BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Vittoz NM, Berridge CW. Hypocretin/orexin selectively increases dopamine efflux within the prefrontal cortex: involvement of the ventral tegmental area. Neuropsychopharmacology 2006;31:384-95. [PMID: 15988471 DOI: 10.1038/sj.npp.1300807] [Cited by in Crossref: 123] [Cited by in F6Publishing: 126] [Article Influence: 7.7] [Reference Citation Analysis]
Number Citing Articles
1 Giardino WJ, de Lecea L. Hypocretin (orexin) neuromodulation of stress and reward pathways. Curr Opin Neurobiol 2014;29:103-8. [PMID: 25050887 DOI: 10.1016/j.conb.2014.07.006] [Cited by in Crossref: 57] [Cited by in F6Publishing: 51] [Article Influence: 7.1] [Reference Citation Analysis]
2 Kumar A, Chanana P, Choudhary S. Emerging role of orexin antagonists in insomnia therapeutics: An update on SORAs and DORAs. Pharmacological Reports 2016;68:231-42. [DOI: 10.1016/j.pharep.2015.09.002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
3 Qi K, Wei C, Li Y, Sui N. Orexin receptors within the nucleus accumbens shell mediate the stress but not drug priming-induced reinstatement of morphine conditioned place preference. Front Behav Neurosci 2013;7:144. [PMID: 24133421 DOI: 10.3389/fnbeh.2013.00144] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 2.4] [Reference Citation Analysis]
4 Tyree SM, Borniger JC, de Lecea L. Hypocretin as a Hub for Arousal and Motivation. Front Neurol 2018;9:413. [PMID: 29928253 DOI: 10.3389/fneur.2018.00413] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 9.3] [Reference Citation Analysis]
5 Woodworth HL, Batchelor HM, Beekly BG, Bugescu R, Brown JA, Kurt G, Fuller PM, Leinninger GM. Neurotensin Receptor-1 Identifies a Subset of Ventral Tegmental Dopamine Neurons that Coordinates Energy Balance. Cell Rep 2017;20:1881-92. [PMID: 28834751 DOI: 10.1016/j.celrep.2017.08.001] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
6 Staton D. The impairment of pediatric bipolar sleep: Hypotheses regarding a core defect and phenotype-specific sleep disturbances. Journal of Affective Disorders 2008;108:199-206. [DOI: 10.1016/j.jad.2007.10.007] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 1.8] [Reference Citation Analysis]
7 Wheeler DS, Wan S, Miller A, Angeli N, Adileh B, Hu W, Holland PC. Role of lateral hypothalamus in two aspects of attention in associative learning. Eur J Neurosci 2014;40:2359-77. [PMID: 24750426 DOI: 10.1111/ejn.12592] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
8 Fadel J, Burk JA. Orexin/hypocretin modulation of the basal forebrain cholinergic system: Role in attention. Brain Res 2010;1314:112-23. [PMID: 19699722 DOI: 10.1016/j.brainres.2009.08.046] [Cited by in Crossref: 56] [Cited by in F6Publishing: 58] [Article Influence: 4.3] [Reference Citation Analysis]
9 Oganesyan GA, Romanova IV, Aristakesyan EA, Kuzik VV, Makina DM, Morina IY, Khramenkova AE, Artamokhina IV, Belova VA. The dopaminergic system of the telencephalo-diencephalic areas of the vertebrate brain in the organization of the sleep-waking cycle. Neurosci Behav Physiol. 2009;39:805-817. [PMID: 19779833 DOI: 10.1007/s11055-009-9191-x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
10 Colussi-Mas J, Geisler S, Zimmer L, Zahm DS, Bérod A. Activation of afferents to the ventral tegmental area in response to acute amphetamine: a double-labelling study. Eur J Neurosci 2007;26:1011-25. [PMID: 17714194 DOI: 10.1111/j.1460-9568.2007.05738.x] [Cited by in Crossref: 51] [Cited by in F6Publishing: 51] [Article Influence: 3.4] [Reference Citation Analysis]
11 Aracri P, Banfi D, Pasini ME, Amadeo A, Becchetti A. Hypocretin (orexin) regulates glutamate input to fast-spiking interneurons in layer V of the Fr2 region of the murine prefrontal cortex. Cereb Cortex 2015;25:1330-47. [PMID: 24297328 DOI: 10.1093/cercor/bht326] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 3.2] [Reference Citation Analysis]
12 Laque A, Yu S, Qualls-Creekmore E, Gettys S, Schwartzenburg C, Bui K, Rhodes C, Berthoud HR, Morrison CD, Richards BK, Münzberg H. Leptin modulates nutrient reward via inhibitory galanin action on orexin neurons. Mol Metab 2015;4:706-17. [PMID: 26500842 DOI: 10.1016/j.molmet.2015.07.002] [Cited by in Crossref: 47] [Cited by in F6Publishing: 48] [Article Influence: 6.7] [Reference Citation Analysis]
13 He C, Chen QH, Ye JN, Li C, Yang L, Zhang J, Xia JX, Hu ZA. Functional inactivation of hypocretin 1 receptors in the medial prefrontal cortex affects the pyramidal neuron activity and gamma oscillations: An in vivo multiple-channel single-unit recording study. Neuroscience 2015;297:1-10. [PMID: 25838117 DOI: 10.1016/j.neuroscience.2015.03.044] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
14 Quarta D, Valerio E, Hutcheson DM, Hedou G, Heidbreder C. The orexin-1 receptor antagonist SB-334867 reduces amphetamine-evoked dopamine outflow in the shell of the nucleus accumbens and decreases the expression of amphetamine sensitization. Neurochemistry International 2010;56:11-5. [DOI: 10.1016/j.neuint.2009.08.012] [Cited by in Crossref: 42] [Cited by in F6Publishing: 40] [Article Influence: 3.5] [Reference Citation Analysis]
15 Calva CB, Fadel JR. Intranasal administration of orexin peptides: Mechanisms and therapeutic potential for age-related cognitive dysfunction. Brain Res 2020;1731:145921. [PMID: 30148983 DOI: 10.1016/j.brainres.2018.08.024] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
16 Anderson RI, Becker HC, Adams BL, Jesudason CD, Rorick-Kehn LM. Orexin-1 and orexin-2 receptor antagonists reduce ethanol self-administration in high-drinking rodent models. Front Neurosci 2014;8:33. [PMID: 24616657 DOI: 10.3389/fnins.2014.00033] [Cited by in Crossref: 48] [Cited by in F6Publishing: 53] [Article Influence: 6.0] [Reference Citation Analysis]
17 Baimel C, Bartlett SE, Chiou LC, Lawrence AJ, Muschamp JW, Patkar O, Tung LW, Borgland SL. Orexin/hypocretin role in reward: implications for opioid and other addictions. Br J Pharmacol 2015;172:334-48. [PMID: 24641197 DOI: 10.1111/bph.12639] [Cited by in Crossref: 97] [Cited by in F6Publishing: 92] [Article Influence: 12.1] [Reference Citation Analysis]
18 Mahler SV, Smith RJ, Moorman DE, Sartor GC, Aston-Jones G. Multiple roles for orexin/hypocretin in addiction. Prog Brain Res 2012;198:79-121. [PMID: 22813971 DOI: 10.1016/B978-0-444-59489-1.00007-0] [Cited by in Crossref: 140] [Cited by in F6Publishing: 76] [Article Influence: 14.0] [Reference Citation Analysis]
19 Low LA, Fitzgerald M. Acute pain and a motivational pathway in adult rats: influence of early life pain experience. PLoS One 2012;7:e34316. [PMID: 22470556 DOI: 10.1371/journal.pone.0034316] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 3.2] [Reference Citation Analysis]
20 Richardson KA, Aston-Jones G. Lateral hypothalamic orexin/hypocretin neurons that project to ventral tegmental area are differentially activated with morphine preference. J Neurosci 2012;32:3809-17. [PMID: 22423101 DOI: 10.1523/JNEUROSCI.3917-11.2012] [Cited by in Crossref: 62] [Cited by in F6Publishing: 28] [Article Influence: 6.2] [Reference Citation Analysis]
21 Kalló I, Omrani A, Meye FJ, de Jong H, Liposits Z, Adan RAH. Characterization of orexin input to dopamine neurons of the ventral tegmental area projecting to the medial prefrontal cortex and shell of nucleus accumbens. Brain Struct Funct 2022. [PMID: 35029758 DOI: 10.1007/s00429-021-02449-8] [Reference Citation Analysis]
22 Morganstern I, Chang GQ, Barson JR, Ye Z, Karatayev O, Leibowitz SF. Differential effects of acute and chronic ethanol exposure on orexin expression in the perifornical lateral hypothalamus. Alcohol Clin Exp Res 2010;34:886-96. [PMID: 20331576 DOI: 10.1111/j.1530-0277.2010.01161.x] [Cited by in Crossref: 53] [Cited by in F6Publishing: 54] [Article Influence: 4.4] [Reference Citation Analysis]
23 España RA, Melchior JR, Roberts DC, Jones SR. Hypocretin 1/orexin A in the ventral tegmental area enhances dopamine responses to cocaine and promotes cocaine self-administration. Psychopharmacology (Berl) 2011;214:415-26. [PMID: 20959967 DOI: 10.1007/s00213-010-2048-8] [Cited by in Crossref: 109] [Cited by in F6Publishing: 109] [Article Influence: 9.1] [Reference Citation Analysis]
24 Nevárez N, de Lecea L. Hypocretin and the Regulation of Sleep-Wake Transitions. Handbook of Sleep Research. Elsevier; 2019. pp. 89-99. [DOI: 10.1016/b978-0-12-813743-7.00006-2] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
25 Goforth PB, Myers MG. Roles for Orexin/Hypocretin in the Control of Energy Balance and Metabolism. In: Lawrence AJ, de Lecea L, editors. Behavioral Neuroscience of Orexin/Hypocretin. Cham: Springer International Publishing; 2017. pp. 137-56. [DOI: 10.1007/7854_2016_51] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 2.8] [Reference Citation Analysis]
26 Stice E, Yokum S, Zald D, Dagher A. Dopamine-Based Reward Circuitry Responsivity, Genetics, and Overeating. In: Adan RA, Kaye WH, editors. Behavioral Neurobiology of Eating Disorders. Berlin: Springer Berlin Heidelberg; 2011. pp. 81-93. [DOI: 10.1007/7854_2010_89] [Cited by in Crossref: 52] [Cited by in F6Publishing: 47] [Article Influence: 4.3] [Reference Citation Analysis]
27 Sharf R, Sarhan M, Dileone RJ. Orexin mediates the expression of precipitated morphine withdrawal and concurrent activation of the nucleus accumbens shell. Biol Psychiatry 2008;64:175-83. [PMID: 18423425 DOI: 10.1016/j.biopsych.2008.03.006] [Cited by in Crossref: 105] [Cited by in F6Publishing: 99] [Article Influence: 7.5] [Reference Citation Analysis]
28 Fuster JM. Chemical Neurotransmission. The Prefrontal Cortex. Elsevier; 2015. pp. 63-131. [DOI: 10.1016/b978-0-12-407815-4.00003-9] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
29 Teske JA, Billington CJ, Kotz CM. Mechanisms underlying obesity resistance associated with high spontaneous physical activity. Neuroscience 2014;256:91-100. [PMID: 24161277 DOI: 10.1016/j.neuroscience.2013.10.028] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
30 Teske J, Billington C, Kotz C. Neuropeptidergic Mediators of Spontaneous Physical Activity and Non-Exercise Activity Thermogenesis. Neuroendocrinology 2008;87:71-90. [DOI: 10.1159/000110802] [Cited by in Crossref: 53] [Cited by in F6Publishing: 46] [Article Influence: 3.8] [Reference Citation Analysis]
31 Esmaili-Shahzade-Ali-Akbari P, Hosseinzadeh H, Mehri S. Effect of suvorexant on morphine tolerance and dependence in mice: Role of NMDA, AMPA, ERK and CREB proteins. Neurotoxicology 2021;84:64-72. [PMID: 33609567 DOI: 10.1016/j.neuro.2021.02.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
32 Naef L, Pitman KA, Borgland SL. Mesolimbic dopamine and its neuromodulators in obesity and binge eating. CNS Spectr 2015;20:574-83. [PMID: 26514168 DOI: 10.1017/S1092852915000693] [Cited by in Crossref: 34] [Cited by in F6Publishing: 20] [Article Influence: 4.9] [Reference Citation Analysis]
33 Brown RM, Kim AK, Khoo SY, Kim JH, Jupp B, Lawrence AJ. Orexin-1 receptor signalling in the prelimbic cortex and ventral tegmental area regulates cue-induced reinstatement of ethanol-seeking in iP rats: Orexin and alcohol-seeking. Addiction Biology 2016;21:603-12. [DOI: 10.1111/adb.12251] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 5.9] [Reference Citation Analysis]
34 Berridge CW, España RA, Vittoz NM. Hypocretin/orexin in arousal and stress. Brain Res 2010;1314:91-102. [PMID: 19748490 DOI: 10.1016/j.brainres.2009.09.019] [Cited by in Crossref: 115] [Cited by in F6Publishing: 115] [Article Influence: 8.8] [Reference Citation Analysis]
35 Kenny PJ. Tobacco dependence, the insular cortex and the hypocretin connection. Pharmacol Biochem Behav 2011;97:700-7. [PMID: 20816891 DOI: 10.1016/j.pbb.2010.08.015] [Cited by in Crossref: 38] [Cited by in F6Publishing: 37] [Article Influence: 3.2] [Reference Citation Analysis]
36 Moorman DE, Aston-Jones G. Orexin/hypocretin modulates response of ventral tegmental dopamine neurons to prefrontal activation: diurnal influences. J Neurosci 2010;30:15585-99. [PMID: 21084614 DOI: 10.1523/JNEUROSCI.2871-10.2010] [Cited by in Crossref: 71] [Cited by in F6Publishing: 46] [Article Influence: 5.9] [Reference Citation Analysis]
37 Wang B, You ZB, Wise RA. Reinstatement of cocaine seeking by hypocretin (orexin) in the ventral tegmental area: independence from the local corticotropin-releasing factor network. Biol Psychiatry 2009;65:857-62. [PMID: 19251246 DOI: 10.1016/j.biopsych.2009.01.018] [Cited by in Crossref: 87] [Cited by in F6Publishing: 94] [Article Influence: 6.7] [Reference Citation Analysis]
38 Watson CJ, Baghdoyan HA, Lydic R. Neuropharmacology of Sleep and Wakefulness. Sleep Med Clin 2010;5:513-28. [PMID: 21278831 DOI: 10.1016/j.jsmc.2010.08.003] [Cited by in Crossref: 47] [Cited by in F6Publishing: 34] [Article Influence: 3.9] [Reference Citation Analysis]
39 Morales-mulia M. Intra-accumbal orexin-1 receptor inhibition prevents the anxiolytic-like effect of ethanol and leads to increases in orexin-A content and receptor expression. Pharmacology Biochemistry and Behavior 2019;185:172761. [DOI: 10.1016/j.pbb.2019.172761] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
40 Marshall L, Binder S. Contribution of transcranial oscillatory stimulation to research on neural networks: an emphasis on hippocampo-neocortical rhythms. Front Hum Neurosci 2013;7:614. [PMID: 24133431 DOI: 10.3389/fnhum.2013.00614] [Cited by in Crossref: 21] [Cited by in F6Publishing: 26] [Article Influence: 2.3] [Reference Citation Analysis]
41 Li J, Li H, Wang D, Guo Y, Zhang X, Ran M, Yang C, Yang Q, Dong H. Orexin activated emergence from isoflurane anaesthesia involves excitation of ventral tegmental area dopaminergic neurones in rats. British Journal of Anaesthesia 2019;123:497-505. [DOI: 10.1016/j.bja.2019.07.005] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
42 España RA, Oleson EB, Locke JL, Brookshire BR, Roberts DC, Jones SR. The hypocretin-orexin system regulates cocaine self-administration via actions on the mesolimbic dopamine system. Eur J Neurosci 2010;31:336-48. [PMID: 20039943 DOI: 10.1111/j.1460-9568.2009.07065.x] [Cited by in Crossref: 165] [Cited by in F6Publishing: 162] [Article Influence: 12.7] [Reference Citation Analysis]
43 Zheng H, Patterson LM, Berthoud HR. Orexin signaling in the ventral tegmental area is required for high-fat appetite induced by opioid stimulation of the nucleus accumbens. J Neurosci 2007;27:11075-82. [PMID: 17928449 DOI: 10.1523/JNEUROSCI.3542-07.2007] [Cited by in Crossref: 166] [Cited by in F6Publishing: 103] [Article Influence: 11.1] [Reference Citation Analysis]
44 Dugovic C, Shelton JE, Aluisio LE, Fraser IC, Jiang X, Sutton SW, Bonaventure P, Yun S, Li X, Lord B, Dvorak CA, Carruthers NI, Lovenberg TW. Blockade of orexin-1 receptors attenuates orexin-2 receptor antagonism-induced sleep promotion in the rat. J Pharmacol Exp Ther 2009;330:142-51. [PMID: 19363060 DOI: 10.1124/jpet.109.152009] [Cited by in Crossref: 150] [Cited by in F6Publishing: 154] [Article Influence: 11.5] [Reference Citation Analysis]
45 Margolis EB, Lock H, Hjelmstad GO, Fields HL. The ventral tegmental area revisited: is there an electrophysiological marker for dopaminergic neurons? J Physiol 2006;577:907-24. [PMID: 16959856 DOI: 10.1113/jphysiol.2006.117069] [Cited by in Crossref: 333] [Cited by in F6Publishing: 353] [Article Influence: 20.8] [Reference Citation Analysis]
46 Plazzi G, Pizza F, Palaia V, Franceschini C, Poli F, Moghadam KK, Cortelli P, Nobili L, Bruni O, Dauvilliers Y, Lin L, Edwards MJ, Mignot E, Bhatia KP. Complex movement disorders at disease onset in childhood narcolepsy with cataplexy. Brain 2011;134:3477-89. [PMID: 21930661 DOI: 10.1093/brain/awr244] [Cited by in Crossref: 103] [Cited by in F6Publishing: 90] [Article Influence: 9.4] [Reference Citation Analysis]
47 Demidova A, Kahl E, Fendt M. Orexin deficiency affects sensorimotor gating and its amphetamine-induced impairment. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2022. [DOI: 10.1016/j.pnpbp.2022.110517] [Reference Citation Analysis]
48 Watson CJ, Baghdoyan HA, Lydic R. Neuropharmacology of Sleep and Wakefulness: 2012 Update. Sleep Med Clin 2012;7:469-86. [PMID: 23162386 DOI: 10.1016/j.jsmc.2012.06.010] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
49 Khoo SY, Brown RM. Orexin/hypocretin based pharmacotherapies for the treatment of addiction: DORA or SORA? CNS Drugs 2014;28:713-30. [PMID: 24942635 DOI: 10.1007/s40263-014-0179-x] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 6.0] [Reference Citation Analysis]
50 Costa A, Monti J, Torterolo P. Hypocretin (orexin) immunoreactivity in the feline midbrain: Relevance for the generation of wakefulness. J Chem Neuroanat 2020;105:101769. [PMID: 32145304 DOI: 10.1016/j.jchemneu.2020.101769] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
51 Hirasawa M, Parsons MP, Alberto CO. Interaction between orexins and the mesolimbic system for overriding satiety. Rev Neurosci 2007;18:383-93. [PMID: 19544624 DOI: 10.1515/revneuro.2007.18.5.383] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
52 Uchida-Ota M, Tanaka N, Sato H, Maki A. Intrinsic correlations of electroencephalography rhythms with cerebral hemodynamics during sleep transitions. Neuroimage 2008;42:357-68. [PMID: 18514543 DOI: 10.1016/j.neuroimage.2008.03.055] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
53 Fuster JM. Chemical Neurotransmission. The Prefrontal Cortex. Elsevier; 2008. pp. 59-123. [DOI: 10.1016/b978-0-12-373644-4.00003-7] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
54 Meye FJ, Adan RA. Feelings about food: the ventral tegmental area in food reward and emotional eating. Trends Pharmacol Sci 2014;35:31-40. [PMID: 24332673 DOI: 10.1016/j.tips.2013.11.003] [Cited by in Crossref: 85] [Cited by in F6Publishing: 81] [Article Influence: 9.4] [Reference Citation Analysis]
55 Jauch-Chara K, Oltmanns KM. Obesity--a neuropsychological disease? Systematic review and neuropsychological model. Prog Neurobiol. 2014;114:84-101. [PMID: 24394671 DOI: 10.1016/j.pneurobio.2013.12.001] [Cited by in Crossref: 74] [Cited by in F6Publishing: 69] [Article Influence: 9.3] [Reference Citation Analysis]
56 Baimel C, Borgland SL. Hypocretin/Orexin and Plastic Adaptations Associated with Drug Abuse. Curr Top Behav Neurosci 2017;33:283-304. [PMID: 28303403 DOI: 10.1007/7854_2016_44] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
57 Monti JM, Monti D. The involvement of dopamine in the modulation of sleep and waking. Sleep Med Rev. 2007;11:113-133. [PMID: 17275369 DOI: 10.1016/j.smrv.2006.08.003] [Cited by in Crossref: 245] [Cited by in F6Publishing: 212] [Article Influence: 16.3] [Reference Citation Analysis]
58 Baimel C, Borgland SL. Orexin Signaling in the VTA Gates Morphine-Induced Synaptic Plasticity. J Neurosci 2015;35:7295-303. [PMID: 25948277 DOI: 10.1523/JNEUROSCI.4385-14.2015] [Cited by in Crossref: 42] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
59 Vittoz NM, Schmeichel B, Berridge CW. Hypocretin /orexin preferentially activates caudomedial ventral tegmental area dopamine neurons. Eur J Neurosci 2008;28:1629-40. [PMID: 18973582 DOI: 10.1111/j.1460-9568.2008.06453.x] [Cited by in Crossref: 72] [Cited by in F6Publishing: 74] [Article Influence: 5.5] [Reference Citation Analysis]
60 Rasmussen K, Hsu MA, Yang Y. The orexin-1 receptor antagonist SB-334867 blocks the effects of antipsychotics on the activity of A9 and A10 dopamine neurons: implications for antipsychotic therapy. Neuropsychopharmacology 2007;32:786-92. [PMID: 17063151 DOI: 10.1038/sj.npp.1301239] [Cited by in Crossref: 40] [Cited by in F6Publishing: 33] [Article Influence: 2.5] [Reference Citation Analysis]
61 Srinivasan S, Simms JA, Nielsen CK, Lieske SP, Bito-Onon JJ, Yi H, Hopf FW, Bonci A, Bartlett SE. The dual orexin/hypocretin receptor antagonist, almorexant, in the ventral tegmental area attenuates ethanol self-administration. PLoS One 2012;7:e44726. [PMID: 23028593 DOI: 10.1371/journal.pone.0044726] [Cited by in Crossref: 43] [Cited by in F6Publishing: 44] [Article Influence: 4.3] [Reference Citation Analysis]
62 Corrigall WA. Hypocretin mechanisms in nicotine addiction: evidence and speculation. Psychopharmacology (Berl) 2009;206:23-37. [PMID: 19529922 DOI: 10.1007/s00213-009-1588-2] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 1.5] [Reference Citation Analysis]
63 Deutch AY, Bubser M. The orexins/hypocretins and schizophrenia. Schizophr Bull 2007;33:1277-83. [PMID: 17728265 DOI: 10.1093/schbul/sbm096] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 1.6] [Reference Citation Analysis]
64 Borgland SL, Chang SJ, Bowers MS, Thompson JL, Vittoz N, Floresco SB, Chou J, Chen BT, Bonci A. Orexin A/hypocretin-1 selectively promotes motivation for positive reinforcers. J Neurosci 2009;29:11215-25. [PMID: 19741128 DOI: 10.1523/JNEUROSCI.6096-08.2009] [Cited by in Crossref: 245] [Cited by in F6Publishing: 162] [Article Influence: 18.8] [Reference Citation Analysis]
65 Nevárez N, de Lecea L. Recent advances in understanding the roles of hypocretin/orexin in arousal, affect, and motivation. F1000Res 2018;7:F1000 Faculty Rev-1421. [PMID: 30254737 DOI: 10.12688/f1000research.15097.1] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 5.8] [Reference Citation Analysis]
66 Oura K, Otsuka A, Shiuchi T, Chikahisa S, Shimizu N, Séi H. Late feeding in the active period decreases slow-wave activity. Life Sciences 2016;160:18-26. [DOI: 10.1016/j.lfs.2016.07.005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
67 Zhou Y, Adomako-mensah J, Yuferov V, Ho A, Zhang J, Xu M, Kreek MJ. Effects of acute “binge” cocaine on mRNA levels of μ opioid receptor and neuropeptides in dopamine D1 or D3 receptor knockout mice. Synapse 2007;61:50-9. [DOI: 10.1002/syn.20340] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 0.3] [Reference Citation Analysis]
68 Sil’kis IG. Possible Mechanisms for the Effects of Orexin on Hippocampal Functioning and Spatial Learning (analytical review). Neurosci Behav Physi 2013;43:1049-57. [DOI: 10.1007/s11055-013-9849-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
69 Magdaleno-madrigal VM, Morales-mulia S, Nicolini H, Genis-mendoza A, Cázares-martínez Claudia E, Pérez-luna José M, Morales-mulia M. Orexin-A promotes EEG changes but fails to induce anxiety in rats. Behavioural Brain Research 2019;361:26-31. [DOI: 10.1016/j.bbr.2018.12.037] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
70 Juarez B, Han MH. Diversity of Dopaminergic Neural Circuits in Response to Drug Exposure. Neuropsychopharmacology 2016;41:2424-46. [PMID: 26934955 DOI: 10.1038/npp.2016.32] [Cited by in Crossref: 70] [Cited by in F6Publishing: 66] [Article Influence: 11.7] [Reference Citation Analysis]
71 Brodnik ZD, Bernstein DL, Prince CD, España RA. Hypocretin receptor 1 blockade preferentially reduces high effort responding for cocaine without promoting sleep. Behav Brain Res 2015;291:377-84. [PMID: 26049058 DOI: 10.1016/j.bbr.2015.05.051] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 3.6] [Reference Citation Analysis]
72 Stettner GM, Kubin L, Volgin DV. Antagonism of orexin 1 receptors eliminates motor hyperactivity and improves homing response acquisition in juvenile rats exposed to alcohol during early postnatal period. Behav Brain Res 2011;221:324-8. [PMID: 21420437 DOI: 10.1016/j.bbr.2011.03.028] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
73 Villano I, Messina A, Valenzano A, Moscatelli F, Esposito T, Monda V, Esposito M, Precenzano F, Carotenuto M, Viggiano A. Basal Forebrain Cholinergic System and Orexin Neurons: Effects on Attention. Front Behav Neurosci. 2017;11:10. [PMID: 28197081 DOI: 10.3389/fnbeh.2017.00010] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 4.4] [Reference Citation Analysis]
74 Matzeu A, Martin-fardon R. Understanding the Role of Orexin Neuropeptides in Drug Addiction: Preclinical Studies and Translational Value. Front Behav Neurosci 2022;15:787595. [DOI: 10.3389/fnbeh.2021.787595] [Reference Citation Analysis]
75 Plaza-Zabala A, Maldonado R, Berrendero F. The hypocretin/orexin system: implications for drug reward and relapse. Mol Neurobiol 2012;45:424-39. [PMID: 22430644 DOI: 10.1007/s12035-012-8255-z] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 3.5] [Reference Citation Analysis]
76 Straat ME, Schinkelshoek MS, Fronczek R, Lammers GJ, Rensen PCN, Boon MR. Role of Brown Adipose Tissue in Adiposity Associated With Narcolepsy Type 1. Front Endocrinol (Lausanne) 2020;11:145. [PMID: 32373062 DOI: 10.3389/fendo.2020.00145] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
77 Haghparast A, Fatahi Z, Arezoomandan R, Karimi S, Taslimi Z, Zarrabian S. Functional roles of orexin/hypocretin receptors in reward circuit. Prog Brain Res 2017;235:139-54. [PMID: 29054286 DOI: 10.1016/bs.pbr.2017.08.005] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 3.2] [Reference Citation Analysis]
78 Thompson JL, Borgland SL. A role for hypocretin/orexin in motivation. Behav Brain Res 2011;217:446-53. [PMID: 20920531 DOI: 10.1016/j.bbr.2010.09.028] [Cited by in Crossref: 68] [Cited by in F6Publishing: 74] [Article Influence: 6.2] [Reference Citation Analysis]
79 Vassalli A, Dellepiane JM, Emmenegger Y, Jimenez S, Vandi S, Plazzi G, Franken P, Tafti M. Electroencephalogram paroxysmal θ characterizes cataplexy in mice and children. Brain 2013;136:1592-608. [PMID: 23616586 DOI: 10.1093/brain/awt069] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 3.9] [Reference Citation Analysis]
80 Corwin RL, Wojnicki FH, Zimmer DJ, Babbs RK, McGrath LE, Olivos DR, Mietlicki-Baase EG, Hayes MR. Binge-type eating disrupts dopaminergic and GABAergic signaling in the prefrontal cortex and ventral tegmental area. Obesity (Silver Spring) 2016;24:2118-25. [PMID: 27558648 DOI: 10.1002/oby.21626] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 3.5] [Reference Citation Analysis]
81 Godfrey N, Borgland SL. Diversity in the lateral hypothalamic input to the ventral tegmental area. Neuropharmacology 2019;154:4-12. [DOI: 10.1016/j.neuropharm.2019.05.014] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
82 Aitta-Aho T, Pappa E, Burdakov D, Apergis-Schoute J. Cellular activation of hypothalamic hypocretin/orexin neurons facilitates short-term spatial memory in mice. Neurobiol Learn Mem 2016;136:183-8. [PMID: 27746379 DOI: 10.1016/j.nlm.2016.10.005] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 3.8] [Reference Citation Analysis]
83 Calva CB, Fayyaz H, Fadel JR. Increased acetylcholine and glutamate efflux in the prefrontal cortex following intranasal orexin-A (hypocretin-1). J Neurochem 2018;145:232-44. [PMID: 29250792 DOI: 10.1111/jnc.14279] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
84 Borgland SL, Ungless MA, Bonci A. Convergent actions of orexin/hypocretin and CRF on dopamine neurons: Emerging players in addiction. Brain Res 2010;1314:139-44. [PMID: 19891960 DOI: 10.1016/j.brainres.2009.10.068] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 3.8] [Reference Citation Analysis]
85 Yokoi R, Okabe M, Matsuda N, Odawara A, Karashima A, Suzuki I. Impact of Sleep-Wake-Associated Neuromodulators and Repetitive Low-Frequency Stimulation on Human iPSC-Derived Neurons. Front Neurosci 2019;13:554. [PMID: 31191238 DOI: 10.3389/fnins.2019.00554] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
86 Brown JA, Woodworth HL, Leinninger GM. To ingest or rest? Specialized roles of lateral hypothalamic area neurons in coordinating energy balance. Front Syst Neurosci 2015;9:9. [PMID: 25741247 DOI: 10.3389/fnsys.2015.00009] [Cited by in Crossref: 47] [Cited by in F6Publishing: 51] [Article Influence: 6.7] [Reference Citation Analysis]
87 Leri F, Zhou Y, Carmichael B, Cummins E, Kreek MJ. Treatment-like steady-state methadone in rats interferes with incubation of cocaine sensitization and associated alterations in gene expression. Eur Neuropsychopharmacol 2012;22:143-52. [PMID: 21745729 DOI: 10.1016/j.euroneuro.2011.06.003] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
88 Harris GC, Aston-Jones G. Arousal and reward: a dichotomy in orexin function. Trends Neurosci 2006;29:571-7. [PMID: 16904760 DOI: 10.1016/j.tins.2006.08.002] [Cited by in Crossref: 385] [Cited by in F6Publishing: 390] [Article Influence: 24.1] [Reference Citation Analysis]
89 Liu S, Borgland S. Regulation of the mesolimbic dopamine circuit by feeding peptides. Neuroscience 2015;289:19-42. [DOI: 10.1016/j.neuroscience.2014.12.046] [Cited by in Crossref: 60] [Cited by in F6Publishing: 58] [Article Influence: 8.6] [Reference Citation Analysis]
90 Yokogawa T, Marin W, Faraco J, Pézeron G, Appelbaum L, Zhang J, Rosa F, Mourrain P, Mignot E. Characterization of sleep in zebrafish and insomnia in hypocretin receptor mutants. PLoS Biol 2007;5:e277. [PMID: 17941721 DOI: 10.1371/journal.pbio.0050277] [Cited by in Crossref: 237] [Cited by in F6Publishing: 220] [Article Influence: 16.9] [Reference Citation Analysis]
91 Morikawa H, Morrisett RA. Ethanol action on dopaminergic neurons in the ventral tegmental area: interaction with intrinsic ion channels and neurotransmitter inputs. Int Rev Neurobiol 2010;91:235-88. [PMID: 20813245 DOI: 10.1016/S0074-7742(10)91008-8] [Cited by in Crossref: 86] [Cited by in F6Publishing: 58] [Article Influence: 7.2] [Reference Citation Analysis]
92 Mavanji V, Georgopoulos AP, Kotz CM. Synchronous neuronal interactions in rat hypothalamic culture: a novel model for the study of network dynamics in metabolic disorders. Exp Brain Res 2021;239:755-64. [PMID: 33388905 DOI: 10.1007/s00221-020-05977-7] [Reference Citation Analysis]
93 Zarrabian S, Riahi E, Karimi S, Razavi Y, Haghparast A. The potential role of the orexin reward system in future treatments for opioid drug abuse. Brain Research 2020;1731:146028. [DOI: 10.1016/j.brainres.2018.11.023] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
94 Morales-Mulia S, Magdaleno-Madrigal VM, Nicolini H, Genis-Mendoza A, Morales-Mulia M. Orexin-A up-regulates dopamine D2 receptor and mRNA in the nucleus accumbens Shell. Mol Biol Rep 2020;47:9689-97. [PMID: 33170427 DOI: 10.1007/s11033-020-05979-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
95 Bonci A, Borgland S. Role of orexin/hypocretin and CRF in the formation of drug-dependent synaptic plasticity in the mesolimbic system. Neuropharmacology 2009;56:107-11. [DOI: 10.1016/j.neuropharm.2008.07.024] [Cited by in Crossref: 48] [Cited by in F6Publishing: 51] [Article Influence: 3.7] [Reference Citation Analysis]
96 Wickham RJ, Solecki W, Rathbun LR, Neugebauer NM, Wightman RM, Addy NA. Advances in studying phasic dopamine signaling in brain reward mechanisms. Front Biosci (Elite Ed) 2013;5:982-99. [PMID: 23747914 DOI: 10.2741/e678] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
97 Riday TT, Fish EW, Robinson JE, Jarrett TM, McGuigan MM, Malanga CJ. Orexin-1 receptor antagonism does not reduce the rewarding potency of cocaine in Swiss-Webster mice. Brain Res 2012;1431:53-61. [PMID: 22133306 DOI: 10.1016/j.brainres.2011.11.003] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 1.1] [Reference Citation Analysis]
98 Hagar JM, Macht VA, Wilson SP, Fadel JR. Upregulation of orexin/hypocretin expression in aged rats: Effects on feeding latency and neurotransmission in the insular cortex. Neuroscience 2017;350:124-32. [PMID: 28344067 DOI: 10.1016/j.neuroscience.2017.03.021] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
99 España RA. Hypocretin/orexin involvement in reward and reinforcement. Vitam Horm 2012;89:185-208. [PMID: 22640614 DOI: 10.1016/B978-0-12-394623-2.00010-X] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 2.1] [Reference Citation Analysis]
100 Um YH, Lim HK. Orexin and Alzheimer's Disease: A New Perspective. Psychiatry Investig 2020;17:621-6. [PMID: 32517419 DOI: 10.30773/pi.2020.0136] [Reference Citation Analysis]
101 Calipari ES, España RA. Hypocretin/orexin regulation of dopamine signaling: implications for reward and reinforcement mechanisms. Front Behav Neurosci 2012;6:54. [PMID: 22933994 DOI: 10.3389/fnbeh.2012.00054] [Cited by in Crossref: 36] [Cited by in F6Publishing: 41] [Article Influence: 3.6] [Reference Citation Analysis]
102 Baimel C, Borgland SL, Corrigall W. Cocaine and Nicotine Research Illustrates a Range of Hypocretin Mechanisms in Addiction. Sleep Hormones. Elsevier; 2012. pp. 291-313. [DOI: 10.1016/b978-0-12-394623-2.00016-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
103 Hrabovszky E, Molnár CS, Borsay BÁ, Gergely P, Herczeg L, Liposits Z. Orexinergic input to dopaminergic neurons of the human ventral tegmental area. PLoS One 2013;8:e83029. [PMID: 24376626 DOI: 10.1371/journal.pone.0083029] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
104 Anderson RI, Moorman DE, Becker HC. Contribution of Dynorphin and Orexin Neuropeptide Systems to the Motivational Effects of Alcohol. Handb Exp Pharmacol 2018;248:473-503. [PMID: 29526023 DOI: 10.1007/164_2018_100] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
105 Alberto CO, Trask RB, Quinlan ME, Hirasawa M. Bidirectional dopaminergic modulation of excitatory synaptic transmission in orexin neurons. J Neurosci 2006;26:10043-50. [PMID: 17005867 DOI: 10.1523/JNEUROSCI.1819-06.2006] [Cited by in Crossref: 48] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
106 Wiskerke J, James MH, Aston-Jones G. The orexin-1 receptor antagonist SB-334867 reduces motivation, but not inhibitory control, in a rat stop signal task. Brain Res 2020;1731:146222. [PMID: 31002819 DOI: 10.1016/j.brainres.2019.04.017] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
107 Puhl MD, Cason AM, Wojnicki FH, Corwin RL, Grigson PS. A history of bingeing on fat enhances cocaine seeking and taking. Behav Neurosci 2011;125:930-42. [PMID: 21988520 DOI: 10.1037/a0025759] [Cited by in Crossref: 43] [Cited by in F6Publishing: 47] [Article Influence: 3.9] [Reference Citation Analysis]
108 Morgan AJ, Harrod SB, Lacy RT, Stanley EM, Fadel JR. Intravenous prenatal nicotine exposure increases orexin expression in the lateral hypothalamus and orexin innervation of the ventral tegmental area in adult male rats. Drug Alcohol Depend 2013;132:562-70. [PMID: 23664126 DOI: 10.1016/j.drugalcdep.2013.04.003] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 1.2] [Reference Citation Analysis]
109 Patyal R, Woo EY, Borgland SL. Local hypocretin-1 modulates terminal dopamine concentration in the nucleus accumbens shell. Front Behav Neurosci 2012;6:82. [PMID: 23226119 DOI: 10.3389/fnbeh.2012.00082] [Cited by in Crossref: 37] [Cited by in F6Publishing: 40] [Article Influence: 3.7] [Reference Citation Analysis]
110 Baimel C, Borgland SL. Hypocretin modulation of drug-induced synaptic plasticity. Prog Brain Res 2012;198:123-31. [PMID: 22813972 DOI: 10.1016/B978-0-444-59489-1.00008-2] [Cited by in Crossref: 23] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
111 Balcita-Pedicino JJ, Sesack SR. Orexin axons in the rat ventral tegmental area synapse infrequently onto dopamine and gamma-aminobutyric acid neurons. J Comp Neurol 2007;503:668-84. [PMID: 17559101 DOI: 10.1002/cne.21420] [Cited by in Crossref: 102] [Cited by in F6Publishing: 110] [Article Influence: 6.8] [Reference Citation Analysis]
112 Sadat-Shirazi MS, Soltani H, Nikpour N, Haghshenas M, Khalifeh S, Mokri A, Zarrindast MR. Alteration of orexin-A and PKCα in the postmortem brain of pure-opioid and multi-drug abusers. Neuropeptides 2020;83:102074. [PMID: 32741526 DOI: 10.1016/j.npep.2020.102074] [Reference Citation Analysis]
113 Arbib MA, Bonaiuto JJ. Multiple levels of spatial organization: World Graphs and spatial difference learning. Adaptive Behavior 2012;20:287-303. [DOI: 10.1177/1059712312449545] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
114 Azogu I, Plamondon H. Inhibition of TrkB at the nucleus accumbens, using ANA-12, regulates basal and stress-induced orexin A expression within the mesolimbic system and affects anxiety, sociability and motivation. Neuropharmacology 2017;125:129-45. [PMID: 28705440 DOI: 10.1016/j.neuropharm.2017.07.008] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
115 Barson JR, Morganstern I, Leibowitz SF. Complementary roles of orexin and melanin-concentrating hormone in feeding behavior. Int J Endocrinol 2013;2013:983964. [PMID: 23935621 DOI: 10.1155/2013/983964] [Cited by in Crossref: 46] [Cited by in F6Publishing: 45] [Article Influence: 5.1] [Reference Citation Analysis]
116 Hadizadeh H, Flores J, Nunes E, Mayerson T, Potenza MN, Angarita GA. Novel Pharmacological Agents for the Treatment of Cocaine Use Disorder. Curr Behav Neurosci Rep. [DOI: 10.1007/s40473-022-00246-z] [Reference Citation Analysis]
117 Lai F, Cucca F, Frau R, Corrias F, Schlich M, Caboni P, Fadda AM, Bassareo V. Systemic Administration of Orexin a Loaded Liposomes Potentiates Nucleus Accumbens Shell Dopamine Release by Sucrose Feeding. Front Psychiatry 2018;9:640. [PMID: 30559683 DOI: 10.3389/fpsyt.2018.00640] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
118 Ponz A, Khatami R, Poryazova R, Werth E, Boesiger P, Bassetti CL, Schwartz S. Abnormal activity in reward brain circuits in human narcolepsy with cataplexy. Ann Neurol 2010;67:190-200. [DOI: 10.1002/ana.21825] [Cited by in Crossref: 64] [Cited by in F6Publishing: 58] [Article Influence: 5.3] [Reference Citation Analysis]
119 Nasrollahi S, Karimi S, Hamidi G, Naderitehrani M, Abed A. Blockade of the orexin 1 receptors in the nucleus accumbens' shell reversed the reduction effect of olanzapine on motivation for positive reinforcers. Neurosci Lett 2021;762:136137. [PMID: 34311049 DOI: 10.1016/j.neulet.2021.136137] [Reference Citation Analysis]
120 Lawrence AJ, Cowen MS, Yang HJ, Chen F, Oldfield B. The orexin system regulates alcohol-seeking in rats. Br J Pharmacol 2006;148:752-9. [PMID: 16751790 DOI: 10.1038/sj.bjp.0706789] [Cited by in Crossref: 283] [Cited by in F6Publishing: 279] [Article Influence: 17.7] [Reference Citation Analysis]
121 Burunat E. Love is a physiological motivation (like hunger, thirst, sleep or sex). Med Hypotheses 2019;129:109225. [PMID: 31371074 DOI: 10.1016/j.mehy.2019.05.011] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
122 Del Cid-Pellitero E, Garzón M. Hypocretin1/orexinA-immunoreactive axons form few synaptic contacts on rat ventral tegmental area neurons that project to the medial prefrontal cortex. BMC Neurosci 2014;15:105. [PMID: 25194917 DOI: 10.1186/1471-2202-15-105] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
123 D'Anna KL, Gammie SC. Hypocretin-1 dose-dependently modulates maternal behaviour in mice. J Neuroendocrinol 2006;18:553-66. [PMID: 16867176 DOI: 10.1111/j.1365-2826.2006.01448.x] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 2.0] [Reference Citation Analysis]
124 Li SB, de Lecea L. The hypocretin (orexin) system: from a neural circuitry perspective. Neuropharmacology 2020;167:107993. [PMID: 32135427 DOI: 10.1016/j.neuropharm.2020.107993] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 14.5] [Reference Citation Analysis]
125 Wang C, Chen M, Qin C, Qu X, Shen X, Liu S. Lateral Hypothalamic Orexin Neurons Mediate the Reward Effects of Pain Relief Induced by Electroacupuncture. Front Mol Neurosci 2022;15:812035. [DOI: 10.3389/fnmol.2022.812035] [Reference Citation Analysis]
126 True C, Arik A, Lindsley S, Kirigiti M, Sullivan E, Kievit P. Early High-Fat Diet Exposure Causes Dysregulation of the Orexin and Dopamine Neuronal Populations in Nonhuman Primates. Front Endocrinol (Lausanne) 2018;9:508. [PMID: 30258403 DOI: 10.3389/fendo.2018.00508] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
127 Deadwyler SA, Porrino L, Siegel JM, Hampson RE. Systemic and nasal delivery of orexin-A (Hypocretin-1) reduces the effects of sleep deprivation on cognitive performance in nonhuman primates. J Neurosci 2007;27:14239-47. [PMID: 18160631 DOI: 10.1523/JNEUROSCI.3878-07.2007] [Cited by in Crossref: 186] [Cited by in F6Publishing: 78] [Article Influence: 13.3] [Reference Citation Analysis]
128 Ong ZY, Gugusheff JR, Muhlhausler BS. Perinatal overnutrition and the programming of food preferences: pathways and mechanisms. J Dev Orig Health Dis 2012;3:299-308. [DOI: 10.1017/s204017441200030x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
129 Leibowitz SF. Overconsumption of dietary fat and alcohol: mechanisms involving lipids and hypothalamic peptides. Physiol Behav 2007;91:513-21. [PMID: 17481672 DOI: 10.1016/j.physbeh.2007.03.018] [Cited by in Crossref: 48] [Cited by in F6Publishing: 50] [Article Influence: 3.2] [Reference Citation Analysis]
130 Sharf R, Sarhan M, Dileone RJ. Role of orexin/hypocretin in dependence and addiction. Brain Res 2010;1314:130-8. [PMID: 19699189 DOI: 10.1016/j.brainres.2009.08.028] [Cited by in Crossref: 73] [Cited by in F6Publishing: 72] [Article Influence: 5.6] [Reference Citation Analysis]
131 Tavakkolifard M, Vousooghi N, Mahboubi S, Golab F, Ejtemaei Mehr S, Zarrindast MR. Evaluation of the relationship between the gene expression level of orexin-1 receptor in the rat blood and prefrontal cortex, novelty-seeking, and proneness to methamphetamine dependence: A candidate biomarker. Peptides 2020;131:170368. [PMID: 32668268 DOI: 10.1016/j.peptides.2020.170368] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]