BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Cole S, Mayer HS, Petrovich GD. Orexin/Hypocretin-1 Receptor Antagonism Selectively Reduces Cue-Induced Feeding in Sated Rats and Recruits Medial Prefrontal Cortex and Thalamus. Sci Rep 2015;5:16143. [PMID: 26536818 DOI: 10.1038/srep16143] [Cited by in Crossref: 33] [Cited by in F6Publishing: 27] [Article Influence: 4.7] [Reference Citation Analysis]
Number Citing Articles
1 Kirkpatrick GE, Dingess PM, Aadland JA, Brown TE. Acute high-intensity interval exercise attenuates incubation of craving for foods high in fat. Obesity (Silver Spring) 2022. [PMID: 35384349 DOI: 10.1002/oby.23418] [Reference Citation Analysis]
2 Yaeger JD, Krupp KT, Gale JJ, Summers CH. Counterbalanced microcircuits for Orx1 and Orx2 regulation of stress reactivity. Medicine in Drug Discovery 2020;8:100059. [DOI: 10.1016/j.medidd.2020.100059] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
3 Risco S, Mediavilla C. Orexin A in the ventral tegmental area enhances saccharin-induced conditioned flavor preference: The role of D1 receptors in central nucleus of amygdala. Behavioural Brain Research 2018;348:192-200. [DOI: 10.1016/j.bbr.2018.04.010] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
4 McGinty JF, Otis JM. Heterogeneity in the Paraventricular Thalamus: The Traffic Light of Motivated Behaviors. Front Behav Neurosci 2020;14:590528. [PMID: 33177999 DOI: 10.3389/fnbeh.2020.590528] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
5 Lee J, Raycraft L, Johnson AW. The dynamic regulation of appetitive behavior through lateral hypothalamic orexin and melanin concentrating hormone expressing cells. Physiol Behav 2021;229:113234. [PMID: 33130035 DOI: 10.1016/j.physbeh.2020.113234] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
6 Narayanaswami V, Dwoskin LP. Obesity: Current and potential pharmacotherapeutics and targets. Pharmacol Ther 2017;170:116-47. [PMID: 27773782 DOI: 10.1016/j.pharmthera.2016.10.015] [Cited by in Crossref: 69] [Cited by in F6Publishing: 65] [Article Influence: 11.5] [Reference Citation Analysis]
7 Ardeshiri MR, Hosseinmardi N, Akbari E. The effect of orexin 1 and orexin 2 receptors antagonisms in the basolateral amygdala on memory processing in a passive avoidance task. Physiology & Behavior 2017;174:42-8. [DOI: 10.1016/j.physbeh.2017.03.004] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 2.4] [Reference Citation Analysis]
8 Cole S, Keefer SE, Anderson LC, Petrovich GD. Medial Prefrontal Cortex Neural Plasticity, Orexin Receptor 1 Signaling, and Connectivity with the Lateral Hypothalamus Are Necessary in Cue-Potentiated Feeding. J Neurosci 2020;40:1744-55. [PMID: 31953368 DOI: 10.1523/JNEUROSCI.1803-19.2020] [Cited by in Crossref: 15] [Cited by in F6Publishing: 4] [Article Influence: 7.5] [Reference Citation Analysis]
9 Reppucci CJ, Petrovich GD. Neural substrates of fear-induced hypophagia in male and female rats. Brain Struct Funct 2018;223:2925-47. [PMID: 29704225 DOI: 10.1007/s00429-018-1668-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
10 Tsuneki H, Wada T, Sasaoka T. Chronopathophysiological implications of orexin in sleep disturbances and lifestyle-related disorders. Pharmacology & Therapeutics 2018;186:25-44. [DOI: 10.1016/j.pharmthera.2017.12.010] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
11 van Galen KA, Ter Horst KW, Serlie MJ. Serotonin, food intake, and obesity. Obes Rev 2021;22:e13210. [PMID: 33559362 DOI: 10.1111/obr.13210] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Anderson LC, Petrovich GD. Ventromedial prefrontal cortex mediates sex differences in persistent cognitive drive for food. Sci Rep 2018;8:2230. [PMID: 29396448 DOI: 10.1038/s41598-018-20553-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
13 Campbell EJ, Barker DJ, Nasser HM, Kaganovsky K, Dayas CV, Marchant NJ. Cue-induced food seeking after punishment is associated with increased Fos expression in the lateral hypothalamus and basolateral and medial amygdala. Behav Neurosci 2017;131:155-67. [PMID: 28221079 DOI: 10.1037/bne0000185] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
14 Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The Physiological Control of Eating: Signals, Neurons, and Networks. Physiol Rev 2021. [PMID: 34486393 DOI: 10.1152/physrev.00028.2020] [Reference Citation Analysis]
15 Liu X, Gao S, Zhang N, Jin T, Sun X, Luan X, Xu L, Guo F. The orexinergic neural pathway from the lateral hypothalamus to the nucleus accumbens and its regulation of palatable food intake. Neuropeptides 2020;80:102028. [PMID: 32067750 DOI: 10.1016/j.npep.2020.102028] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
16 Kanoski SE, Boutelle KN. Food cue reactivity: Neurobiological and behavioral underpinnings. Rev Endocr Metab Disord 2022. [PMID: 35482137 DOI: 10.1007/s11154-022-09724-x] [Reference Citation Analysis]
17 Petrovich GD. Lateral Hypothalamus as a Motivation-Cognition Interface in the Control of Feeding Behavior. Front Syst Neurosci 2018;12:14. [PMID: 29713268 DOI: 10.3389/fnsys.2018.00014] [Cited by in Crossref: 41] [Cited by in F6Publishing: 32] [Article Influence: 10.3] [Reference Citation Analysis]
18 Petrovich GD. The Function of Paraventricular Thalamic Circuitry in Adaptive Control of Feeding Behavior. Front Behav Neurosci 2021;15:671096. [PMID: 33986649 DOI: 10.3389/fnbeh.2021.671096] [Reference Citation Analysis]
19 Katzman MA, Katzman MP. Neurobiology of the Orexin System and Its Potential Role in the Regulation of Hedonic Tone. Brain Sciences 2022;12:150. [DOI: 10.3390/brainsci12020150] [Reference Citation Analysis]
20 Kung PH, Soriano-Mas C, Steward T. The influence of the subcortex and brain stem on overeating: How advances in functional neuroimaging can be applied to expand neurobiological models to beyond the cortex. Rev Endocr Metab Disord 2022. [PMID: 35380355 DOI: 10.1007/s11154-022-09720-1] [Reference Citation Analysis]
21 Iglesias AG, Flagel SB. The Paraventricular Thalamus as a Critical Node of Motivated Behavior via the Hypothalamic-Thalamic-Striatal Circuit. Front Integr Neurosci 2021;15:706713. [PMID: 34220458 DOI: 10.3389/fnint.2021.706713] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Haight JL, Campus P, Maria-Rios CE, Johnson AM, Klumpner MS, Kuhn BN, Covelo IR, Morrow JD, Flagel SB. The lateral hypothalamus and orexinergic transmission in the paraventricular thalamus promote the attribution of incentive salience to reward-associated cues. Psychopharmacology (Berl) 2020;237:3741-58. [PMID: 32852601 DOI: 10.1007/s00213-020-05651-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
23 Anderson LC, Petrovich GD. Distinct recruitment of the hippocampal, thalamic, and amygdalar neurons projecting to the prelimbic cortex in male and female rats during context-mediated renewal of responding to food cues. Neurobiol Learn Mem 2018;150:25-35. [PMID: 29496643 DOI: 10.1016/j.nlm.2018.02.013] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
24 Anderson LC, Petrovich GD. Sex specific recruitment of a medial prefrontal cortex-hippocampal-thalamic system during context-dependent renewal of responding to food cues in rats. Neurobiol Learn Mem 2017;139:11-21. [PMID: 27940080 DOI: 10.1016/j.nlm.2016.12.004] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
25 Derman RC, Ferrario CR. Junk-food enhances conditioned food cup approach to a previously established food cue, but does not alter cue potentiated feeding; implications for the effects of palatable diets on incentive motivation. Physiol Behav 2018;192:145-57. [PMID: 29555195 DOI: 10.1016/j.physbeh.2018.03.012] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
26 Keefer SE, Cole S, Petrovich GD. Orexin/hypocretin receptor 1 signaling mediates Pavlovian cue-food conditioning and extinction. Physiol Behav 2016;162:27-36. [PMID: 26945612 DOI: 10.1016/j.physbeh.2016.02.042] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
27 Soysal P, Smith L, Dokuzlar O, Isik AT. Relationship Between Nutritional Status and Insomnia Severity in Older Adults. Journal of the American Medical Directors Association 2019;20:1593-8. [DOI: 10.1016/j.jamda.2019.03.030] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
28 Muthmainah M, Gogos A, Sumithran P, Brown RM. Orexins (hypocretins): The intersection between homeostatic and hedonic feeding. J Neurochem 2021;157:1473-94. [PMID: 33608877 DOI: 10.1111/jnc.15328] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Hagar JM, Macht VA, Wilson SP, Fadel JR. Upregulation of orexin/hypocretin expression in aged rats: Effects on feeding latency and neurotransmission in the insular cortex. Neuroscience 2017;350:124-32. [PMID: 28344067 DOI: 10.1016/j.neuroscience.2017.03.021] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
30 Keefer SE, Petrovich GD. The basolateral amygdala-medial prefrontal cortex circuitry regulates behavioral flexibility during appetitive reversal learning. Behav Neurosci 2020;134:34-44. [PMID: 31829643 DOI: 10.1037/bne0000349] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
31 Han D, Han F, Shi Y, Zheng S, Wen L. Mechanisms of Memory Impairment Induced by Orexin-A via Orexin 1 and Orexin 2 Receptors in Post-traumatic Stress Disorder Rats. Neuroscience 2020;432:126-36. [PMID: 32112915 DOI: 10.1016/j.neuroscience.2020.02.026] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
32 Buczek L, Migliaccio J, Petrovich GD. Hedonic Eating: Sex Differences and Characterization of Orexin Activation and Signaling. Neuroscience 2020;436:34-45. [PMID: 32283183 DOI: 10.1016/j.neuroscience.2020.04.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
33 Keefer SE, Petrovich GD. Distinct recruitment of basolateral amygdala-medial prefrontal cortex pathways across Pavlovian appetitive conditioning. Neurobiol Learn Mem 2017;141:27-32. [PMID: 28288832 DOI: 10.1016/j.nlm.2017.03.006] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]