BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Orlova VV, Choi EY, Xie C, Chavakis E, Bierhaus A, Ihanus E, Ballantyne CM, Gahmberg CG, Bianchi ME, Nawroth PP, Chavakis T. A novel pathway of HMGB1-mediated inflammatory cell recruitment that requires Mac-1-integrin. EMBO J 2007;26:1129-39. [PMID: 17268551 DOI: 10.1038/sj.emboj.7601552] [Cited by in Crossref: 242] [Cited by in F6Publishing: 243] [Article Influence: 16.1] [Reference Citation Analysis]
Number Citing Articles
1 Ma W, Rai V, Hudson BI, Song F, Schmidt AM, Barile GR. RAGE binds C1q and enhances C1q-mediated phagocytosis. Cellular Immunology 2012;274:72-82. [DOI: 10.1016/j.cellimm.2012.02.001] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 3.7] [Reference Citation Analysis]
2 Karunakaran KB, Yanamala N, Boyce G, Becich MJ, Ganapathiraju MK. Malignant Pleural Mesothelioma Interactome with 364 Novel Protein-Protein Interactions. Cancers (Basel) 2021;13:1660. [PMID: 33916178 DOI: 10.3390/cancers13071660] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Hong SM, Cho JS, Um JY, Shin JM, Park IH, Lee SH, Lee SH, Lee HM. Increased expression of high-mobility group protein B1 in chronic rhinosinusitis. Am J Rhinol Allergy 2013;27:278-82. [PMID: 23883808 DOI: 10.2500/ajra.2013.27.3909] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 1.4] [Reference Citation Analysis]
4 Weijer R, Broekgaarden M, Kos M, van Vught R, Rauws EA, Breukink E, van Gulik TM, Storm G, Heger M. Enhancing photodynamic therapy of refractory solid cancers: Combining second-generation photosensitizers with multi-targeted liposomal delivery. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2015;23:103-31. [DOI: 10.1016/j.jphotochemrev.2015.05.002] [Cited by in Crossref: 74] [Cited by in F6Publishing: 43] [Article Influence: 10.6] [Reference Citation Analysis]
5 Vezzoli M, Castellani P, Corna G, Castiglioni A, Bosurgi L, Monno A, Brunelli S, Manfredi AA, Rubartelli A, Rovere-Querini P. High-mobility group box 1 release and redox regulation accompany regeneration and remodeling of skeletal muscle. Antioxid Redox Signal 2011;15:2161-74. [PMID: 21294652 DOI: 10.1089/ars.2010.3341] [Cited by in Crossref: 47] [Cited by in F6Publishing: 47] [Article Influence: 4.3] [Reference Citation Analysis]
6 de Souza A, Westra J, Limburg P, Bijl M, Kallenberg C. HMGB1 in vascular diseases: Its role in vascular inflammation and atherosclerosis. Autoimmunity Reviews 2012;11:909-17. [DOI: 10.1016/j.autrev.2012.03.007] [Cited by in Crossref: 86] [Cited by in F6Publishing: 78] [Article Influence: 8.6] [Reference Citation Analysis]
7 Di Maggio S, Gatti E, Liu J, Bertolotti M, Fritz G, Bianchi ME, Raucci A. The Mouse-Specific Splice Variant mRAGE_v4 Encodes a Membrane-Bound RAGE That Is Resistant to Shedding and Does Not Contribute to the Production of Soluble RAGE. PLoS One 2016;11:e0153832. [PMID: 27655137 DOI: 10.1371/journal.pone.0153832] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
8 Arikkatt J, Ullah MA, Short KR, Zhang V, Gan WJ, Loh Z, Werder RB, Simpson J, Sly PD, Mazzone SB, Spann KM, Ferreira MA, Upham JW, Sukkar MB, Phipps S. RAGE deficiency predisposes mice to virus-induced paucigranulocytic asthma. Elife 2017;6:e21199. [PMID: 28099113 DOI: 10.7554/eLife.21199] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 2.6] [Reference Citation Analysis]
9 Zhao GJ, Yao YM, Lu ZQ, Hong GL, Zhu XM, Wu Y, Wang DW, Dong N, Yu Y, Sheng ZY. Up-regulation of mitofusin-2 protects CD4+ T cells from HMGB1-mediated immune dysfunction partly through Ca(2+)-NFAT signaling pathway. Cytokine 2012;59:79-85. [PMID: 22549180 DOI: 10.1016/j.cyto.2012.03.026] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 1.8] [Reference Citation Analysis]
10 Antonelli A, Di Maggio S, Rejman J, Sanvito F, Rossi A, Catucci A, Gorzanelli A, Bragonzi A, Bianchi ME, Raucci A. The shedding-derived soluble receptor for advanced glycation endproducts sustains inflammation during acute Pseudomonas aeruginosa lung infection. Biochimica et Biophysica Acta (BBA) - General Subjects 2017;1861:354-64. [DOI: 10.1016/j.bbagen.2016.11.040] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
11 VanPatten S, Al-Abed Y. High Mobility Group Box-1 (HMGb1): Current Wisdom and Advancement as a Potential Drug Target. J Med Chem. 2018;61:5093-5107. [PMID: 29268019 DOI: 10.1021/acs.jmedchem.7b01136] [Cited by in Crossref: 41] [Cited by in F6Publishing: 40] [Article Influence: 10.3] [Reference Citation Analysis]
12 Zhu S, Li W, Ward MF, Sama AE, Wang H. High mobility group box 1 protein as a potential drug target for infection- and injury-elicited inflammation. Inflamm Allergy Drug Targets 2010;9:60-72. [PMID: 19906009 DOI: 10.2174/187152810791292872] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 3.3] [Reference Citation Analysis]
13 Kang R, Zhang Q, Zeh HJ, Lotze MT, Tang D. HMGB1 in cancer: good, bad, or both. Clin Cancer Res. 2013;19:4046-4057. [PMID: 23723299 DOI: 10.1158/1078-0432.ccr-13-0495] [Cited by in Crossref: 260] [Cited by in F6Publishing: 191] [Article Influence: 28.9] [Reference Citation Analysis]
14 Ding J, Cui X, Liu Q. Emerging role of HMGB1 in lung diseases: Friend or foe. J Cell Mol Med. 2017;21:1046-1057. [PMID: 28039939 DOI: 10.1111/jcmm.13048] [Cited by in Crossref: 38] [Cited by in F6Publishing: 37] [Article Influence: 6.3] [Reference Citation Analysis]
15 Romero R, Chaiworapongsa T, Savasan ZA, Hussein Y, Dong Z, Kusanovic JP, Kim CJ, Hassan SS. Clinical chorioamnionitis is characterized by changes in the expression of the alarmin HMGB1 and one of its receptors, sRAGE. J Matern Fetal Neonatal Med 2012;25:558-67. [PMID: 22578261 DOI: 10.3109/14767058.2011.599083] [Cited by in Crossref: 64] [Cited by in F6Publishing: 69] [Article Influence: 6.4] [Reference Citation Analysis]
16 Lu B, Wang C, Wang M, Li W, Chen F, Tracey KJ, Wang H. Molecular mechanism and therapeutic modulation of high mobility group box 1 release and action: an updated review. Expert Rev Clin Immunol 2014;10:713-27. [PMID: 24746113 DOI: 10.1586/1744666X.2014.909730] [Cited by in Crossref: 82] [Cited by in F6Publishing: 53] [Article Influence: 10.3] [Reference Citation Analysis]
17 Yang H, Wang H, Chavan SS, Andersson U. High Mobility Group Box Protein 1 (HMGB1): The Prototypical Endogenous Danger Molecule. Mol Med. 2015;21 Suppl 1:S6-S12. [PMID: 26605648 DOI: 10.2119/molmed.2015.00087] [Cited by in Crossref: 161] [Cited by in F6Publishing: 170] [Article Influence: 23.0] [Reference Citation Analysis]
18 Saenz R, Messmer B, Futalan D, Tor Y, Larsson M, Daniels G, Esener S, Messmer D. Activity of the HMGB1-derived immunostimulatory peptide Hp91 resides in the helical C-terminal portion and is enhanced by dimerization. Mol Immunol 2014;57:191-9. [PMID: 24172222 DOI: 10.1016/j.molimm.2013.09.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
19 Rao NV, Argyle B, Xu X, Reynolds PR, Walenga JM, Prechel M, Prestwich GD, MacArthur RB, Walters BB, Hoidal JR, Kennedy TP. Low anticoagulant heparin targets multiple sites of inflammation, suppresses heparin-induced thrombocytopenia, and inhibits interaction of RAGE with its ligands. Am J Physiol Cell Physiol 2010;299:C97-110. [PMID: 20375277 DOI: 10.1152/ajpcell.00009.2010] [Cited by in Crossref: 98] [Cited by in F6Publishing: 93] [Article Influence: 8.2] [Reference Citation Analysis]
20 Djojodimedjo T, Soebadi DM, Soetjipto. Escherichia coli infection induces mucosal damage and expression of proteins promoting urinary stone formation. Urolithiasis 2013;41:295-301. [PMID: 23756638 DOI: 10.1007/s00240-013-0577-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
21 Sharma A, Kaur S, Sarkar M, Sarin BC, Changotra H. The AGE-RAGE Axis and RAGE Genetics in Chronic Obstructive Pulmonary Disease. Clin Rev Allergy Immunol 2021;60:244-58. [PMID: 33170477 DOI: 10.1007/s12016-020-08815-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
22 Tae HJ, Kim JM, Park S, Tomiya N, Li G, Wei W, Petrashevskaya N, Ahmet I, Pang J, Cruschwitz S, Riebe RA, Zhang Y, Morrell CH, Browe D, Lee YC, Xiao RP, Talan MI, Lakatta EG, Lin L. The N-glycoform of sRAGE is the key determinant for its therapeutic efficacy to attenuate injury-elicited arterial inflammation and neointimal growth. J Mol Med (Berl) 2013;91:1369-81. [PMID: 24132651 DOI: 10.1007/s00109-013-1091-4] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
23 Bierhaus A, Nawroth PP. Multiple levels of regulation determine the role of the receptor for AGE (RAGE) as common soil in inflammation, immune responses and diabetes mellitus and its complications. Diabetologia 2009;52:2251-63. [DOI: 10.1007/s00125-009-1458-9] [Cited by in Crossref: 192] [Cited by in F6Publishing: 177] [Article Influence: 14.8] [Reference Citation Analysis]
24 Skelton JK, Purcell R. Preclinical models for studying immune responses to traumatic injury. Immunology 2021;162:377-88. [PMID: 32986856 DOI: 10.1111/imm.13272] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Ma Y, Conforti R, Aymeric L, Locher C, Kepp O, Kroemer G, Zitvogel L. How to improve the immunogenicity of chemotherapy and radiotherapy. Cancer Metastasis Rev 2011;30:71-82. [PMID: 21298323 DOI: 10.1007/s10555-011-9283-2] [Cited by in Crossref: 57] [Cited by in F6Publishing: 52] [Article Influence: 5.2] [Reference Citation Analysis]
26 Dai S, Sodhi C, Cetin S, Richardson W, Branca M, Neal MD, Prindle T, Ma C, Shapiro RA, Li B, Wang JH, Hackam DJ. Extracellular high mobility group box-1 (HMGB1) inhibits enterocyte migration via activation of Toll-like receptor-4 and increased cell-matrix adhesiveness. J Biol Chem 2010;285:4995-5002. [PMID: 20007974 DOI: 10.1074/jbc.M109.067454] [Cited by in Crossref: 49] [Cited by in F6Publishing: 32] [Article Influence: 3.8] [Reference Citation Analysis]
27 LaRosa DF, Rahman AH, Turka LA. The innate immune system in allograft rejection and tolerance. J Immunol 2007;178:7503-9. [PMID: 17548582 DOI: 10.4049/jimmunol.178.12.7503] [Cited by in Crossref: 124] [Cited by in F6Publishing: 109] [Article Influence: 8.3] [Reference Citation Analysis]
28 Rapoport BL, Steel HC, Theron AJ, Heyman L, Smit T, Ramdas Y, Anderson R. High Mobility Group Box 1 in Human Cancer. Cells 2020;9:E1664. [PMID: 32664328 DOI: 10.3390/cells9071664] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
29 Liu WL, Li CY, Cheng WC, Chang CY, Chen YH, Lu CY, Wang SC, Liu YR, Cheng MH, Chong IW, Liu PL. High Mobility Group Box 1 Promotes Lung Cancer Cell Migration and Motility via Regulation of Dynamin-Related Protein 1. Int J Mol Sci 2021;22:3628. [PMID: 33807275 DOI: 10.3390/ijms22073628] [Reference Citation Analysis]
30 Wolf R, Mascia F, Dharamsi A, Howard OM, Cataisson C, Bliskovski V, Winston J, Feigenbaum L, Lichti U, Ruzicka T, Chavakis T, Yuspa SH. Gene from a psoriasis susceptibility locus primes the skin for inflammation. Sci Transl Med 2010;2:61ra90. [PMID: 21148126 DOI: 10.1126/scitranslmed.3001108] [Cited by in Crossref: 43] [Cited by in F6Publishing: 40] [Article Influence: 3.9] [Reference Citation Analysis]
31 Zaki AM, El-Tanbouly DM, Abdelsalam RM, Zaki HF. Plumbagin ameliorates hepatic ischemia-reperfusion injury in rats: Role of high mobility group box 1 in inflammation, oxidative stress and apoptosis. Biomed Pharmacother 2018;106:785-93. [PMID: 29990872 DOI: 10.1016/j.biopha.2018.07.004] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
32 van Zoelen MA, Achouiti A, van der Poll T. The role of receptor for advanced glycation endproducts (RAGE) in infection. Crit Care 2011;15:208. [PMID: 21457506 DOI: 10.1186/cc9990] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 3.7] [Reference Citation Analysis]
33 Podolnikova NP, Podolnikov AV, Haas TA, Lishko VK, Ugarova TP. Ligand recognition specificity of leukocyte integrin αMβ2 (Mac-1, CD11b/CD18) and its functional consequences. Biochemistry 2015;54:1408-20. [PMID: 25613106 DOI: 10.1021/bi5013782] [Cited by in Crossref: 54] [Cited by in F6Publishing: 54] [Article Influence: 7.7] [Reference Citation Analysis]
34 Hazeldine J, Hampson P, Lord JM. The impact of trauma on neutrophil function. Injury 2014;45:1824-33. [PMID: 25106876 DOI: 10.1016/j.injury.2014.06.021] [Cited by in Crossref: 51] [Cited by in F6Publishing: 45] [Article Influence: 6.4] [Reference Citation Analysis]
35 Zhou Y, Jiang YQ, Wang WX, Zhou ZX, Wang YG, Yang L, Ji YL. HMGB1 and RAGE levels in induced sputum correlate with asthma severity and neutrophil percentage. Hum Immunol 2012;73:1171-4. [PMID: 22960399 DOI: 10.1016/j.humimm.2012.08.016] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 3.1] [Reference Citation Analysis]
36 Tynan GA, McNaughton A, Jarnicki A, Tsuji T, Lavelle EC. Polymyxin B inadequately quenches the effects of contaminating lipopolysaccharide on murine dendritic cells. PLoS One 2012;7:e37261. [PMID: 22624003 DOI: 10.1371/journal.pone.0037261] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.2] [Reference Citation Analysis]
37 Rojas A, Delgado-López F, González I, Pérez-Castro R, Romero J, Rojas I. The receptor for advanced glycation end-products: a complex signaling scenario for a promiscuous receptor. Cell Signal 2013;25:609-14. [PMID: 23200851 DOI: 10.1016/j.cellsig.2012.11.022] [Cited by in Crossref: 60] [Cited by in F6Publishing: 58] [Article Influence: 6.0] [Reference Citation Analysis]
38 Campana L, Bosurgi L, Rovere-Querini P. HMGB1: a two-headed signal regulating tumor progression and immunity. Curr Opin Immunol 2008;20:518-23. [PMID: 18599281 DOI: 10.1016/j.coi.2008.04.012] [Cited by in Crossref: 94] [Cited by in F6Publishing: 91] [Article Influence: 6.7] [Reference Citation Analysis]
39 Squiccimarro E, Jiritano F, Serraino GF, Ten Cate H, Paparella D, Lorusso R. Quantitative and Qualitative Platelet Derangements in Cardiac Surgery and Extracorporeal Life Support. J Clin Med 2021;10:615. [PMID: 33561947 DOI: 10.3390/jcm10040615] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
40 Scavello F, Zeni F, Milano G, Macrì F, Castiglione S, Zuccolo E, Scopece A, Pezone G, Tedesco CC, Nigro P, Degani G, Gambini E, Veglia F, Popolo L, Pompilio G, Colombo GI, Bianchi ME, Raucci A. Soluble Receptor for Advanced Glycation End-products regulates age-associated Cardiac Fibrosis. Int J Biol Sci 2021;17:2399-416. [PMID: 34326683 DOI: 10.7150/ijbs.56379] [Reference Citation Analysis]
41 Bandala-Sanchez E, G Bediaga N, Goddard-Borger ED, Ngui K, Naselli G, Stone NL, Neale AM, Pearce LA, Wardak A, Czabotar P, Haselhorst T, Maggioni A, Hartley-Tassell LA, Adams TE, Harrison LC. CD52 glycan binds the proinflammatory B box of HMGB1 to engage the Siglec-10 receptor and suppress human T cell function. Proc Natl Acad Sci U S A 2018;115:7783-8. [PMID: 29997173 DOI: 10.1073/pnas.1722056115] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 5.8] [Reference Citation Analysis]
42 Zhou H, Ji X, Wu Y, Xuan J, Qi Z, Shen L, Lan L, Li Q, Yin Z, Li Z, Zhao Z. A dual-role of Gu-4 in suppressing HMGB1 secretion and blocking HMGB1 pro-inflammatory activity during inflammation. PLoS One 2014;9:e89634. [PMID: 24603876 DOI: 10.1371/journal.pone.0089634] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
43 Yan SF, Yan SD, Ramasamy R, Schmidt AM. Tempering the wrath of RAGE: an emerging therapeutic strategy against diabetic complications, neurodegeneration, and inflammation. Ann Med 2009;41:408-22. [PMID: 19322705 DOI: 10.1080/07853890902806576] [Cited by in Crossref: 76] [Cited by in F6Publishing: 85] [Article Influence: 6.9] [Reference Citation Analysis]
44 Thomas MR, Storey RF. The role of platelets in inflammation. Thromb Haemost. 2015;114:449-458. [PMID: 26293514 DOI: 10.1160/th14-12-1067] [Cited by in Crossref: 180] [Cited by in F6Publishing: 120] [Article Influence: 25.7] [Reference Citation Analysis]
45 Hreggvidsdottir HS, Ostberg T, Wähämaa H, Schierbeck H, Aveberger AC, Klevenvall L, Palmblad K, Ottosson L, Andersson U, Harris HE. The alarmin HMGB1 acts in synergy with endogenous and exogenous danger signals to promote inflammation. J Leukoc Biol 2009;86:655-62. [PMID: 19564572 DOI: 10.1189/jlb.0908548] [Cited by in Crossref: 203] [Cited by in F6Publishing: 207] [Article Influence: 15.6] [Reference Citation Analysis]
46 Chavakis E, Dimmeler S. Homing of Progenitor Cells to Ischemic Tissues. Antioxidants & Redox Signaling 2011;15:967-80. [DOI: 10.1089/ars.2010.3582] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 3.6] [Reference Citation Analysis]
47 Wu AH, He L, Long W, Zhou Q, Zhu S, Wang P, Fan S, Wang H. Novel Mechanisms of Herbal Therapies for Inhibiting HMGB1 Secretion or Action. Evid Based Complement Alternat Med 2015;2015:456305. [PMID: 25821489 DOI: 10.1155/2015/456305] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
48 Bianchi ME, Manfredi AA. High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol Rev. 2007;220:35-46. [PMID: 17979838 DOI: 10.1111/j.1600-065X.2007.00574.x] [Cited by in Crossref: 410] [Cited by in F6Publishing: 207] [Article Influence: 29.3] [Reference Citation Analysis]
49 [DOI: 10.1101/540146] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
50 Yang, Han Z, Oppenheim JJ. Alarmins and immunity. Immunol Rev 2017;280:41-56. [PMID: 29027222 DOI: 10.1111/imr.12577] [Cited by in Crossref: 130] [Cited by in F6Publishing: 129] [Article Influence: 32.5] [Reference Citation Analysis]
51 Wang H, Zhu S, Zhou R, Li W, Sama AE. Therapeutic potential of HMGB1-targeting agents in sepsis. Expert Rev Mol Med 2008;10:e32. [PMID: 18980707 DOI: 10.1017/S1462399408000884] [Cited by in Crossref: 75] [Cited by in F6Publishing: 55] [Article Influence: 5.4] [Reference Citation Analysis]
52 Penzo M, Molteni R, Suda T, Samaniego S, Raucci A, Habiel DM, Miller F, Jiang HP, Li J, Pardi R, Palumbo R, Olivotto E, Kew RR, Bianchi ME, Marcu KB. Inhibitor of NF-kappa B kinases alpha and beta are both essential for high mobility group box 1-mediated chemotaxis [corrected]. J Immunol. 2010;184:4497-4509. [PMID: 20231695 DOI: 10.4049/jimmunol.0903131] [Cited by in Crossref: 72] [Cited by in F6Publishing: 71] [Article Influence: 6.0] [Reference Citation Analysis]
53 Kang R, Tang D, Schapiro NE, Loux T, Livesey KM, Billiar TR, Wang H, Van Houten B, Lotze MT, Zeh HJ. The HMGB1/RAGE inflammatory pathway promotes pancreatic tumor growth by regulating mitochondrial bioenergetics. Oncogene 2014;33:567-77. [PMID: 23318458 DOI: 10.1038/onc.2012.631] [Cited by in Crossref: 129] [Cited by in F6Publishing: 132] [Article Influence: 14.3] [Reference Citation Analysis]
54 Quan H, Bae HB, Hur YH, Lee KH, Lee CH, Jang EA, Jeong S. Stearoyl lysophosphatidylcholine inhibits LPS-induced extracellular release of HMGB1 through the G2A/calcium/CaMKKβ/AMPK pathway. Eur J Pharmacol 2019;852:125-33. [PMID: 30797785 DOI: 10.1016/j.ejphar.2019.02.038] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
55 Hou C, Kong J, Liang Y, Huang H, Wen H, Zheng X, Wu L, Chen Y. HMGB1 contributes to allergen-induced airway remodeling in a murine model of chronic asthma by modulating airway inflammation and activating lung fibroblasts. Cell Mol Immunol 2015;12:409-23. [PMID: 25152078 DOI: 10.1038/cmi.2014.60] [Cited by in Crossref: 45] [Cited by in F6Publishing: 50] [Article Influence: 5.6] [Reference Citation Analysis]
56 Bidwell JP, Yang J, Robling AG. Is HMGB1 an osteocyte alarmin? J Cell Biochem 2008;103:1671-80. [DOI: 10.1002/jcb.21572] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 2.8] [Reference Citation Analysis]
57 Koch M, Chitayat S, Dattilo BM, Schiefner A, Diez J, Chazin WJ, Fritz G. Structural basis for ligand recognition and activation of RAGE. Structure 2010;18:1342-52. [PMID: 20947022 DOI: 10.1016/j.str.2010.05.017] [Cited by in Crossref: 143] [Cited by in F6Publishing: 150] [Article Influence: 13.0] [Reference Citation Analysis]
58 Tapping RI. Innate immune sensing and activation of cell surface Toll-like receptors. Seminars in Immunology 2009;21:175-84. [DOI: 10.1016/j.smim.2009.05.003] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 3.2] [Reference Citation Analysis]
59 Sionov RV. Leveling Up the Controversial Role of Neutrophils in Cancer: When the Complexity Becomes Entangled. Cells 2021;10:2486. [PMID: 34572138 DOI: 10.3390/cells10092486] [Reference Citation Analysis]
60 Norton LW, Babensee JE. Innate and Adaptive Immune Responses in Tissue Engineering. In: Meyer U, Handschel J, Wiesmann HP, Meyer T, editors. Fundamentals of Tissue Engineering and Regenerative Medicine. Berlin: Springer Berlin Heidelberg; 2009. pp. 721-47. [DOI: 10.1007/978-3-540-77755-7_50] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
61 Zhang J, Xu X, Rao NV, Argyle B, McCoard L, Rusho WJ, Kennedy TP, Prestwich GD, Krueger G. Novel sulfated polysaccharides disrupt cathelicidins, inhibit RAGE and reduce cutaneous inflammation in a mouse model of rosacea. PLoS One 2011;6:e16658. [PMID: 21347371 DOI: 10.1371/journal.pone.0016658] [Cited by in Crossref: 44] [Cited by in F6Publishing: 47] [Article Influence: 4.0] [Reference Citation Analysis]
62 Plazyo O, Romero R, Unkel R, Balancio A, Mial TN, Xu Y, Dong Z, Hassan SS, Gomez-Lopez N. HMGB1 Induces an Inflammatory Response in the Chorioamniotic Membranes That Is Partially Mediated by the Inflammasome. Biol Reprod 2016;95:130. [PMID: 27806943 DOI: 10.1095/biolreprod.116.144139] [Cited by in Crossref: 62] [Cited by in F6Publishing: 63] [Article Influence: 10.3] [Reference Citation Analysis]
63 Khan MM, Liu Y, Khan ME, Gilman ML, Khan ST, Bromberg M, Colman RW. Upregulation of tissue factor in monocytes by cleaved high molecular weight kininogen is dependent on TNF-alpha and IL-1beta. Am J Physiol Heart Circ Physiol 2010;298:H652-8. [PMID: 19966052 DOI: 10.1152/ajpheart.00825.2009] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
64 Höhne C, Wenzel M, Angele B, Hammerschmidt S, Häcker H, Klein M, Bierhaus A, Sperandio M, Pfister H, Koedel U. High mobility group box 1 prolongs inflammation and worsens disease in pneumococcal meningitis. Brain 2013;136:1746-59. [DOI: 10.1093/brain/awt064] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 2.9] [Reference Citation Analysis]
65 Rojas A, Morales MA, Araya P, González I. RAGE - The Receptor of Advanced Glycation End Products. In: John Wiley & Sons Ltd, editor. eLS. Chichester: John Wiley & Sons, Ltd; 2001. pp. 1-7. [DOI: 10.1002/9780470015902.a0027298] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
66 Maugeri N, Baldini M, Ramirez GA, Rovere-querini P, Manfredi AA. Platelet-leukocyte deregulated interactions foster sterile inflammation and tissue damage in immune-mediated vessel diseases. Thrombosis Research 2012;129:267-73. [DOI: 10.1016/j.thromres.2011.12.001] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 2.5] [Reference Citation Analysis]
67 Zhao H, Zheng Q, Hu X, Shen H, Li F. Betulin attenuates kidney injury in septic rats through inhibiting TLR4/NF-κB signaling pathway. Life Sciences 2016;144:185-93. [DOI: 10.1016/j.lfs.2015.12.003] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 5.5] [Reference Citation Analysis]
68 Xie J, Méndez JD, Méndez-valenzuela V, Aguilar-hernández MM. Cellular signalling of the receptor for advanced glycation end products (RAGE). Cellular Signalling 2013;25:2185-97. [DOI: 10.1016/j.cellsig.2013.06.013] [Cited by in Crossref: 288] [Cited by in F6Publishing: 271] [Article Influence: 32.0] [Reference Citation Analysis]
69 Schiraldi M, Raucci A, Muñoz LM, Livoti E, Celona B, Venereau E, Apuzzo T, De Marchis F, Pedotti M, Bachi A, Thelen M, Varani L, Mellado M, Proudfoot A, Bianchi ME, Uguccioni M. HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. J Exp Med 2012;209:551-63. [PMID: 22370717 DOI: 10.1084/jem.20111739] [Cited by in Crossref: 400] [Cited by in F6Publishing: 384] [Article Influence: 40.0] [Reference Citation Analysis]
70 Weiler H. Regulation of inflammation by the protein C system. Crit Care Med 2010;38:S18-25. [PMID: 20083909 DOI: 10.1097/CCM.0b013e3181c9cbb5] [Cited by in Crossref: 36] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
71 Frommhold D, Kamphues A, Hepper I, Pruenster M, Lukic IK, Socher I, Zablotskaya V, Buschmann K, Lange-Sperandio B, Schymeinsky J, Ryschich E, Poeschl J, Kupatt C, Nawroth PP, Moser M, Walzog B, Bierhaus A, Sperandio M. RAGE and ICAM-1 cooperate in mediating leukocyte recruitment during acute inflammation in vivo. Blood 2010;116:841-9. [PMID: 20407037 DOI: 10.1182/blood-2009-09-244293] [Cited by in Crossref: 87] [Cited by in F6Publishing: 87] [Article Influence: 7.3] [Reference Citation Analysis]
72 Vacas S, Degos V, Tracey KJ, Maze M. High-mobility group box 1 protein initiates postoperative cognitive decline by engaging bone marrow-derived macrophages. Anesthesiology 2014;120:1160-7. [PMID: 24162463 DOI: 10.1097/ALN.0000000000000045] [Cited by in Crossref: 87] [Cited by in F6Publishing: 50] [Article Influence: 10.9] [Reference Citation Analysis]
73 Tian Y, Pan D, Chordia MD, French BA, Kron IL, Yang Z. The spleen contributes importantly to myocardial infarct exacerbation during post-ischemic reperfusion in mice via signaling between cardiac HMGB1 and splenic RAGE. Basic Res Cardiol 2016;111:62. [PMID: 27645145 DOI: 10.1007/s00395-016-0583-0] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.0] [Reference Citation Analysis]
74 Fehrenbach H, Kasper M, Tschernig T, Shearman MS, Schuh D, Müller M. Receptor for advanced glycation endproducts (RAGE) exhibits highly differential cellular and subcellular localisation in rat and human lung. Cell Mol Biol (Noisy-le-grand) 1998;44:1147-57. [PMID: 9846897 [PMID: 9846897 DOI: 10.1161/atvbaha.120.315527] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.1] [Reference Citation Analysis]
75 Su FF, Shi MQ, Guo WG, Liu XT, Wang HT, Lu ZF, Zheng QS. High-mobility group box 1 induces calcineurin-mediated cell hypertrophy in neonatal rat ventricular myocytes. Mediators Inflamm 2012;2012:805149. [PMID: 22778498 DOI: 10.1155/2012/805149] [Cited by in Crossref: 11] [Cited by in F6Publishing: 17] [Article Influence: 1.1] [Reference Citation Analysis]
76 Ebrahimkhani MR, Daneshmand A, Mazumder A, Allocca M, Calvo JA, Abolhassani N, Jhun I, Muthupalani S, Ayata C, Samson LD. Aag-initiated base excision repair promotes ischemia reperfusion injury in liver, brain, and kidney. Proc Natl Acad Sci U S A 2014;111:E4878-86. [PMID: 25349415 DOI: 10.1073/pnas.1413582111] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 3.9] [Reference Citation Analysis]
77 Dong Y, Gu Y, Huan Y, Wang Y, Liu Y, Liu M, Ding F, Gu X, Wang Y. HMGB1 protein does not mediate the inflammatory response in spontaneous spinal cord regeneration: a hint for CNS regeneration. J Biol Chem 2013;288:18204-18. [PMID: 23649623 DOI: 10.1074/jbc.M113.463810] [Cited by in Crossref: 29] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]
78 Klune JR, Dhupar R, Cardinal J, Billiar TR, Tsung A. HMGB1: endogenous danger signaling. Mol Med. 2008;14:476-484. [PMID: 18431461 DOI: 10.2119/2008-00034.klune] [Cited by in Crossref: 509] [Cited by in F6Publishing: 304] [Article Influence: 36.4] [Reference Citation Analysis]
79 Cai J, Wen J, Bauer E, Zhong H, Yuan H, Chen AF. The Role of HMGB1 in Cardiovascular Biology: Danger Signals. Antioxid Redox Signal 2015;23:1351-69. [PMID: 26066838 DOI: 10.1089/ars.2015.6408] [Cited by in Crossref: 32] [Cited by in F6Publishing: 35] [Article Influence: 4.6] [Reference Citation Analysis]
80 Trendelenburg G. Acute neurodegeneration and the inflammasome: central processor for danger signals and the inflammatory response? J Cereb Blood Flow Metab 2008;28:867-81. [PMID: 18212795 DOI: 10.1038/sj.jcbfm.9600609] [Cited by in Crossref: 46] [Cited by in F6Publishing: 45] [Article Influence: 3.3] [Reference Citation Analysis]
81 Senatus L, MacLean M, Arivazhagan L, Egaña-Gorroño L, López-Díez R, Manigrasso MB, Ruiz HH, Vasquez C, Wilson R, Shekhtman A, Gugger PF, Ramasamy R, Schmidt AM. Inflammation Meets Metabolism: Roles for the Receptor for Advanced Glycation End Products Axis in Cardiovascular Disease. Immunometabolism 2021;3:e210024. [PMID: 34178389 DOI: 10.20900/immunometab20210024] [Reference Citation Analysis]
82 Kono H, Rock KL. How dying cells alert the immune system to danger. Nat Rev Immunol. 2008;8:279-289. [PMID: 18340345 DOI: 10.1038/nri2215] [Cited by in Crossref: 1134] [Cited by in F6Publishing: 1067] [Article Influence: 81.0] [Reference Citation Analysis]
83 Maugeri N, Rovere-Querini P, Baldini M, Sabbadini MG, Manfredi AA. Translational mini-review series on immunology of vascular disease: mechanisms of vascular inflammation and remodelling in systemic vasculitis. Clin Exp Immunol 2009;156:395-404. [PMID: 19309348 DOI: 10.1111/j.1365-2249.2009.03921.x] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 2.5] [Reference Citation Analysis]
84 Chuah YK, Basir R, Talib H, Tie TH, Nordin N. Receptor for advanced glycation end products and its involvement in inflammatory diseases. Int J Inflam 2013;2013:403460. [PMID: 24102034 DOI: 10.1155/2013/403460] [Cited by in Crossref: 113] [Cited by in F6Publishing: 123] [Article Influence: 12.6] [Reference Citation Analysis]
85 Kang HJ, Lee H, Choi HJ, Youn JH, Shin JS, Ahn YH, Yoo JS, Paik YK, Kim H. Non-histone nuclear factor HMGB1 is phosphorylated and secreted in colon cancers. Lab Invest 2009;89:948-59. [PMID: 19506549 DOI: 10.1038/labinvest.2009.47] [Cited by in Crossref: 46] [Cited by in F6Publishing: 44] [Article Influence: 3.5] [Reference Citation Analysis]
86 Beninson LA, Fleshner M. Exosomes: an emerging factor in stress-induced immunomodulation. Semin Immunol 2014;26:394-401. [PMID: 24405946 DOI: 10.1016/j.smim.2013.12.001] [Cited by in Crossref: 56] [Cited by in F6Publishing: 59] [Article Influence: 7.0] [Reference Citation Analysis]
87 Buschmann K, Tschada R, Metzger MS, Braach N, Kuss N, Hudalla H, Poeschl J, Frommhold D. RAGE controls leukocyte adhesion in preterm and term infants. BMC Immunol 2014;15:53. [PMID: 25428166 DOI: 10.1186/s12865-014-0053-0] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
88 Andersson U, Tracey KJ. HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol. 2011;29:139-162. [PMID: 21219181 DOI: 10.1146/annurev-immunol-030409-101323] [Cited by in Crossref: 881] [Cited by in F6Publishing: 852] [Article Influence: 80.1] [Reference Citation Analysis]
89 de Souza AW, Perazzio SF, de França NR, Andrade LE, Bijl M, Westra J, Kallenberg CG. High mobility group box 1 serum levels are increased in Behçet's disease, but not associated with disease activity or disease manifestations. Rheumatology (Oxford) 2015;54:2151-5. [PMID: 26170374 DOI: 10.1093/rheumatology/kev202] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 0.1] [Reference Citation Analysis]
90 Rojas A, Pérez-Castro R, González I, Delgado F, Romero J, Rojas I. The emerging role of the receptor for advanced glycation end products on innate immunity. Int Rev Immunol 2014;33:67-80. [PMID: 24266871 DOI: 10.3109/08830185.2013.849702] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
91 Geng Y, Munirathinam G, Palani S, Ross JE, Wang B, Chen A, Zheng G. HMGB1-Neutralizing IgM Antibody Is a Normal Component of Blood Plasma. J Immunol 2020;205:407-13. [PMID: 32522835 DOI: 10.4049/jimmunol.2000014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
92 Hernandez C, Huebener P, Schwabe RF. Damage-associated molecular patterns in cancer: a double-edged sword. Oncogene 2016;35:5931-41. [PMID: 27086930 DOI: 10.1038/onc.2016.104] [Cited by in Crossref: 166] [Cited by in F6Publishing: 162] [Article Influence: 27.7] [Reference Citation Analysis]
93 Zandarashvili L, Sahu D, Lee K, Lee YS, Singh P, Rajarathnam K, Iwahara J. Real-time kinetics of high-mobility group box 1 (HMGB1) oxidation in extracellular fluids studied by in situ protein NMR spectroscopy. J Biol Chem 2013;288:11621-7. [PMID: 23447529 DOI: 10.1074/jbc.M113.449942] [Cited by in Crossref: 48] [Cited by in F6Publishing: 34] [Article Influence: 5.3] [Reference Citation Analysis]
94 Yang D, Wei F, Tewary P, Howard OM, Oppenheim JJ. Alarmin-induced cell migration. Eur J Immunol 2013;43:1412-8. [PMID: 23619968 DOI: 10.1002/eji.201243138] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 2.6] [Reference Citation Analysis]
95 Kwak MS, Kim HS, Lee B, Kim YH, Son M, Shin JS. Immunological Significance of HMGB1 Post-Translational Modification and Redox Biology. Front Immunol 2020;11:1189. [PMID: 32587593 DOI: 10.3389/fimmu.2020.01189] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
96 Kajikawa T, Wang B, Li X, Wang H, Chavakis T, Moutsopoulos NM, Hajishengallis G. Frontline Science: Activation of metabolic nuclear receptors restores periodontal tissue homeostasis in mice with leukocyte adhesion deficiency-1. J Leukoc Biol 2020;108:1501-14. [PMID: 32421906 DOI: 10.1002/JLB.5HI0420-648R] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
97 Peter C, Wesselborg S, Herrmann M, Lauber K. Dangerous attraction: phagocyte recruitment and danger signals of apoptotic and necrotic cells. Apoptosis 2010;15:1007-28. [PMID: 20157780 DOI: 10.1007/s10495-010-0472-1] [Cited by in Crossref: 96] [Cited by in F6Publishing: 97] [Article Influence: 8.0] [Reference Citation Analysis]
98 Lin AG, Xiang B, Merlino DJ, Baybutt TR, Sahu J, Fridman A, Snook AE, Miller V. Non-thermal plasma induces immunogenic cell death in vivo in murine CT26 colorectal tumors. Oncoimmunology 2018;7:e1484978. [PMID: 30228954 DOI: 10.1080/2162402X.2018.1484978] [Cited by in Crossref: 53] [Cited by in F6Publishing: 37] [Article Influence: 13.3] [Reference Citation Analysis]
99 Perrone L, Peluso G, Melone MA. RAGE recycles at the plasma membrane in S100B secretory vesicles and promotes Schwann cells morphological changes. J Cell Physiol 2008;217:60-71. [DOI: 10.1002/jcp.21474] [Cited by in Crossref: 47] [Cited by in F6Publishing: 46] [Article Influence: 3.4] [Reference Citation Analysis]
100 Hu H, Jiang H, Ren H, Hu X, Wang X, Han C. AGEs and chronic subclinical inflammation in diabetes: disorders of immune system: AGEs and Diabetic Chronic Inflammation. Diabetes Metab Res Rev 2015;31:127-37. [DOI: 10.1002/dmrr.2560] [Cited by in Crossref: 41] [Cited by in F6Publishing: 41] [Article Influence: 5.9] [Reference Citation Analysis]
101 Xu T, Jiang L, Wang Z. The progression of HMGB1-induced autophagy in cancer biology. Onco Targets Ther 2019;12:365-77. [PMID: 30643434 DOI: 10.2147/OTT.S185876] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
102 Wang H, Ward MF, Sama AE. Novel HMGB1-inhibiting therapeutic agents for experimental sepsis. Shock. 2009;32:348-357. [PMID: 19333143 DOI: 10.1097/SHK.0b013e3181a551bd] [Cited by in Crossref: 87] [Cited by in F6Publishing: 50] [Article Influence: 7.3] [Reference Citation Analysis]
103 Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ 3rd, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014;40:1-116. [PMID: 25010388 DOI: 10.1016/j.mam.2014.05.001] [Cited by in Crossref: 445] [Cited by in F6Publishing: 443] [Article Influence: 55.6] [Reference Citation Analysis]
104 Cao S, Li S, Li H, Xiong L, Zhou Y, Fan J, Yu X, Mao H. The potential role of HMGB1 release in peritoneal dialysis-related peritonitis. PLoS One 2013;8:e54647. [PMID: 23359306 DOI: 10.1371/journal.pone.0054647] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
105 van Beijnum JR, Buurman WA, Griffioen AW. Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1). Angiogenesis. 2008;11:91-99. [PMID: 18264787 DOI: 10.1007/s10456-008-9093-5] [Cited by in Crossref: 315] [Cited by in F6Publishing: 331] [Article Influence: 22.5] [Reference Citation Analysis]
106 González I, Romero J, Rodríguez BL, Pérez-Castro R, Rojas A. The immunobiology of the receptor of advanced glycation end-products: trends and challenges. Immunobiology 2013;218:790-7. [PMID: 23182709 DOI: 10.1016/j.imbio.2012.09.005] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 3.5] [Reference Citation Analysis]
107 Xiang M, Yuan Y, Fan L, Li Y, Li A, Yin L, Scott MJ, Xiao G, Billiar TR, Wilson MA, Fan J. Role of macrophages in mobilization of hematopoietic progenitor cells from bone marrow after hemorrhagic shock. Shock 2012;37:518-23. [PMID: 22293600 DOI: 10.1097/SHK.0b013e318249b81d] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
108 Choi EY, Orlova VV, Fagerholm SC, Nurmi SM, Zhang L, Ballantyne CM, Gahmberg CG, Chavakis T. Regulation of LFA-1-dependent inflammatory cell recruitment by Cbl-b and 14-3-3 proteins. Blood 2008;111:3607-14. [PMID: 18239087 DOI: 10.1182/blood-2007-07-103077] [Cited by in Crossref: 43] [Cited by in F6Publishing: 42] [Article Influence: 3.1] [Reference Citation Analysis]
109 Mohammad G, Abdelaziz GM, Siddiquei MM, Ahmad A, De Hertogh G, Abu El-Asrar AM. Cross-Talk between Sirtuin 1 and the Proinflammatory Mediator High-Mobility Group Box-1 in the Regulation of Blood-Retinal Barrier Breakdown in Diabetic Retinopathy. Curr Eye Res 2019;44:1133-43. [PMID: 31136205 DOI: 10.1080/02713683.2019.1625406] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
110 Klune JR, Tsung A. Molecular biology of liver ischemia/reperfusion injury: established mechanisms and recent advancements. Surg Clin North Am. 2010;90:665-677. [PMID: 20637940 DOI: 10.1016/j.suc.2010.04.003] [Cited by in Crossref: 130] [Cited by in F6Publishing: 130] [Article Influence: 10.8] [Reference Citation Analysis]
111 Dumitru CA, Lang S, Brandau S. Modulation of neutrophil granulocytes in the tumor microenvironment: mechanisms and consequences for tumor progression. Semin Cancer Biol. 2013;23:141-148. [PMID: 23485549 DOI: 10.1016/j.semcancer.2013.02.005] [Cited by in Crossref: 162] [Cited by in F6Publishing: 155] [Article Influence: 18.0] [Reference Citation Analysis]
112 Kong X, Yuan H, Wu X, Zhang J, Zhou H, Wang M, Liu Y, Jin X. High-mobility-group box protein 1A box reduces development of sodium laurate-induced thromboangiitis obliterans in rats. J Vasc Surg 2013;57:194-204. [PMID: 23069071 DOI: 10.1016/j.jvs.2012.06.083] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
113 Treffers LW, Hiemstra IH, Kuijpers TW, van den Berg TK, Matlung HL. Neutrophils in cancer. Immunol Rev. 2016;273:312-328. [PMID: 27558343 DOI: 10.1111/imr.12444] [Cited by in Crossref: 101] [Cited by in F6Publishing: 99] [Article Influence: 20.2] [Reference Citation Analysis]
114 Mitroulis I, Alexaki VI, Kourtzelis I, Ziogas A, Hajishengallis G, Chavakis T. Leukocyte integrins: role in leukocyte recruitment and as therapeutic targets in inflammatory disease. Pharmacol Ther 2015;147:123-35. [PMID: 25448040 DOI: 10.1016/j.pharmthera.2014.11.008] [Cited by in Crossref: 128] [Cited by in F6Publishing: 129] [Article Influence: 16.0] [Reference Citation Analysis]
115 Friggeri A, Yang Y, Banerjee S, Park YJ, Liu G, Abraham E. HMGB1 inhibits macrophage activity in efferocytosis through binding to the alphavbeta3-integrin. Am J Physiol Cell Physiol 2010;299:C1267-76. [PMID: 20826760 DOI: 10.1152/ajpcell.00152.2010] [Cited by in Crossref: 80] [Cited by in F6Publishing: 78] [Article Influence: 6.7] [Reference Citation Analysis]
116 Koyama H, Yamamoto H, Nishizawa Y. RAGE and soluble RAGE: potential therapeutic targets for cardiovascular diseases. Mol Med. 2007;13:625-635. [PMID: 17932553 DOI: 10.2119/2007-00087.koyama] [Cited by in Crossref: 98] [Cited by in F6Publishing: 46] [Article Influence: 7.0] [Reference Citation Analysis]
117 Andrassy M, Volz HC, Igwe JC, Funke B, Eichberger SN, Kaya Z, Buss S, Autschbach F, Pleger ST, Lukic IK. High-mobility group box-1 in ischemia-reperfusion injury of the heart. Circulation. 2008;117:3216-3226. [PMID: 18574060 DOI: 10.1161/circulationaha.108.769331] [Cited by in Crossref: 437] [Cited by in F6Publishing: 231] [Article Influence: 31.2] [Reference Citation Analysis]
118 Jangde N, Ray R, Rai V. RAGE and its ligands: from pathogenesis to therapeutics. Crit Rev Biochem Mol Biol 2020;55:555-75. [PMID: 32933340 DOI: 10.1080/10409238.2020.1819194] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
119 Wild CA, Bergmann C, Fritz G, Schuler P, Hoffmann TK, Lotfi R, Westendorf A, Brandau S, Lang S. HMGB1 conveys immunosuppressive characteristics on regulatory and conventional T cells. International Immunology 2012;24:485-94. [DOI: 10.1093/intimm/dxs051] [Cited by in Crossref: 53] [Cited by in F6Publishing: 61] [Article Influence: 5.3] [Reference Citation Analysis]
120 Zheng X, Lv Y, Li S, Zhang Q, Zhang X, Hao Z. Adeno-associated virus-mediated colonic secretory expression of HMGB1 A box attenuates experimental colitis in mice. J Gene Med. 2016;18:261-272. [PMID: 27572454 DOI: 10.1002/jgm.2899] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
121 Kim I, Lee KO, Yun YJ, Jeong JY, Kim EH, Cheong H, Ryu KS, Kim NK, Suh JY. Biophysical characterization of Ca2+-binding of S100A5 and Ca2+-induced interaction with RAGE. Biochem Biophys Res Commun 2017;483:332-8. [PMID: 28017722 DOI: 10.1016/j.bbrc.2016.12.143] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
122 Rouhiainen A, Kuja-Panula J, Tumova S, Rauvala H. RAGE-mediated cell signaling. Methods Mol Biol. 2013;963:239-263. [PMID: 23296615 DOI: 10.1007/978-1-62703-230-8_15] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 5.6] [Reference Citation Analysis]
123 Fu L, Wei LW, Zhao MD, Zhu JL, Chen SY, Jia XB, Lai SJ. Investigation of JAKs/STAT-3 in lipopolysaccharide-induced intestinal epithelial cells. Clin Exp Immunol 2016;186:75-85. [PMID: 27357529 DOI: 10.1111/cei.12835] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
124 Alexaki VI, May AE, Fujii C, Ungern-sternberg SNIV, Mund C, Gawaz M, Chavakis T, Seizer P. S100A9 induces monocyte/ macrophage migration via EMMPRIN. Thromb Haemost 2017;117:636-9. [DOI: 10.1160/th16-06-0434] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
125 Kato J, Svensson CI. Role of Extracellular Damage-Associated Molecular Pattern Molecules (DAMPs) as Mediators of Persistent Pain. Molecular and Cell Biology of Pain. Elsevier; 2015. pp. 251-79. [DOI: 10.1016/bs.pmbts.2014.11.014] [Cited by in Crossref: 49] [Cited by in F6Publishing: 42] [Article Influence: 7.0] [Reference Citation Analysis]
126 Panzarini E, Inguscio V, Dini L. Immunogenic cell death: can it be exploited in PhotoDynamic Therapy for cancer? Biomed Res Int 2013;2013:482160. [PMID: 23509727 DOI: 10.1155/2013/482160] [Cited by in Crossref: 60] [Cited by in F6Publishing: 59] [Article Influence: 6.0] [Reference Citation Analysis]
127 Li NY, Lee BJ, Thibeault SL. Temporal and spatial expression of high-mobility group box 1 in surgically injured rat vocal folds. Laryngoscope 2012;122:364-9. [PMID: 22252485 DOI: 10.1002/lary.22435] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.7] [Reference Citation Analysis]
128 Achouiti A, de Vos AF, de Beer R, Florquin S, van 't Veer C, van der Poll T. Limited role of the receptor for advanced glycation end products during Streptococcus pneumoniae bacteremia. J Innate Immun 2013;5:603-12. [PMID: 23774862 DOI: 10.1159/000348739] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.3] [Reference Citation Analysis]
129 Chikhirzhina E, Starkova T, Beljajev A, Polyanichko A, Tomilin A. Functional Diversity of Non-Histone Chromosomal Protein HmgB1. Int J Mol Sci 2020;21:E7948. [PMID: 33114717 DOI: 10.3390/ijms21217948] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
130 Elfeky M, Yoneshiro T, Okamatsu-Ogura Y, Kimura K. Adiponectin suppression of late inflammatory mediator, HMGB1-induced cytokine expression in RAW264 macrophage cells. J Biochem 2018;163:143-53. [PMID: 29048484 DOI: 10.1093/jb/mvx069] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
131 Pellegrini L, Foglio E, Pontemezzo E, Germani A, Russo MA, Limana F. HMGB1 and repair: focus on the heart. Pharmacol Ther 2019;196:160-82. [PMID: 30529040 DOI: 10.1016/j.pharmthera.2018.12.005] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 3.3] [Reference Citation Analysis]
132 Kianian F, Kadkhodaee M, Sadeghipour HR, Karimian SM, Seifi B. An overview of high-mobility group box 1, a potent pro-inflammatory cytokine in asthma. J Basic Clin Physiol Pharmacol 2020;31. [PMID: 32651983 DOI: 10.1515/jbcpp-2019-0363] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
133 Hernández-Pando R, Barrios-Payán J, Mata-Espinosa D, Marquina-Castillo B, Hernández-Ramírez D, Bottasso OA, Bini EI. The Role of High Mobility Group Box 1 Protein (HMGB1) in the Immunopathology of Experimental Pulmonary Tuberculosis. PLoS One 2015;10:e0133200. [PMID: 26201072 DOI: 10.1371/journal.pone.0133200] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
134 Patnaik A, Swanson KD, Csizmadia E, Solanki A, Landon-Brace N, Gehring MP, Helenius K, Olson BM, Pyzer AR, Wang LC, Elemento O, Novak J, Thornley TB, Asara JM, Montaser L, Timmons JJ, Morgan TM, Wang Y, Levantini E, Clohessy JG, Kelly K, Pandolfi PP, Rosenblatt JM, Avigan DE, Ye H, Karp JM, Signoretti S, Balk SP, Cantley LC. Cabozantinib Eradicates Advanced Murine Prostate Cancer by Activating Antitumor Innate Immunity. Cancer Discov 2017;7:750-65. [PMID: 28274958 DOI: 10.1158/2159-8290.CD-16-0778] [Cited by in Crossref: 63] [Cited by in F6Publishing: 39] [Article Influence: 12.6] [Reference Citation Analysis]
135 Zhou Z, Han JY, Xi CX, Xie JX, Feng X, Wang CY, Mei L, Xiong WC. HMGB1 regulates RANKL-induced osteoclastogenesis in a manner dependent on RAGE. J Bone Miner Res 2008;23:1084-96. [PMID: 18302500 DOI: 10.1359/jbmr.080234] [Cited by in Crossref: 101] [Cited by in F6Publishing: 92] [Article Influence: 7.2] [Reference Citation Analysis]
136 Herold K, Moser B, Chen Y, Zeng S, Yan SF, Ramasamy R, Emond J, Clynes R, Schmidt AM. Receptor for advanced glycation end products (RAGE) in a dash to the rescue: inflammatory signals gone awry in the primal response to stress. J Leukoc Biol 2007;82:204-12. [PMID: 17513693 DOI: 10.1189/jlb.1206751] [Cited by in Crossref: 94] [Cited by in F6Publishing: 93] [Article Influence: 6.3] [Reference Citation Analysis]
137 Tang D, Kang R, Zeh HJ, Lotze MT. High-mobility group box 1, oxidative stress, and disease. Antioxid Redox Signal. 2011;14:1315-1335. [PMID: 20969478 DOI: 10.1089/ars.2010.3356] [Cited by in Crossref: 322] [Cited by in F6Publishing: 304] [Article Influence: 29.3] [Reference Citation Analysis]
138 Ebe N, Hara-Yokoyama M, Iwasaki K, Iseki S, Okuhara S, Podyma-Inoue KA, Terasawa K, Watanabe A, Akizuki T, Watanabe H, Yanagishita M, Izumi Y. Pocket epithelium in the pathological setting for HMGB1 release. J Dent Res 2011;90:235-40. [PMID: 21149855 DOI: 10.1177/0022034510385688] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 1.8] [Reference Citation Analysis]
139 Wang X, Ji J, Zhang H, Fan Z, Zhang L, Shi L, Zhou F, Chen WR, Wang H, Wang X. Stimulation of dendritic cells by DAMPs in ALA-PDT treated SCC tumor cells. Oncotarget 2015;6:44688-702. [PMID: 26625309 DOI: 10.18632/oncotarget.5975] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 6.5] [Reference Citation Analysis]
140 Song J, Lee WT, Park KA, Lee JE. Receptor for advanced glycation end products (RAGE) and its ligands: focus on spinal cord injury. Int J Mol Sci 2014;15:13172-91. [PMID: 25068700 DOI: 10.3390/ijms150813172] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
141 Lin L, Park S, Lakatta EG. RAGE signaling in inflammation and arterial aging. Front Biosci (Landmark Ed) 2009;14:1403-13. [PMID: 19273137 DOI: 10.2741/3315] [Cited by in Crossref: 106] [Cited by in F6Publishing: 103] [Article Influence: 8.2] [Reference Citation Analysis]
142 Chen J, Tan W. Platelet activation and immune response in diabetic microangiopathy. Clinica Chimica Acta 2020;507:242-7. [DOI: 10.1016/j.cca.2020.04.042] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
143 Rubenich DS, Omizzollo N, Szczepański MJ, Reichert TE, Whiteside TL, Ludwig N, Braganhol E. Small extracellular vesicle-mediated bidirectional crosstalk between neutrophils and tumor cells. Cytokine Growth Factor Rev 2021;61:16-26. [PMID: 34479816 DOI: 10.1016/j.cytogfr.2021.08.002] [Reference Citation Analysis]
144 Wei W, Lampe L, Park S, Vangara BS, Waldo GS, Cabantous S, Subaran SS, Yang D, Lakatta EG, Lin L. Disulfide bonds within the C2 domain of RAGE play key roles in its dimerization and biogenesis. PLoS One 2012;7:e50736. [PMID: 23284645 DOI: 10.1371/journal.pone.0050736] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 2.7] [Reference Citation Analysis]
145 Wang JG, Bondy SC, Zhou L, Yang FZ, Ding ZG, Hu Y, Tian Y, Wen PY, Luo H, Wang F, Li WW, Zhou J. Protective effect of Tanshinone IIA against infarct size and increased HMGB1, NFκB, GFAP and apoptosis consequent to transient middle cerebral artery occlusion. Neurochem Res 2014;39:295-304. [PMID: 24362639 DOI: 10.1007/s11064-013-1221-y] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 2.3] [Reference Citation Analysis]
146 Lee CC, Lai YT, Chang HT, Liao JW, Shyu WC, Li CY, Wang CN. Inhibition of high-mobility group box 1 in lung reduced airway inflammation and remodeling in a mouse model of chronic asthma. Biochem Pharmacol 2013;86:940-9. [PMID: 23948063 DOI: 10.1016/j.bcp.2013.08.003] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 5.1] [Reference Citation Analysis]
147 Fuentes E, Rojas A, Palomo I. Role of multiligand/RAGE axis in platelet activation. Thromb Res. 2014;133:308-314. [PMID: 24296115 DOI: 10.1016/j.thromres.2013.11.007] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 2.8] [Reference Citation Analysis]
148 Liu C, Kong X, Wu X, Wang X, Guan H, Wang H, Wang L, Jin X, Yuan H. Alleviation of A disintegrin and metalloprotease 10 (ADAM10) on thromboangiitis obliterans involves the HMGB1/RAGE/ NF-κB pathway. Biochem Biophys Res Commun 2018;505:282-9. [PMID: 30245136 DOI: 10.1016/j.bbrc.2018.09.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
149 Wang C, de Souza AW, Westra J, Bijl M, Chen M, Zhao M, Kallenberg CG. Emerging role of high mobility group box 1 in ANCA-associated vasculitis. Autoimmunity Reviews 2015;14:1057-65. [DOI: 10.1016/j.autrev.2015.07.010] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
150 Yang D, Tewary P, de la Rosa G, Wei F, Oppenheim JJ. The alarmin functions of high-mobility group proteins. Biochim Biophys Acta 2010;1799:157-63. [PMID: 20123077 DOI: 10.1016/j.bbagrm.2009.11.002] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 2.9] [Reference Citation Analysis]
151 Li J, Bao G, Wang H. Time to Develop Therapeutic Antibodies Against Harmless Proteins Colluding with Sepsis Mediators? Immunotargets Ther 2020;9:157-66. [PMID: 33117741 DOI: 10.2147/ITT.S262605] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
152 Tsung A, Tohme S, Billiar TR. High-mobility group box-1 in sterile inflammation. J Intern Med. 2014;276:425-443. [PMID: 24935761 DOI: 10.1111/joim.12276] [Cited by in Crossref: 134] [Cited by in F6Publishing: 130] [Article Influence: 16.8] [Reference Citation Analysis]
153 Vijayakumar EC, Bhatt LK, Prabhavalkar KS. High Mobility Group Box-1 (HMGB1): A Potential Target in Therapeutics. Curr Drug Targets 2019;20:1474-85. [PMID: 31215389 DOI: 10.2174/1389450120666190618125100] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
154 Sukkar MB, Ullah MA, Gan WJ, Wark PA, Chung KF, Hughes JM, Armour CL, Phipps S. RAGE: a new frontier in chronic airways disease. Br J Pharmacol 2012;167:1161-76. [PMID: 22506507 DOI: 10.1111/j.1476-5381.2012.01984.x] [Cited by in Crossref: 59] [Cited by in F6Publishing: 58] [Article Influence: 6.6] [Reference Citation Analysis]
155 Tazzyman S, Niaz H, Murdoch C. Neutrophil-mediated tumour angiogenesis: subversion of immune responses to promote tumour growth. Semin Cancer Biol 2013;23:149-58. [PMID: 23410638 DOI: 10.1016/j.semcancer.2013.02.003] [Cited by in Crossref: 78] [Cited by in F6Publishing: 76] [Article Influence: 8.7] [Reference Citation Analysis]
156 Zhang F, Huang G, Hu B, Fang LP, Cao EH, Xin XF, Song Y, Shi Y. Anti-HMGB1 neutralizing antibody ameliorates neutrophilic airway inflammation by suppressing dendritic cell-mediated Th17 polarization. Mediators Inflamm. 2014;2014:257930. [PMID: 24959003 DOI: 10.1155/2014/257930] [Cited by in Crossref: 22] [Cited by in F6Publishing: 29] [Article Influence: 2.8] [Reference Citation Analysis]
157 Schindler SM, Frank MG, Annis JL, Maier SF, Klegeris A. Pattern recognition receptors mediate pro-inflammatory effects of extracellular mitochondrial transcription factor A (TFAM). Molecular and Cellular Neuroscience 2018;89:71-9. [DOI: 10.1016/j.mcn.2018.04.005] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
158 Ding HS, Yang J, Gong FL, Yang J, Ding JW, Li S, Jiang YR. High mobility group [corrected] box 1 mediates neutrophil recruitment in myocardial ischemia-reperfusion injury through toll like receptor 4-related pathway. Gene. 2012;509:149-153. [PMID: 22890140 DOI: 10.1016/j.gene.2012.07.072] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 3.1] [Reference Citation Analysis]
159 Fleshner M. Stress-evoked sterile inflammation, danger associated molecular patterns (DAMPs), microbial associated molecular patterns (MAMPs) and the inflammasome. Brain Behav Immun 2013;27:1-7. [PMID: 22964544 DOI: 10.1016/j.bbi.2012.08.012] [Cited by in Crossref: 72] [Cited by in F6Publishing: 72] [Article Influence: 7.2] [Reference Citation Analysis]
160 Zhang G, Chen F, Cao Y, See WA. Contributors to HMGB1 Release by Urothelial Carcinoma Cells in Response to Bacillus Calmette-Guérin. Journal of Urology 2013;190:1398-403. [DOI: 10.1016/j.juro.2013.03.123] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
161 Hajizadeh F, Aghebati Maleki L, Alexander M, Mikhailova MV, Masjedi A, Ahmadpour M, Hashemi V, Jadidi-Niaragh F. Tumor-associated neutrophils as new players in immunosuppressive process of the tumor microenvironment in breast cancer. Life Sci 2021;264:118699. [PMID: 33137368 DOI: 10.1016/j.lfs.2020.118699] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
162 Subramanian P, Mitroulis I, Hajishengallis G, Chavakis T. Regulation of tissue infiltration by neutrophils: role of integrin α3β1 and other factors. Curr Opin Hematol 2016;23:36-43. [PMID: 26554893 DOI: 10.1097/MOH.0000000000000198] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
163 Zhang Y, Li F, Chen C, Li Y, Xie W, Huang D, Zhai X, Yu W, Wan J, Li P. RAGE-mediated T cell metabolic reprogramming shapes T cell inflammatory response after stroke. J Cereb Blood Flow Metab 2021;:271678X211067133. [PMID: 34910890 DOI: 10.1177/0271678X211067133] [Reference Citation Analysis]
164 Fritz G. RAGE: a single receptor fits multiple ligands. Trends in Biochemical Sciences 2011;36:625-32. [DOI: 10.1016/j.tibs.2011.08.008] [Cited by in Crossref: 193] [Cited by in F6Publishing: 187] [Article Influence: 17.5] [Reference Citation Analysis]
165 Volz HC, Laohachewin D, Seidel C, Lasitschka F, Keilbach K, Wienbrandt AR, Andrassy J, Bierhaus A, Kaya Z, Katus HA, Andrassy M. S100A8/A9 aggravates post-ischemic heart failure through activation of RAGE-dependent NF-κB signaling. Basic Res Cardiol 2012;107:250. [PMID: 22318783 DOI: 10.1007/s00395-012-0250-z] [Cited by in Crossref: 65] [Cited by in F6Publishing: 66] [Article Influence: 6.5] [Reference Citation Analysis]
166 Yan SD, Bierhaus A, Nawroth PP, Stern DM. RAGE and Alzheimer's disease: a progression factor for amyloid-beta-induced cellular perturbation? J Alzheimers Dis 2009;16:833-43. [PMID: 19387116 DOI: 10.3233/JAD-2009-1030] [Cited by in Crossref: 99] [Cited by in F6Publishing: 52] [Article Influence: 7.6] [Reference Citation Analysis]
167 Castiglioni A, Canti V, Rovere-Querini P, Manfredi AA. High-mobility group box 1 (HMGB1) as a master regulator of innate immunity. Cell Tissue Res 2011;343:189-99. [PMID: 20835834 DOI: 10.1007/s00441-010-1033-1] [Cited by in Crossref: 74] [Cited by in F6Publishing: 78] [Article Influence: 6.2] [Reference Citation Analysis]
168 Zhang Y, Li W, Zhu S, Jundoria A, Li J, Yang H, Fan S, Wang P, Tracey KJ, Sama AE, Wang H. Tanshinone IIA sodium sulfonate facilitates endocytic HMGB1 uptake. Biochem Pharmacol 2012;84:1492-500. [PMID: 23022229 DOI: 10.1016/j.bcp.2012.09.015] [Cited by in Crossref: 41] [Cited by in F6Publishing: 37] [Article Influence: 4.1] [Reference Citation Analysis]
169 Song H, Feng Y, Hoeger S, Beck G, Hanusch C, Goettmann U, Leuvenink HG, Ploeg RJ, Hillebrands J, Yard BA. High mobility group box 1 and adenosine are both released by endothelial cells during hypothermic preservation. Clin Exp Immunol 2008;152:311-9. [PMID: 18341609 DOI: 10.1111/j.1365-2249.2008.03643.x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
170 Alarcón P, Manosalva C, Conejeros I, Carretta MD, Muñoz-Caro T, Silva LMR, Taubert A, Hermosilla C, Hidalgo MA, Burgos RA. d(-) Lactic Acid-Induced Adhesion of Bovine Neutrophils onto Endothelial Cells Is Dependent on Neutrophils Extracellular Traps Formation and CD11b Expression. Front Immunol 2017;8:975. [PMID: 28861083 DOI: 10.3389/fimmu.2017.00975] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
171 Saenz R, Futalan D, Leutenez L, Eekhout F, Fecteau JF, Sundelius S, Sundqvist S, Larsson M, Hayashi T, Minev B, Carson D, Esener S, Messmer B, Messmer D. TLR4-dependent activation of dendritic cells by an HMGB1-derived peptide adjuvant. J Transl Med. 2014;12:211. [PMID: 25123824 DOI: 10.1186/1479-5876-12-211] [Cited by in Crossref: 47] [Cited by in F6Publishing: 51] [Article Influence: 5.9] [Reference Citation Analysis]
172 Stolla M, Refaai MA, Heal JM, Spinelli SL, Garraud O, Phipps RP, Blumberg N. Platelet transfusion - the new immunology of an old therapy. Front Immunol 2015;6:28. [PMID: 25699046 DOI: 10.3389/fimmu.2015.00028] [Cited by in Crossref: 58] [Cited by in F6Publishing: 55] [Article Influence: 8.3] [Reference Citation Analysis]
173 Zhu CS, Wang W, Qiang X, Chen W, Lan X, Li J, Wang H. Endogenous Regulation and Pharmacological Modulation of Sepsis-Induced HMGB1 Release and Action: An Updated Review. Cells 2021;10:2220. [PMID: 34571869 DOI: 10.3390/cells10092220] [Reference Citation Analysis]
174 Berthelot F, Fattoum L, Casulli S, Gozlan J, Maréchal V, Elbim C. The Effect of HMGB1, a Damage-Associated Molecular Pattern Molecule, on Polymorphonuclear Neutrophil Migration Depends on Its Concentration. J Innate Immun 2011;4:41-58. [DOI: 10.1159/000328798] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 3.3] [Reference Citation Analysis]
175 Riehl A, Németh J, Angel P, Hess J. The receptor RAGE: Bridging inflammation and cancer. Cell Commun Signal 2009;7:12. [PMID: 19426472 DOI: 10.1186/1478-811X-7-12] [Cited by in Crossref: 131] [Cited by in F6Publishing: 71] [Article Influence: 10.1] [Reference Citation Analysis]
176 Venereau E, Schiraldi M, Uguccioni M, Bianchi ME. HMGB1 and leukocyte migration during trauma and sterile inflammation. Mol Immunol. 2013;55:76-82. [PMID: 23207101 DOI: 10.1016/j.molimm.2012.10.037] [Cited by in Crossref: 137] [Cited by in F6Publishing: 126] [Article Influence: 13.7] [Reference Citation Analysis]
177 Raucci A, Di Maggio S, Scavello F, D'Ambrosio A, Bianchi ME, Capogrossi MC. The Janus face of HMGB1 in heart disease: a necessary update. Cell Mol Life Sci. 2019;76:211-229. [PMID: 30306212 DOI: 10.1007/s00018-018-2930-9] [Cited by in Crossref: 37] [Cited by in F6Publishing: 40] [Article Influence: 9.3] [Reference Citation Analysis]
178 Karuppagounder V, Arumugam S, Thandavarayan RA, Pitchaimani V, Sreedhar R, Afrin R, Harima M, Suzuki H, Nomoto M, Miyashita S, Suzuki K, Nakamura M, Ueno K, Watanabe K. Tannic acid modulates NFκB signaling pathway and skin inflammation in NC/Nga mice through PPARγ expression. Cytokine 2015;76:206-13. [DOI: 10.1016/j.cyto.2015.05.016] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 4.9] [Reference Citation Analysis]
179 Moniuszko-Malinowska A, Penza P, Czupryna P, Zajkowska O, Pancewicz S, Świerzbińska R, Dunaj J, Zajkowska J. Assessment of HMGB-1 concentration in tick-borne encephalitis and neuroborreliosis. Int J Infect Dis 2018;70:131-6. [PMID: 29559369 DOI: 10.1016/j.ijid.2018.03.013] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
180 Liao Y, Liu S, Fu S, Wu J. HMGB1 in Radiotherapy: A Two Headed Signal Regulating Tumor Radiosensitivity and Immunity. Onco Targets Ther 2020;13:6859-71. [PMID: 32764978 DOI: 10.2147/OTT.S253772] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
181 Hamad OA, Mitroulis I, Fromell K, Kozarcanin H, Chavakis T, Ricklin D, Lambris JD, Ekdahl KN, Nilsson B. Contact activation of C3 enables tethering between activated platelets and polymorphonuclear leukocytes via CD11b/CD18. Thromb Haemost 2015;114:1207-17. [PMID: 26293614 DOI: 10.1160/TH15-02-0162] [Cited by in Crossref: 27] [Cited by in F6Publishing: 17] [Article Influence: 3.9] [Reference Citation Analysis]
182 Ejdesjö A, Brings S, Fleming T, Fred RG, Nawroth PP, Eriksson UJ. Receptor for advanced glycation end products (RAGE) knockout reduces fetal dysmorphogenesis in murine diabetic pregnancy. Reproductive Toxicology 2016;62:62-70. [DOI: 10.1016/j.reprotox.2016.04.015] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
183 Xu H, Wandersee NJ, Guo Y, Jones DW, Holzhauer SL, Hanson MS, Machogu E, Brousseau DC, Hogg N, Densmore JC, Kaul S, Hillery CA, Pritchard KA Jr. Sickle cell disease increases high mobility group box 1: a novel mechanism of inflammation. Blood 2014;124:3978-81. [PMID: 25339362 DOI: 10.1182/blood-2014-04-560813] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 4.5] [Reference Citation Analysis]
184 Wolf R, Howard OM, Dong HF, Voscopoulos C, Boeshans K, Winston J, Divi R, Gunsior M, Goldsmith P, Ahvazi B, Chavakis T, Oppenheim JJ, Yuspa SH. Chemotactic activity of S100A7 (Psoriasin) is mediated by the receptor for advanced glycation end products and potentiates inflammation with highly homologous but functionally distinct S100A15. J Immunol 2008;181:1499-506. [PMID: 18606705 DOI: 10.4049/jimmunol.181.2.1499] [Cited by in Crossref: 114] [Cited by in F6Publishing: 107] [Article Influence: 8.1] [Reference Citation Analysis]
185 Muhammad S, Barakat W, Stoyanov S, Murikinati S, Yang H, Tracey KJ, Bendszus M, Rossetti G, Nawroth PP, Bierhaus A. The HMGB1 receptor RAGE mediates ischemic brain damage. J Neurosci. 2008;28:12023-12031. [PMID: 19005067 DOI: 10.1523/JNEUROSCI.2435-08.2008] [Cited by in Crossref: 271] [Cited by in F6Publishing: 153] [Article Influence: 20.8] [Reference Citation Analysis]
186 Zhu CJ, Yang WG, Li DJ, Song YD, Chen SY, Wang QF, Liu YN, Zhang Y, Cheng B, Wu ZW, Cui ZC. Calycosin attenuates severe acute pancreatitis-associated acute lung injury by curtailing high mobility group box 1 - induced inflammation. World J Gastroenterol 2021; 27(44): 7669-7686 [PMID: 34908806 DOI: 10.3748/wjg.v27.i44.7669] [Reference Citation Analysis]
187 Takahashi K, Fukushima S, Yamahara K, Yashiro K, Shintani Y, Coppen SR, Salem HK, Brouilette SW, Yacoub MH, Suzuki K. Modulated inflammation by injection of high-mobility group box 1 recovers post-infarction chronically failing heart. Circulation 2008;118:S106-14. [PMID: 18824741 DOI: 10.1161/CIRCULATIONAHA.107.757443] [Cited by in Crossref: 62] [Cited by in F6Publishing: 31] [Article Influence: 4.4] [Reference Citation Analysis]
188 Fleshner M, Maslanik T, Beninson LA. In Vivo Tissue Source and Releasing Signal for Endogenous Extracellular Hsp72. In: Asea AAA, Pedersen BK, editors. Heat Shock Proteins and Whole Body Physiology. Dordrecht: Springer Netherlands; 2010. pp. 193-215. [DOI: 10.1007/978-90-481-3381-9_12] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
189 Wang Y, Zhang Y, Peng G, Han X. Glycyrrhizin ameliorates atopic dermatitis-like symptoms through inhibition of HMGB1. Int Immunopharmacol 2018;60:9-17. [PMID: 29702284 DOI: 10.1016/j.intimp.2018.04.029] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
190 Xiang M, Shi X, Li Y, Xu J, Yin L, Xiao G, Scott MJ, Billiar TR, Wilson MA, Fan J. Hemorrhagic shock activation of NLRP3 inflammasome in lung endothelial cells. J Immunol 2011;187:4809-17. [PMID: 21940680 DOI: 10.4049/jimmunol.1102093] [Cited by in Crossref: 98] [Cited by in F6Publishing: 106] [Article Influence: 8.9] [Reference Citation Analysis]
191 Ku SH, Hong J, Moon HH, Jeong JH, Mok H, Park S, Choi D, Kim SH. Deoxycholic acid-modified polyethylenimine based nanocarriers for RAGE siRNA therapy in acute myocardial infarction. Arch Pharm Res 2015;38:1317-24. [PMID: 25559468 DOI: 10.1007/s12272-014-0527-x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
192 Suda K, Takeuchi H, Ishizaka A, Kitagawa Y. High-mobility-group box chromosomal protein 1 as a new target for modulating stress response. Surg Today 2010;40:592-601. [DOI: 10.1007/s00595-009-4232-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 0.9] [Reference Citation Analysis]
193 Farmer DG, Kennedy S. RAGE, vascular tone and vascular disease. Pharmacology & Therapeutics 2009;124:185-94. [DOI: 10.1016/j.pharmthera.2009.06.013] [Cited by in Crossref: 68] [Cited by in F6Publishing: 55] [Article Influence: 5.2] [Reference Citation Analysis]
194 Kierdorf K, Fritz G. RAGE regulation and signaling in inflammation and beyond. J Leukoc Biol. 2013;94:55-68. [PMID: 23543766 DOI: 10.1189/jlb.1012519] [Cited by in Crossref: 205] [Cited by in F6Publishing: 197] [Article Influence: 22.8] [Reference Citation Analysis]
195 Wang H, Ward MF, Sama AE. Targeting HMGB1 in the treatment of sepsis. Expert Opin Ther Targets 2014;18:257-68. [PMID: 24392842 DOI: 10.1517/14728222.2014.863876] [Cited by in Crossref: 78] [Cited by in F6Publishing: 74] [Article Influence: 9.8] [Reference Citation Analysis]
196 Lin Q, Fang J, Fang D, Li B, Zhou H, Su SB. Production of recombinant human HMGB1 and anti-HMGB1 rabbit serum. Int Immunopharmacol 2011;11:646-51. [PMID: 21255697 DOI: 10.1016/j.intimp.2011.01.005] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 0.9] [Reference Citation Analysis]
197 Rui X, Shengli M, Zhankui J, Guofu P, Jinjian Y. HMGB1: a potential target for treatment of benign prostatic hyperplasia. Med Hypotheses 2013;81:892-5. [PMID: 23948596 DOI: 10.1016/j.mehy.2013.07.047] [Reference Citation Analysis]
198 McClellan S, Jiang X, Barrett R, Hazlett LD. High-mobility group box 1: a novel target for treatment of Pseudomonas aeruginosa keratitis. J Immunol 2015;194:1776-87. [PMID: 25589066 DOI: 10.4049/jimmunol.1401684] [Cited by in Crossref: 13] [Cited by in F6Publishing: 18] [Article Influence: 1.9] [Reference Citation Analysis]
199 Tian L, Rauvala H, Gahmberg CG. Neuronal regulation of immune responses in the central nervous system. Trends Immunol 2009;30:91-9. [PMID: 19144568 DOI: 10.1016/j.it.2008.11.002] [Cited by in Crossref: 89] [Cited by in F6Publishing: 78] [Article Influence: 6.8] [Reference Citation Analysis]
200 Vågesjö E, Öhnstedt E, Mortier A, Lofton H, Huss F, Proost P, Roos S, Phillipson M. Accelerated wound healing in mice by on-site production and delivery of CXCL12 by transformed lactic acid bacteria. Proc Natl Acad Sci U S A 2018;115:1895-900. [PMID: 29432190 DOI: 10.1073/pnas.1716580115] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 10.5] [Reference Citation Analysis]
201 Braach N, Frommhold D, Buschmann K, Pflaum J, Koch L, Hudalla H, Staudacher K, Wang H, Isermann B, Nawroth P, Poeschl J. RAGE controls activation and anti-inflammatory signalling of protein C. PLoS One 2014;9:e89422. [PMID: 24586767 DOI: 10.1371/journal.pone.0089422] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
202 Rovere-Querini P, Castiglioni A. Adjuvant role for cell death during chemo- and radiotherapy of cancer? Expert Rev Clin Immunol 2008;4:27-32. [PMID: 20477584 DOI: 10.1586/1744666X.4.1.27] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
203 Raucci A, Cugusi S, Antonelli A, Barabino SM, Monti L, Bierhaus A, Reiss K, Saftig P, Bianchi ME. A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membrane-bound form by the sheddase a disintegrin and metalloprotease 10 (ADAM10). FASEB J 2008;22:3716-27. [PMID: 18603587 DOI: 10.1096/fj.08-109033] [Cited by in Crossref: 364] [Cited by in F6Publishing: 362] [Article Influence: 26.0] [Reference Citation Analysis]
204 Nasr IW, Chun Y, Kannan S. Neuroimmune responses in the developing brain following traumatic brain injury. Exp Neurol 2019;320:112957. [PMID: 31108085 DOI: 10.1016/j.expneurol.2019.112957] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
205 Bongarzone S, Savickas V, Luzi F, Gee AD. Targeting the Receptor for Advanced Glycation Endproducts (RAGE): A Medicinal Chemistry Perspective. J Med Chem 2017;60:7213-32. [PMID: 28482155 DOI: 10.1021/acs.jmedchem.7b00058] [Cited by in Crossref: 106] [Cited by in F6Publishing: 103] [Article Influence: 21.2] [Reference Citation Analysis]
206 Lin F, Pei L, Zhang Q, Han W, Jiang S, Lin Y, Dong B, Cui L, Li M. Ox-LDL induces endothelial cell apoptosis and macrophage migration by regulating caveolin-1 phosphorylation. J Cell Physiol 2018;233:6683-92. [PMID: 29323707 DOI: 10.1002/jcp.26468] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
207 Yun J, Jiang G, Wang Y, Xiao T, Zhao Y, Sun D, Kaplan HJ, Shao H. The HMGB1-CXCL12 Complex Promotes Inflammatory Cell Infiltration in Uveitogenic T Cell-Induced Chronic Experimental Autoimmune Uveitis. Front Immunol 2017;8:142. [PMID: 28261206 DOI: 10.3389/fimmu.2017.00142] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
208 Gebhardt C, Riehl A, Durchdewald M, Németh J, Fürstenberger G, Müller-Decker K, Enk A, Arnold B, Bierhaus A, Nawroth PP. RAGE signaling sustains inflammation and promotes tumor development. J Exp Med. 2008;205:275-285. [PMID: 18208974 DOI: 10.1084/jem.20070679] [Cited by in Crossref: 262] [Cited by in F6Publishing: 261] [Article Influence: 18.7] [Reference Citation Analysis]
209 Paradela-dobarro B, Bravo SB, Rozados-luís A, González-peteiro M, Varela-román A, González-juanatey JR, García-seara J, Alvarez E. Inflammatory effects of in vivo glycated albumin from cardiovascular patients. Biomedicine & Pharmacotherapy 2019;113:108763. [DOI: 10.1016/j.biopha.2019.108763] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
210 Peter C, Wesselborg S, Kirsten L. Role of Attraction and Danger Signals in the Uptake of Apoptotic and Necrotic Cells and its Immunological Outcome. In: Krysko DV, Vandenabeele P, editors. Phagocytosis of Dying Cells: From Molecular Mechanisms to Human Diseases. Dordrecht: Springer Netherlands; 2009. pp. 63-101. [DOI: 10.1007/978-1-4020-9293-0_3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
211 Venereau E, Casalgrandi M, Schiraldi M, Antoine DJ, Cattaneo A, De Marchis F, Liu J, Antonelli A, Preti A, Raeli L. Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J Exp Med. 2012;209:1519-1528. [PMID: 22869893 DOI: 10.1084/jem.20120189] [Cited by in Crossref: 427] [Cited by in F6Publishing: 416] [Article Influence: 42.7] [Reference Citation Analysis]
212 Mocanu CA, Fuior EV, Voicu G, Rebleanu D, Safciuc F, Deleanu M, Fenyo IM, Escriou V, Manduteanu I, Simionescu M, Calin M. P-selectin targeted RAGE-shRNA lipoplexes alleviate atherosclerosis-associated inflammation. J Control Release 2021;338:754-72. [PMID: 34530051 DOI: 10.1016/j.jconrel.2021.09.012] [Reference Citation Analysis]
213 Fatehi-hassanabad Z, Chan CB, Furman BL. Reactive oxygen species and endothelial function in diabetes. European Journal of Pharmacology 2010;636:8-17. [DOI: 10.1016/j.ejphar.2010.03.048] [Cited by in Crossref: 100] [Cited by in F6Publishing: 94] [Article Influence: 8.3] [Reference Citation Analysis]
214 Malemud CJ. Recent advances in neutralizing the IL-6 pathway in arthritis. Open Access Rheumatol 2009;1:133-50. [PMID: 27789987 DOI: 10.2147/oarrr.s6266] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 0.8] [Reference Citation Analysis]
215 Rani SG, Sepuru KM, Yu C. Interaction of S100A13 with C2 domain of receptor for advanced glycation end products (RAGE). Biochim Biophys Acta 2014;1844:1718-28. [PMID: 24982031 DOI: 10.1016/j.bbapap.2014.06.017] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
216 Yamoah K, Brebene A, Baliram R, Inagaki K, Dolios G, Arabi A, Majeed R, Amano H, Wang R, Yanagisawa R, Abe E. High-mobility group box proteins modulate tumor necrosis factor-alpha expression in osteoclastogenesis via a novel deoxyribonucleic acid sequence. Mol Endocrinol 2008;22:1141-53. [PMID: 18218727 DOI: 10.1210/me.2007-0460] [Cited by in Crossref: 36] [Cited by in F6Publishing: 28] [Article Influence: 2.6] [Reference Citation Analysis]
217 Pisetsky DS, Erlandsson-Harris H, Andersson U. High-mobility group box protein 1 (HMGB1): an alarmin mediating the pathogenesis of rheumatic disease. Arthritis Res Ther. 2008;10:209. [PMID: 18598385 DOI: 10.1186/ar2440] [Cited by in Crossref: 134] [Cited by in F6Publishing: 132] [Article Influence: 9.6] [Reference Citation Analysis]
218 Tang H, Zhao H, Song J, Dong H, Yao L, Liang Z, LV Y, Zou F, Cai S. Ethyl pyruvate decreases airway neutrophil infiltration partly through a high mobility group box 1-dependent mechanism in a chemical-induced murine asthma model. Int Immunopharmacol 2014;21:163-70. [PMID: 24819717 DOI: 10.1016/j.intimp.2014.04.024] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 3.3] [Reference Citation Analysis]
219 Galichet A, Weibel M, Heizmann CW. Calcium-regulated intramembrane proteolysis of the RAGE receptor. Biochemical and Biophysical Research Communications 2008;370:1-5. [DOI: 10.1016/j.bbrc.2008.02.163] [Cited by in Crossref: 73] [Cited by in F6Publishing: 72] [Article Influence: 5.2] [Reference Citation Analysis]
220 Bao GQ, He L, Lee D, D'Angelo J, Wang HC. An ongoing search for potential targets and therapies for lethal sepsis. Mil Med Res 2015;2:20. [PMID: 26257917 DOI: 10.1186/s40779-015-0047-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
221 Kleinveld DJB, Sloos PH, Noorman F, Maas MAW, Kers J, Rijnhout TWH, Zoodsma M, Hoencamp R, Hollmann MW, Juffermans NP. The use of cryopreserved platelets in a trauma-induced hemorrhage model. Transfusion 2020;60:2079-89. [PMID: 32592423 DOI: 10.1111/trf.15937] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
222 Zeng L, Zhang AQ, Gu W, Chen KH, Jiang DP, Zhang LY, Du DY, Hu P, Huang SN, Wang HY. Clinical relevance of single nucleotide polymorphisms of the high mobility group box 1 protein gene in patients with major trauma in southwest China. Surgery. 2012;151:427-436. [PMID: 22047946 DOI: 10.1016/j.surg.2011.07.075] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 1.5] [Reference Citation Analysis]
223 Brandau S, Dumitru CA, Lang S. Protumor and antitumor functions of neutrophil granulocytes. Semin Immunopathol 2013;35:163-76. [DOI: 10.1007/s00281-012-0344-6] [Cited by in Crossref: 85] [Cited by in F6Publishing: 83] [Article Influence: 8.5] [Reference Citation Analysis]
224 Han SJ, Min HJ, Yoon SC, Ko EA, Park SJ, Yoon JH, Shin JS, Seo KY. HMGB1 in the pathogenesis of ultraviolet-induced ocular surface inflammation. Cell Death Dis 2015;6:e1863. [PMID: 26313914 DOI: 10.1038/cddis.2015.199] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
225 Cottone L, Capobianco A, Gualteroni C, Perrotta C, Bianchi ME, Rovere-Querini P, Manfredi AA. 5-Fluorouracil causes leukocytes attraction in the peritoneal cavity by activating autophagy and HMGB1 release in colon carcinoma cells. Int J Cancer 2015;136:1381-9. [PMID: 25098891 DOI: 10.1002/ijc.29125] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 3.8] [Reference Citation Analysis]
226 Sofiadis K, Josipovic N, Nikolic M, Kargapolova Y, Übelmesser N, Varamogianni-Mamatsi V, Zirkel A, Papadionysiou I, Loughran G, Keane J, Michel A, Gusmao EG, Becker C, Altmüller J, Georgomanolis T, Mizi A, Papantonis A. HMGB1 coordinates SASP-related chromatin folding and RNA homeostasis on the path to senescence. Mol Syst Biol 2021;17:e9760. [PMID: 34166567 DOI: 10.15252/msb.20209760] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
227 Kim HJ, Jeong MS, Jang SB. Molecular Characteristics of RAGE and Advances in Small-Molecule Inhibitors. Int J Mol Sci 2021;22:6904. [PMID: 34199060 DOI: 10.3390/ijms22136904] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
228 van Zoelen MA, Schouten M, de Vos AF, Florquin S, Meijers JC, Nawroth PP, Bierhaus A, van der Poll T. The receptor for advanced glycation end products impairs host defense in pneumococcal pneumonia. J Immunol 2009;182:4349-56. [PMID: 19299735 DOI: 10.4049/jimmunol.0801199] [Cited by in Crossref: 79] [Cited by in F6Publishing: 79] [Article Influence: 6.1] [Reference Citation Analysis]
229 Wang Y, Zhong J, Zhang X, Liu Z, Yang Y, Gong Q, Ren B. The Role of HMGB1 in the Pathogenesis of Type 2 Diabetes. J Diabetes Res 2016;2016:2543268. [PMID: 28101517 DOI: 10.1155/2016/2543268] [Cited by in Crossref: 36] [Cited by in F6Publishing: 40] [Article Influence: 6.0] [Reference Citation Analysis]
230 Oikonomou E, Leopoulou M, Theofilis P, Antonopoulos AS, Siasos G, Latsios G, Mystakidi VC, Antoniades C, Tousoulis D. A link between inflammation and thrombosis in atherosclerotic cardiovascular diseases: Clinical and therapeutic implications. Atherosclerosis 2020;309:16-26. [PMID: 32858395 DOI: 10.1016/j.atherosclerosis.2020.07.027] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
231 Wolf D, Hohmann JD, Wiedemann A, Bledzka K, Blankenbach H, Marchini T, Gutte K, Zeschky K, Bassler N, Hoppe N, Rodriguez AO, Herr N, Hilgendorf I, Stachon P, Willecke F, Duerschmied D, von zur Muhlen C, Soloviev DA, Zhang L, Bode C, Plow EF, Libby P, Peter K, Zirlik A. Binding of CD40L to Mac-1's I-domain involves the EQLKKSKTL motif and mediates leukocyte recruitment and atherosclerosis--but does not affect immunity and thrombosis in mice. Circ Res 2011;109:1269-79. [PMID: 21998326 DOI: 10.1161/CIRCRESAHA.111.247684] [Cited by in Crossref: 70] [Cited by in F6Publishing: 41] [Article Influence: 6.4] [Reference Citation Analysis]
232 Fossati-Jimack L, Ling GS, Cortini A, Szajna M, Malik TH, McDonald JU, Pickering MC, Cook HT, Taylor PR, Botto M. Phagocytosis is the main CR3-mediated function affected by the lupus-associated variant of CD11b in human myeloid cells. PLoS One 2013;8:e57082. [PMID: 23451151 DOI: 10.1371/journal.pone.0057082] [Cited by in Crossref: 51] [Cited by in F6Publishing: 47] [Article Influence: 5.7] [Reference Citation Analysis]
233 LaFoya B, Munroe JA, Miyamoto A, Detweiler MA, Crow JJ, Gazdik T, Albig AR. Beyond the Matrix: The Many Non-ECM Ligands for Integrins. Int J Mol Sci 2018;19:E449. [PMID: 29393909 DOI: 10.3390/ijms19020449] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
234 Rowe SM, Jackson PL, Liu G, Hardison M, Livraghi A, Solomon GM, McQuaid DB, Noerager BD, Gaggar A, Clancy JP, O'Neal W, Sorscher EJ, Abraham E, Blalock JE. Potential role of high-mobility group box 1 in cystic fibrosis airway disease. Am J Respir Crit Care Med 2008;178:822-31. [PMID: 18658107 DOI: 10.1164/rccm.200712-1894OC] [Cited by in Crossref: 76] [Cited by in F6Publishing: 48] [Article Influence: 5.4] [Reference Citation Analysis]
235 Goyette J, Geczy CL. Inflammation-associated S100 proteins: new mechanisms that regulate function. Amino Acids 2011;41:821-42. [PMID: 20213444 DOI: 10.1007/s00726-010-0528-0] [Cited by in Crossref: 190] [Cited by in F6Publishing: 186] [Article Influence: 15.8] [Reference Citation Analysis]
236 Wang L, Wang T, Li H, Liu Q, Zhang Z, Xie W, Feng Y, Socorburam T, Wu G, Xia Z, Wu Q. Receptor Interacting Protein 3-Mediated Necroptosis Promotes Lipopolysaccharide-Induced Inflammation and Acute Respiratory Distress Syndrome in Mice. PLoS One 2016;11:e0155723. [PMID: 27195494 DOI: 10.1371/journal.pone.0155723] [Cited by in Crossref: 33] [Cited by in F6Publishing: 35] [Article Influence: 5.5] [Reference Citation Analysis]
237 Cecil DL, Terkeltaub R. Transamidation by transglutaminase 2 transforms S100A11 calgranulin into a procatabolic cytokine for chondrocytes. J Immunol 2008;180:8378-85. [PMID: 18523305 DOI: 10.4049/jimmunol.180.12.8378] [Cited by in Crossref: 49] [Cited by in F6Publishing: 51] [Article Influence: 3.5] [Reference Citation Analysis]
238 Li N, Yang H, Wang M, Lü S, Zhang Y, Long M. Ligand-specific binding forces of LFA-1 and Mac-1 in neutrophil adhesion and crawling. Mol Biol Cell 2018;29:408-18. [PMID: 29282280 DOI: 10.1091/mbc.E16-12-0827] [Cited by in Crossref: 29] [Cited by in F6Publishing: 14] [Article Influence: 5.8] [Reference Citation Analysis]
239 Agalave NM, Svensson CI. Extracellular high-mobility group box 1 protein (HMGB1) as a mediator of persistent pain. Mol Med 2015;20:569-78. [PMID: 25222915 DOI: 10.2119/molmed.2014.00176] [Cited by in Crossref: 51] [Cited by in F6Publishing: 52] [Article Influence: 7.3] [Reference Citation Analysis]
240 Scavello F, Zeni F, Tedesco CC, Mensà E, Veglia F, Procopio AD, Bonfigli AR, Olivieri F, Raucci A. Modulation of soluble receptor for advanced glycation end-products (RAGE) isoforms and their ligands in healthy aging. Aging (Albany NY) 2019;11:1648-63. [PMID: 30903794 DOI: 10.18632/aging.101860] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
241 Czepiel J, Biesiada G, Pitera E, Wołkow PP, Michalak M, Garlicki A. Decreased Expression of the High Mobility Group Box 1 (HMGB1) Gene in Peripheral Blood in Patients with Mild or Moderate Clostridioides difficile Infection. Microorganisms 2020;8:E1217. [PMID: 32796569 DOI: 10.3390/microorganisms8081217] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
242 Romero R, Chaiworapongsa T, Alpay Savasan Z, Xu Y, Hussein Y, Dong Z, Kusanovic JP, Kim CJ, Hassan SS. Damage-associated molecular patterns (DAMPs) in preterm labor with intact membranes and preterm PROM: a study of the alarmin HMGB1. J Matern Fetal Neonatal Med 2011;24:1444-55. [PMID: 21958433 DOI: 10.3109/14767058.2011.591460] [Cited by in Crossref: 139] [Cited by in F6Publishing: 148] [Article Influence: 12.6] [Reference Citation Analysis]
243 Salmina AB, Komleva YK, Lopatina OL, Kuvacheva NV, Gorina YV, Panina YA, Uspenskaya YA, Petrova MM, Demko IV, Zamay AS, Malinovskaya NA. Astroglial control of neuroinflammation: TLR3-mediated dsRNA-sensing pathways are in the focus. Rev Neurosci 2015;26:143-59. [PMID: 25528762 DOI: 10.1515/revneuro-2014-0052] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
244 Gao TL, Yuan XT, Yang D, Dai HL, Wang WJ, Peng X, Shao HJ, Jin ZF, Fu ZJ. Expression of HMGB1 and RAGE in rat and human brains after traumatic brain injury. J Trauma Acute Care Surg 2012;72:643-9. [PMID: 22491548 DOI: 10.1097/TA.0b013e31823c54a6] [Cited by in Crossref: 59] [Cited by in F6Publishing: 33] [Article Influence: 5.9] [Reference Citation Analysis]
245 Vinatier C, Domínguez E, Guicheux J, Caramés B. Role of the Inflammation-Autophagy-Senescence Integrative Network in Osteoarthritis. Front Physiol 2018;9:706. [PMID: 29988615 DOI: 10.3389/fphys.2018.00706] [Cited by in Crossref: 45] [Cited by in F6Publishing: 41] [Article Influence: 11.3] [Reference Citation Analysis]