DOI: 10.1590/fst.57922] [Reference Citation Analysis]
21 Martini S, Cattivelli A, Conte A, Tagliazucchi D. Application of a Combined Peptidomics and In Silico Approach for the Identification of Novel Dipeptidyl Peptidase-IV-Inhibitory Peptides in In Vitro Digested Pinto Bean Protein Extract. CIMB 2022;44:139-51. [DOI: 10.3390/cimb44010011] [Reference Citation Analysis]
22 Chandrasekaran S, Gonzalez de Mejia E. Optimization, identification, and comparison of peptides from germinated chickpea (Cicer arietinum) protein hydrolysates using either papain or ficin and their relationship with markers of type 2 diabetes. Food Chem 2021;374:131717. [PMID: 34920404 DOI: 10.1016/j.foodchem.2021.131717] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
23 Rodrigues WPS, Ribeiro JVV, da Silva CRB, de Campos ITN, Xavier CH, Dos Santos FCA, Cruz MV, Fernandes KF. In vivo effect of orally given polyvinyl alcohol/starch nanocomposites containing bioactive peptides from Phaseolus vulgaris beans. Colloids Surf B Biointerfaces 2022;209:112213. [PMID: 34801977 DOI: 10.1016/j.colsurfb.2021.112213] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
24 Palma-Albino C, Intiquilla A, Jiménez-Aliaga K, Rodríguez-Arana N, Solano E, Flores E, Zavaleta AI, Izaguirre V, Hernández-Ledesma B. Albumin from Erythrina edulis (Pajuro) as a Promising Source of Multifunctional Peptides. Antioxidants (Basel) 2021;10:1722. [PMID: 34829593 DOI: 10.3390/antiox10111722] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
25 Yang F, Chen X, Huang M, Yang Q, Cai X, Chen X, Du M, Huang J, Wang S. Molecular characteristics and structure–activity relationships of food-derived bioactive peptides. Journal of Integrative Agriculture 2021;20:2313-32. [DOI: 10.1016/s2095-3119(20)63463-3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
26 Antony P, Vijayan R. Bioactive Peptides as Potential Nutraceuticals for Diabetes Therapy: A Comprehensive Review. Int J Mol Sci 2021;22:9059. [PMID: 34445765 DOI: 10.3390/ijms22169059] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
27 Baldeón ME, Felix C, Fornasini M, Zertuche F, Largo C, Paucar MJ, Ponce L, Rangarajan S, Yusuf S, López-Jaramillo P. Prevalence of metabolic syndrome and diabetes mellitus type-2 and their association with intake of dairy and legume in Andean communities of Ecuador. PLoS One 2021;16:e0254812. [PMID: 34297755 DOI: 10.1371/journal.pone.0254812] [Reference Citation Analysis]
28 Tak Y, Kaur M, Amarowicz R, Bhatia S, Gautam C. Pulse Derived Bioactive Peptides as Novel Nutraceuticals: A Review. Int J Pept Res Ther 2021;27:2057-68. [DOI: 10.1007/s10989-021-10234-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Shaikh S, Lee EJ, Ahmad K, Ahmad SS, Lim JH, Choi I. A Comprehensive Review and Perspective on Natural Sources as Dipeptidyl Peptidase-4 Inhibitors for Management of Diabetes. Pharmaceuticals (Basel) 2021;14:591. [PMID: 34203048 DOI: 10.3390/ph14060591] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
30 Boachie RT, Boakye PG, Annor GA, Udenigwe CC. Prospects of food-derived α-glucosidase inhibitors in the management of diabetes. Food Structure and Functionality 2021. [DOI: 10.1016/b978-0-12-821453-4.00003-x] [Reference Citation Analysis]
31 Alfaro-diaz A, Urías-silvas J, Loarca-piña G, Gaytan-martínez M, Prado-ramirez R, Mojica L. Techno-functional properties of thermally treated black bean protein concentrate generated through ultrafiltration process. LWT 2021;136:110296. [DOI: 10.1016/j.lwt.2020.110296] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
32 Acquah C, Dzuvor CKO, Tosh S, Agyei D. Anti-diabetic effects of bioactive peptides: recent advances and clinical implications. Crit Rev Food Sci Nutr 2020;:1-14. [PMID: 33317324 DOI: 10.1080/10408398.2020.1851168] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
33 Moreno C, Mojica L, González de Mejía E, Camacho Ruiz RM, Luna-Vital DA. Combinations of Legume Protein Hydrolysates Synergistically Inhibit Biological Markers Associated with Adipogenesis. Foods 2020;9:E1678. [PMID: 33212815 DOI: 10.3390/foods9111678] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
34 Yap PG, Gan CY. In vivo challenges of anti-diabetic peptide therapeutics: Gastrointestinal stability, toxicity and allergenicity. Trends in Food Science & Technology 2020;105:161-75. [DOI: 10.1016/j.tifs.2020.09.005] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
35 Kusumah J, Real Hernandez LM, Gonzalez de Mejia E. Antioxidant Potential of Mung Bean (Vigna radiata) Albumin Peptides Produced by Enzymatic Hydrolysis Analyzed by Biochemical and In Silico Methods. Foods 2020;9:E1241. [PMID: 32899856 DOI: 10.3390/foods9091241] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
36 Karimi A, Azizi MH, Ahmadi Gavlighi H. Frationation of hydrolysate from corn germ protein by ultrafiltration: In vitro antidiabetic and antioxidant activity. Food Sci Nutr 2020;8:2395-405. [PMID: 32405396 DOI: 10.1002/fsn3.1529] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 7.3] [Reference Citation Analysis]
37 Taha S, El Abd M, De Gobba C, Abdel-hamid M, Khalil E, Hassan F, Fathy D. The multifunctional activity of water‐soluble peptides’ extract of Domiati cheese during accelerated ripening by Neutrase. J Food Process Preserv 2020;44. [DOI: 10.1111/jfpp.14434] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
38 Di Stefano E, Tsopmo A, Oliviero T, Fogliano V, Udenigwe CC. Bioprocessing of common pulses changed seed microstructures, and improved dipeptidyl peptidase-IV and α-glucosidase inhibitory activities. Sci Rep 2019;9:15308. [PMID: 31653886 DOI: 10.1038/s41598-019-51547-5] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
39 Manzanares P, Gandía M, Garrigues S, Marcos JF. Improving Health-Promoting Effects of Food-Derived Bioactive Peptides through Rational Design and Oral Delivery Strategies. Nutrients 2019;11:E2545. [PMID: 31652543 DOI: 10.3390/nu11102545] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 7.0] [Reference Citation Analysis]
40 Patil SP, Goswami A, Kalia K, Kate AS. Plant-Derived Bioactive Peptides: A Treatment to Cure Diabetes. Int J Pept Res Ther 2020;26:955-68. [PMID: 32435169 DOI: 10.1007/s10989-019-09899-z] [Cited by in Crossref: 39] [Cited by in F6Publishing: 30] [Article Influence: 9.8] [Reference Citation Analysis]
41 Bhandari D, Rafiq S, Gat Y, Gat P, Waghmare R, Kumar V. A Review on Bioactive Peptides: Physiological Functions, Bioavailability and Safety. Int J Pept Res Ther 2020;26:139-50. [DOI: 10.1007/s10989-019-09823-5] [Cited by in Crossref: 83] [Cited by in F6Publishing: 45] [Article Influence: 20.8] [Reference Citation Analysis]
42 Liu R, Cheng J, Wu H. Discovery of Food-Derived Dipeptidyl Peptidase IV Inhibitory Peptides: A Review. Int J Mol Sci 2019;20:E463. [PMID: 30678216 DOI: 10.3390/ijms20030463] [Cited by in Crossref: 61] [Cited by in F6Publishing: 63] [Article Influence: 15.3] [Reference Citation Analysis]
43 Chew LY, Toh GT, Ismail A. Application of Proteases for the Production of Bioactive Peptides. Enzymes in Food Biotechnology 2019. [DOI: 10.1016/b978-0-12-813280-7.00015-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
44 González-Montoya M, Hernández-Ledesma B, Mora-Escobedo R, Martínez-Villaluenga C. Bioactive Peptides from Germinated Soybean with Anti-Diabetic Potential by Inhibition of Dipeptidyl Peptidase-IV, α-Amylase, and α-Glucosidase Enzymes. Int J Mol Sci 2018;19:E2883. [PMID: 30249015 DOI: 10.3390/ijms19102883] [Cited by in Crossref: 65] [Cited by in F6Publishing: 70] [Article Influence: 13.0] [Reference Citation Analysis]
45 Mojica L, Luna-Vital DA, Gonzalez de Mejia E. Black bean peptides inhibit glucose uptake in Caco-2 adenocarcinoma cells by blocking the expression and translocation pathway of glucose transporters. Toxicol Rep 2018;5:552-60. [PMID: 29854625 DOI: 10.1016/j.toxrep.2018.04.007] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 4.2] [Reference Citation Analysis]
46 Ganesan K, Xu B. Polyphenol-Rich Dry Common Beans (Phaseolus vulgaris L.) and Their Health Benefits. Int J Mol Sci 2017;18:E2331. [PMID: 29113066 DOI: 10.3390/ijms18112331] [Cited by in Crossref: 102] [Cited by in F6Publishing: 106] [Article Influence: 17.0] [Reference Citation Analysis]
47 Daliri EB, Oh DH, Lee BH. Bioactive Peptides. Foods 2017;6:E32. [PMID: 28445415 DOI: 10.3390/foods6050032] [Cited by in Crossref: 207] [Cited by in F6Publishing: 222] [Article Influence: 34.5] [Reference Citation Analysis]
48 Xia EQ, Zhu SS, He MJ, Luo F, Fu CZ, Zou TB. Marine Peptides as Potential Agents for the Management of Type 2 Diabetes Mellitus-A Prospect. Mar Drugs 2017;15:E88. [PMID: 28333091 DOI: 10.3390/md15040088] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 5.5] [Reference Citation Analysis]