BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Inutsuka A, Yamashita A, Chowdhury S, Nakai J, Ohkura M, Taguchi T, Yamanaka A. The integrative role of orexin/hypocretin neurons in nociceptive perception and analgesic regulation. Sci Rep 2016;6:29480. [PMID: 27385517 DOI: 10.1038/srep29480] [Cited by in Crossref: 62] [Cited by in F6Publishing: 55] [Article Influence: 10.3] [Reference Citation Analysis]
Number Citing Articles
1 Kukushkin ML, Poluektov MG. Current Views on Chronic Pain and Its Relationship to the State of Sleep. Neurosci Behav Physi 2019;49:13-9. [DOI: 10.1007/s11055-018-0684-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
2 Inutsuka A, Ino D, Onaka T. Detection of neuropeptides in vivo and open questions for current and upcoming fluorescent sensors for neuropeptides. Peptides 2021;136:170456. [PMID: 33245950 DOI: 10.1016/j.peptides.2020.170456] [Reference Citation Analysis]
3 Moriya S, Yamashita A, Kawashima S, Nishi R, Yamanaka A, Kuwaki T. Acute Aversive Stimuli Rapidly Increase the Activity of Ventral Tegmental Area Dopamine Neurons in Awake Mice. Neuroscience 2018;386:16-23. [PMID: 29958943 DOI: 10.1016/j.neuroscience.2018.06.027] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
4 Kikusui T, Kajita M, Otsuka N, Hattori T, Kumazawa K, Watarai A, Nagasawa M, Inutsuka A, Yamanaka A, Matsuo N, Covington HE, Mogi K. Sex differences in olfactory-induced neural activation of the amygdala. Behavioural Brain Research 2018;346:96-104. [DOI: 10.1016/j.bbr.2017.11.034] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
5 Arrigoni E, Chee MJS, Fuller PM. To eat or to sleep: That is a lateral hypothalamic question. Neuropharmacology 2019;154:34-49. [PMID: 30503993 DOI: 10.1016/j.neuropharm.2018.11.017] [Cited by in Crossref: 49] [Cited by in F6Publishing: 39] [Article Influence: 12.3] [Reference Citation Analysis]
6 Bodnar RJ. Endogenous Opiates and Behavior: 2016. Peptides 2018;101:167-212. [DOI: 10.1016/j.peptides.2018.01.011] [Cited by in Crossref: 37] [Cited by in F6Publishing: 32] [Article Influence: 9.3] [Reference Citation Analysis]
7 Ono D, Yamanaka A. Hypothalamic regulation of the sleep/wake cycle. Neurosci Res 2017;118:74-81. [PMID: 28526553 DOI: 10.1016/j.neures.2017.03.013] [Cited by in Crossref: 30] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
8 Yamashita T, Yamanaka A. Lateral hypothalamic circuits for sleep-wake control. Curr Opin Neurobiol 2017;44:94-100. [PMID: 28427008 DOI: 10.1016/j.conb.2017.03.020] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 5.8] [Reference Citation Analysis]
9 Askari K, Oryan S, Eidi A, Zaringhalam J, Haghparast A. Modulatory role of the orexin system in stress-induced analgesia: Involvement of the ventral tegmental area. Eur J Pain 2021. [PMID: 34288265 DOI: 10.1002/ejp.1840] [Reference Citation Analysis]
10 Szczepanska-sadowska E, Cudnoch-jedrzejewska A, Sadowski B. Differential role of specific cardiovascular neuropeptides in pain regulation: Relevance to cardiovascular diseases. Neuropeptides 2020;81:102046. [DOI: 10.1016/j.npep.2020.102046] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
11 Jones-Tabah J, Clarke PB, Hébert TE. Measuring G protein-coupled receptor signalling in the brain with resonance energy transfer based biosensors. Curr Opin Pharmacol 2017;32:44-8. [PMID: 27837687 DOI: 10.1016/j.coph.2016.10.008] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
12 Dai D, Li W, Chen A, Gao XF, Xiong L. Lateral Habenula and Its Potential Roles in Pain and Related Behaviors. ACS Chem Neurosci 2022;13:1108-18. [PMID: 35412792 DOI: 10.1021/acschemneuro.2c00067] [Reference Citation Analysis]
13 Futatsuki T, Yamashita A, Ikbar KN, Yamanaka A, Arita K, Kakihana Y, Kuwaki T. Involvement of orexin neurons in fasting- and central adenosine-induced hypothermia. Sci Rep 2018;8:2717. [PMID: 29426934 DOI: 10.1038/s41598-018-21252-w] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
14 Richardson K, Sweatt N, Tran H, Apprey V, Uthayathas S, Taylor R, Gupta K. Significant Quantitative Differences in Orexin Neuronal Activation After Pain Assessments in an Animal Model of Sickle Cell Disease. Front Mol Biosci 2020;7:5. [PMID: 32118032 DOI: 10.3389/fmolb.2020.00005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Asano H, Arima Y, Yokota S, Fujitani M. New nociceptive circuits to the hypothalamic perifornical area from the spinal cord and spinal trigeminal nucleus via the parabrachial nucleus. Biochemical and Biophysical Research Communications 2019;512:705-11. [DOI: 10.1016/j.bbrc.2019.02.153] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Azeez IA, Del Gallo F, Cristino L, Bentivoglio M. Daily Fluctuation of Orexin Neuron Activity and Wiring: The Challenge of "Chronoconnectivity". Front Pharmacol 2018;9:1061. [PMID: 30319410 DOI: 10.3389/fphar.2018.01061] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
17 Kukushkin ML, Poluektov MG. Contemporary approaches to the relationships between chronic pain and sleep. Z nevrol psikhiatr im S S Korsakova 2017;117:19. [DOI: 10.17116/jnevro20171174219-27] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
18 Matsui S, Sasaki T, Kohno D, Yaku K, Inutsuka A, Yokota-Hashimoto H, Kikuchi O, Suga T, Kobayashi M, Yamanaka A, Harada A, Nakagawa T, Onaka T, Kitamura T. Neuronal SIRT1 regulates macronutrient-based diet selection through FGF21 and oxytocin signalling in mice. Nat Commun 2018;9:4604. [PMID: 30389922 DOI: 10.1038/s41467-018-07033-z] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 7.5] [Reference Citation Analysis]
19 Fakhoury M, Salman I, Najjar W, Merhej G, Lawand N. The Lateral Hypothalamus: An Uncharted Territory for Processing Peripheral Neurogenic Inflammation. Front Neurosci 2020;14:101. [PMID: 32116534 DOI: 10.3389/fnins.2020.00101] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
20 Karnani MM, Schöne C, Bracey EF, González JA, Viskaitis P, Li HT, Adamantidis A, Burdakov D. Role of spontaneous and sensory orexin network dynamics in rapid locomotion initiation. Prog Neurobiol 2020;187:101771. [PMID: 32058043 DOI: 10.1016/j.pneurobio.2020.101771] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
21 Kuner R, Kuner T. Cellular Circuits in the Brain and Their Modulation in Acute and Chronic Pain. Physiol Rev 2021;101:213-58. [PMID: 32525759 DOI: 10.1152/physrev.00040.2019] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 10.0] [Reference Citation Analysis]
22 Iwakawa S, Kanmura Y, Kuwaki T. Orexin Receptor Blockade-Induced Sleep Preserves the Ability to Wake in the Presence of Threat in Mice. Front Behav Neurosci 2018;12:327. [PMID: 30687033 DOI: 10.3389/fnbeh.2018.00327] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
23 Pourrahimi AM, Abbasnejad M, Esmaeili-mahani S, Kooshki R, Raoof M. Intra-periaqueductal gray matter administration of orexin-A exaggerates pulpitis-induced anxiogenic responses and c-fos expression mainly through the interaction with orexin 1 and cannabinoid 1 receptors in rats. Neuropeptides 2019;73:25-33. [DOI: 10.1016/j.npep.2018.12.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
24 Nishitani N, Ohmura Y, Nagayasu K, Shibui N, Kaneko S, Ohashi A, Yoshida T, Yamanaka A, Yoshioka M. CRISPR/Cas9-mediated in vivo gene editing reveals that neuronal 5-HT1A receptors in the dorsal raphe nucleus contribute to body temperature regulation in mice. Brain Res 2019;1719:243-52. [PMID: 31194947 DOI: 10.1016/j.brainres.2019.06.009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
25 Bracey EF, Burdakov D. Fast sensory representations in the lateral hypothalamus and their roles in brain function. Physiology & Behavior 2020;222:112952. [DOI: 10.1016/j.physbeh.2020.112952] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
26 Pourreza P, Haghparast A, Sadeghi M, Nazari-Serenjeh F, Askari K, Haghparast A. Orexin-2 receptor antagonism in the cornu ammonis 1 region of hippocampus prevented the antinociceptive responses induced by chemical stimulation of the lateral hypothalamus in the animal model of persistent pain. Behav Pharmacol 2021;32:515-23. [PMID: 34320521 DOI: 10.1097/FBP.0000000000000646] [Reference Citation Analysis]
27 Kami K, Tajima F, Senba E. Activation of mesolimbic reward system via laterodorsal tegmental nucleus and hypothalamus in exercise-induced hypoalgesia. Sci Rep 2018;8:11540. [PMID: 30069057 DOI: 10.1038/s41598-018-29915-4] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
28 Koizumi K, Inoue M, Chowdhury S, Bito H, Yamanaka A, Ishizuka T, Yawo H. Functional emergence of a column-like architecture in layer 5 of mouse somatosensory cortex in vivo. J Physiol Sci 2019;69:65-77. [PMID: 29761270 DOI: 10.1007/s12576-018-0618-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
29 Kooshki R, Abbasnejad M, Esmaeili-mahani S, Raoof M, Sheibani V. Activation orexin 1 receptors in the ventrolateral periaqueductal gray matter attenuate nitroglycerin-induced migraine attacks and calcitonin gene related peptide up-regulation in trigeminal nucleus caudalis of rats. Neuropharmacology 2020;178:107981. [DOI: 10.1016/j.neuropharm.2020.107981] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
30 Yoshida K, Tsutsui-kimura I, Kono A, Yamanaka A, Kobayashi K, Watanabe M, Mimura M, Tanaka KF. Opposing Ventral Striatal Medium Spiny Neuron Activities Shaped by Striatal Parvalbumin-Expressing Interneurons during Goal-Directed Behaviors. Cell Reports 2020;31:107829. [DOI: 10.1016/j.celrep.2020.107829] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
31 Chowdhury S, Hung CJ, Izawa S, Inutsuka A, Kawamura M, Kawashima T, Bito H, Imayoshi I, Abe M, Sakimura K, Yamanaka A. Dissociating orexin-dependent and -independent functions of orexin neurons using novel Orexin-Flp knock-in mice. Elife 2019;8:e44927. [PMID: 31159922 DOI: 10.7554/eLife.44927] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
32 Mamillapalli R, Dang T, Habata S, Gao XB, Taylor HS. Activation of Hypocretin Neurons in Endometriosis. Reprod Sci 2021. [PMID: 34279849 DOI: 10.1007/s43032-021-00682-4] [Reference Citation Analysis]
33 Rahaman SM, Chowdhury S, Mukai Y, Ono D, Yamaguchi H, Yamanaka A. Functional Interaction Between GABAergic Neurons in the Ventral Tegmental Area and Serotonergic Neurons in the Dorsal Raphe Nucleus. Front Neurosci 2022;16:877054. [DOI: 10.3389/fnins.2022.877054] [Reference Citation Analysis]
34 Wang RF, Guo H, Jiang SY, Liu ZL, Qu WM, Huang ZL, Wang L. Control of wakefulness by lateral hypothalamic glutamatergic neurons in male mice. J Neurosci Res 2021;99:1689-703. [PMID: 33713502 DOI: 10.1002/jnr.24828] [Reference Citation Analysis]
35 Holland PR. Biology of Neuropeptides: Orexinergic Involvement in Primary Headache Disorders. Headache 2017;57 Suppl 2:76-88. [PMID: 28485849 DOI: 10.1111/head.13078] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
36 Peleg-Raibstein D, Burdakov D. Do orexin/hypocretin neurons signal stress or reward? Peptides 2021;145:170629. [PMID: 34416308 DOI: 10.1016/j.peptides.2021.170629] [Reference Citation Analysis]
37 Burdakov D, Peleg-raibstein D. The hypothalamus as a primary coordinator of memory updating. Physiology & Behavior 2020;223:112988. [DOI: 10.1016/j.physbeh.2020.112988] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 5.0] [Reference Citation Analysis]
38 Ahmadi-soleimani SM, Mianbandi V, Azizi H, Azhdari-zarmehri H, Ghaemi-jandabi M, Abbasi-mazar A, Mohajer Y, Darana SP. Coregulation of sleep-pain physiological interplay by orexin system: An unprecedented review. Behavioural Brain Research 2020;391:112650. [DOI: 10.1016/j.bbr.2020.112650] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
39 Li SB, de Lecea L. The hypocretin (orexin) system: from a neural circuitry perspective. Neuropharmacology 2020;167:107993. [PMID: 32135427 DOI: 10.1016/j.neuropharm.2020.107993] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 14.5] [Reference Citation Analysis]
40 Matsuura W, Nakamoto K, Tokuyama S. Involvement of descending pain control system regulated by orexin receptor signaling in the induction of central post-stroke pain in mice. Eur J Pharmacol 2020;874:173029. [PMID: 32084419 DOI: 10.1016/j.ejphar.2020.173029] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
41 Moriya S, Yamashita A, Masukawa D, Sakaguchi J, Ikoma Y, Sameshima Y, Kambe Y, Yamanaka A, Kuwaki T. Involvement of A5/A7 noradrenergic neurons and B2 serotonergic neurons in nociceptive processing: a fiber photometry study. Neural Regen Res 2022;17:881-6. [PMID: 34472489 DOI: 10.4103/1673-5374.322465] [Reference Citation Analysis]
42 Chowdhury S, Matsubara T, Miyazaki T, Ono D, Fukatsu N, Abe M, Sakimura K, Sudo Y, Yamanaka A. GABA neurons in the ventral tegmental area regulate non-rapid eye movement sleep in mice. Elife 2019;8:e44928. [PMID: 31159923 DOI: 10.7554/eLife.44928] [Cited by in Crossref: 23] [Cited by in F6Publishing: 13] [Article Influence: 7.7] [Reference Citation Analysis]
43 Yamashita A, Moriya S, Nishi R, Kaminosono J, Yamanaka A, Kuwaki T. Aversive emotion rapidly activates orexin neurons and increases heart rate in freely moving mice. Mol Brain 2021;14:104. [PMID: 34193206 DOI: 10.1186/s13041-021-00818-2] [Reference Citation Analysis]
44 Chowdhury S, Yamanaka A. Optogenetic activation of serotonergic terminals facilitates GABAergic inhibitory input to orexin/hypocretin neurons. Sci Rep. 2016;6:36039. [PMID: 27824065 DOI: 10.1038/srep36039] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
45 Mieda M. The roles of orexins in sleep/wake regulation. Neuroscience Research 2017;118:56-65. [DOI: 10.1016/j.neures.2017.03.015] [Cited by in Crossref: 42] [Cited by in F6Publishing: 39] [Article Influence: 8.4] [Reference Citation Analysis]
46 Inutsuka A, Kimizuka N, Takanohashi N, Yakabu H, Onaka T. Visualization of a blue light transmission area in living animals using light-induced nuclear translocation of fluorescent proteins. Biochemical and Biophysical Research Communications 2020;522:138-43. [DOI: 10.1016/j.bbrc.2019.11.023] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
47 Usui M, Kaneko K, Oi Y, Kobayashi M. Orexin facilitates GABAergic IPSCs via postsynaptic OX1 receptors coupling to the intracellular PKC signalling cascade in the rat cerebral cortex. Neuropharmacology 2019;149:97-112. [PMID: 30763655 DOI: 10.1016/j.neuropharm.2019.02.012] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
48 Nasanbuyan N, Yoshida M, Takayanagi Y, Inutsuka A, Nishimori K, Yamanaka A, Onaka T. Oxytocin-Oxytocin Receptor Systems Facilitate Social Defeat Posture in Male Mice. Endocrinology 2018;159:763-75. [PMID: 29186377 DOI: 10.1210/en.2017-00606] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 6.3] [Reference Citation Analysis]
49 Miyazaki T, Chowdhury S, Yamashita T, Matsubara T, Yawo H, Yuasa H, Yamanaka A. Large Timescale Interrogation of Neuronal Function by Fiberless Optogenetics Using Lanthanide Micro-particles. Cell Reports 2019;26:1033-1043.e5. [DOI: 10.1016/j.celrep.2019.01.001] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
50 Moriya S, Yamashita A, Masukawa D, Kambe Y, Sakaguchi J, Setoyama H, Yamanaka A, Kuwaki T. Involvement of supralemniscal nucleus (B9) 5-HT neuronal system in nociceptive processing: a fiber photometry study. Mol Brain 2020;13:14. [PMID: 32005128 DOI: 10.1186/s13041-020-0553-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
51 Ohtani S, Fujita S, Hasegawa K, Tsuda H, Tonogi M, Kobayashi M. Relationship between the fluorescence intensity of rhodamine-labeled orexin A and the calcium responses in cortical neurons: An in vivo two-photon calcium imaging study. J Pharmacol Sci 2018;138:76-82. [PMID: 30293961 DOI: 10.1016/j.jphs.2018.09.005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
52 Zareie F, Ghalebandi S, Askari K, Mousavi Z, Haghparast A. Orexin receptors in the CA1 region of hippocampus modulate the stress-induced antinociceptive responses in an animal model of persistent inflammatory pain. Peptides 2021;147:170679. [PMID: 34718063 DOI: 10.1016/j.peptides.2021.170679] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
53 Kato Y, Katsumata H, Inutsuka A, Yamanaka A, Onaka T, Minami S, Orikasa C. Involvement of MCH-oxytocin neural relay within the hypothalamus in murine nursing behavior. Sci Rep 2021;11:3348. [PMID: 33558633 DOI: 10.1038/s41598-021-82773-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Izawa S, Chowdhury S, Miyazaki T, Mukai Y, Ono D, Inoue R, Ohmura Y, Mizoguchi H, Kimura K, Yoshioka M, Terao A, Kilduff TS, Yamanaka A. REM sleep-active MCH neurons are involved in forgetting hippocampus-dependent memories. Science 2019;365:1308-13. [PMID: 31604241 DOI: 10.1126/science.aax9238] [Cited by in Crossref: 51] [Cited by in F6Publishing: 34] [Article Influence: 25.5] [Reference Citation Analysis]
55 Nguyen PH, Greene E, Kong BW, Bottje W, Anthony N, Dridi S. Acute Heat Stress Alters the Expression of Orexin System in Quail Muscle. Front Physiol 2017;8:1079. [PMID: 29311994 DOI: 10.3389/fphys.2017.01079] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
56 Moriya S, Yamashita A, Nishi R, Ikoma Y, Yamanaka A, Kuwaki T. Acute nociceptive stimuli rapidly induce the activity of serotonin and noradrenalin neurons in the brain stem of awake mice. IBRO Rep 2019;7:1-9. [PMID: 31194165 DOI: 10.1016/j.ibror.2019.05.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
57 Maejima T, Tsuno Y, Miyazaki S, Tsuneoka Y, Hasegawa E, Islam MT, Enoki R, Nakamura TJ, Mieda M. GABA from vasopressin neurons regulates the time at which suprachiasmatic nucleus molecular clocks enable circadian behavior. Proc Natl Acad Sci U S A 2021;118:e2010168118. [PMID: 33526663 DOI: 10.1073/pnas.2010168118] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]