BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shen XL, Song N, Du XX, Li Y, Xie JX, Jiang H. Nesfatin-1 protects dopaminergic neurons against MPP+/MPTP-induced neurotoxicity through the C-Raf-ERK1/2-dependent anti-apoptotic pathway. Sci Rep 2017;7:40961. [PMID: 28106099 DOI: 10.1038/srep40961] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 4.2] [Reference Citation Analysis]
Number Citing Articles
1 Huang Q, Zhu X, Xu M. Silencing of TRIM10 alleviates apoptosis in cellular model of Parkinson's disease. Biochemical and Biophysical Research Communications 2019;518:451-8. [DOI: 10.1016/j.bbrc.2019.08.041] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
2 Lima IS, Pêgo AC, Barros JT, Prada AR, Gozzelino R. Cell Death-Osis of Dopaminergic Neurons and the Role of Iron in Parkinson's Disease. Antioxid Redox Signal 2021;35:453-73. [PMID: 33233941 DOI: 10.1089/ars.2020.8229] [Reference Citation Analysis]
3 Rupp SK, Wölk E, Stengel A. Nesfatin-1 Receptor: Distribution, Signaling and Increasing Evidence for a G Protein-Coupled Receptor - A Systematic Review. Front Endocrinol (Lausanne) 2021;12:740174. [PMID: 34566899 DOI: 10.3389/fendo.2021.740174] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Li Y, Jiao Q, Du X, Bi M, Han S, Jiao L, Jiang H. Investigation of Behavioral Dysfunctions Induced by Monoamine Depletions in a Mouse Model of Parkinson's Disease. Front Cell Neurosci 2018;12:241. [PMID: 30135645 DOI: 10.3389/fncel.2018.00241] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
5 Jiang L, Xu K, Li J, Zhou X, Xu L, Wu Z, Ma C, Ran J, Hu P, Bao J, Wu L, Xiong Y. Nesfatin-1 suppresses interleukin-1β-induced inflammation, apoptosis, and cartilage matrix destruction in chondrocytes and ameliorates osteoarthritis in rats. Aging (Albany NY) 2020;12:1760-77. [PMID: 32003758 DOI: 10.18632/aging.102711] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 9.0] [Reference Citation Analysis]
6 Bi M, Jiao Q, Du X, Jiang H. Glut9-mediated Urate Uptake Is Responsible for Its Protective Effects on Dopaminergic Neurons in Parkinson's Disease Models. Front Mol Neurosci 2018;11:21. [PMID: 29434538 DOI: 10.3389/fnmol.2018.00021] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
7 Kuo Y, Feng K, Rajesh R. Rabies virus glycoprotein- and transferrin-functionalized liposomes to elevate epigallocatechin gallate and FK506 activity and mediate MAPK against neuronal apoptosis in Parkinson's disease. Journal of the Taiwan Institute of Chemical Engineers 2022;132:104142. [DOI: 10.1016/j.jtice.2021.11.009] [Reference Citation Analysis]
8 Liu M, Jiao Q, Du X, Bi M, Chen X, Jiang H. Potential Crosstalk Between Parkinson's Disease and Energy Metabolism. Aging Dis 2021;12:2003-15. [PMID: 34881082 DOI: 10.14336/AD.2021.0422] [Reference Citation Analysis]
9 Dong D, Xie J, Wang J. Neuroprotective Effects of Brain-Gut Peptides: A Potential Therapy for Parkinson's Disease. Neurosci Bull 2019;35:1085-96. [PMID: 31286411 DOI: 10.1007/s12264-019-00407-3] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
10 Erfani S, Moghimi A, Aboutaleb N, Khaksari M. Protective effects of Nesfatin-1 peptide on cerebral ischemia reperfusion injury via inhibition of neuronal cell death and enhancement of antioxidant defenses. Metab Brain Dis 2019;34:79-85. [DOI: 10.1007/s11011-018-0323-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
11 Kuo YC, Chen IY, Rajesh R. Astragaloside IV- and nesfatin-1-encapsulated phosphatidylserine liposomes conjugated with wheat germ agglutinin and leptin to activate anti-apoptotic pathway and block phosphorylated tau protein expression for Parkinson's disease treatment. Mater Sci Eng C Mater Biol Appl 2021;129:112361. [PMID: 34579880 DOI: 10.1016/j.msec.2021.112361] [Reference Citation Analysis]
12 Behl T, Madaan P, Sehgal A, Singh S, Makeen HA, Albratty M, Alhazmi HA, Meraya AM, Bungau S. Demystifying the Neuroprotective Role of Neuropeptides in Parkinson's Disease: A Newfangled and Eloquent Therapeutic Perspective. Int J Mol Sci 2022;23:4565. [PMID: 35562956 DOI: 10.3390/ijms23094565] [Reference Citation Analysis]
13 Artyukhova MA, Tyurina YY, Chu CT, Zharikova TM, Bayır H, Kagan VE, Timashev PS. Interrogating Parkinson's disease associated redox targets: Potential application of CRISPR editing. Free Radic Biol Med 2019;144:279-92. [PMID: 31201850 DOI: 10.1016/j.freeradbiomed.2019.06.007] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
14 Chen X, Dong J, Jiao Q, Du X, Bi M, Jiang H. "Sibling" battle or harmony: crosstalk between nesfatin-1 and ghrelin. Cell Mol Life Sci 2022;79:169. [PMID: 35239020 DOI: 10.1007/s00018-022-04193-6] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Chen H, Li X, Ma H, Zheng W, Shen X. Reduction in Nesfatin-1 Levels in the Cerebrospinal Fluid and Increased Nigrostriatal Degeneration Following Ventricular Administration of Anti-nesfatin-1 Antibody in Mice. Front Neurosci 2021;15:621173. [PMID: 33613183 DOI: 10.3389/fnins.2021.621173] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Welcome MO. Gut Microbiota Disorder, Gut Epithelial and Blood-Brain Barrier Dysfunctions in Etiopathogenesis of Dementia: Molecular Mechanisms and Signaling Pathways. Neuromolecular Med 2019;21:205-26. [PMID: 31115795 DOI: 10.1007/s12017-019-08547-5] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 5.7] [Reference Citation Analysis]
17 Cui C, Lin H, Shi Y, Pan R. Hypoxic postconditioning attenuates apoptosis via inactivation of adenosine A2a receptor through NDRG3-Raf-ERK pathway. Biochemical and Biophysical Research Communications 2017;491:277-84. [DOI: 10.1016/j.bbrc.2017.07.112] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
18 Erfani S, Moghimi A, Aboutaleb N, Khaksari M. Nesfatin-1 Improve Spatial Memory Impairment Following Transient Global Cerebral Ischemia/Reperfusion via Inhibiting Microglial and Caspase-3 Activation. J Mol Neurosci 2018;65:377-84. [DOI: 10.1007/s12031-018-1105-3] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
19 Welcome MO. Current Perspectives and Mechanisms of Relationship between Intestinal Microbiota Dysfunction and Dementia: A Review. Dement Geriatr Cogn Dis Extra 2018;8:360-81. [PMID: 30483303 DOI: 10.1159/000492491] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
20 Xu Y, Chen F. Antioxidant, Anti-Inflammatory and Anti-Apoptotic Activities of Nesfatin-1: A Review. J Inflamm Res 2020;13:607-17. [PMID: 33061526 DOI: 10.2147/JIR.S273446] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
21 Tang W, Zhu H, Feng Y, Guo R, Wan D. The Impact of Gut Microbiota Disorders on the Blood-Brain Barrier. Infect Drug Resist 2020;13:3351-63. [PMID: 33061482 DOI: 10.2147/IDR.S254403] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
22 Xu D, He H, Jiang X, Yang L, Liu D, Yang L, Geng G, Cheng J, Chen H, Hua R, Duan J, Li X, Wu L, Li Y, Li Q. Raf-ERK1/2 signalling pathways mediate steroid hormone synthesis in bovine ovarian granulosa cells. Reprod Domest Anim 2019;54:741-9. [PMID: 30785650 DOI: 10.1111/rda.13419] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
23 Sun X, Xue L, Wang Z, Xie A. Update to the Treatment of Parkinson's Disease Based on the Gut-Brain Axis Mechanism. Front Neurosci 2022;16:878239. [PMID: 35873830 DOI: 10.3389/fnins.2022.878239] [Reference Citation Analysis]
24 Nazarnezhad S, Rahmati M, Shayannia A, Abbasi Z, Salehi M, Khaksari M. Nesfatin-1 protects PC12 cells against high glucose-induced cytotoxicity via inhibiting oxidative stress, autophagy and apoptosis. NeuroToxicology 2019;74:196-202. [DOI: 10.1016/j.neuro.2019.07.001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
25 Jo MG, Ikram M, Jo MH, Yoo L, Chung KC, Nah SY, Hwang H, Rhim H, Kim MO. Gintonin Mitigates MPTP-Induced Loss of Nigrostriatal Dopaminergic Neurons and Accumulation of α-Synuclein via the Nrf2/HO-1 Pathway. Mol Neurobiol 2019;56:39-55. [PMID: 29675576 DOI: 10.1007/s12035-018-1020-1] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 9.8] [Reference Citation Analysis]
26 Ke M, Chong CM, Zhu Q, Zhang K, Cai CZ, Lu JH, Qin D, Su H. Comprehensive Perspectives on Experimental Models for Parkinson's Disease. Aging Dis 2021;12:223-46. [PMID: 33532138 DOI: 10.14336/AD.2020.0331] [Reference Citation Analysis]
27 Chen P, Wang Y, Chen L, Song N, Xie J. Apelin-13 Protects Dopaminergic Neurons against Rotenone-Induced Neurotoxicity through the AMPK/mTOR/ULK-1 Mediated Autophagy Activation. Int J Mol Sci 2020;21:E8376. [PMID: 33171641 DOI: 10.3390/ijms21218376] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]