BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Boon R, Silveira GG, Mostoslavsky R. Nuclear metabolism and the regulation of the epigenome. Nat Metab 2020;2:1190-203. [DOI: 10.1038/s42255-020-00285-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
Number Citing Articles
1 Giolito MV, Plateroti M. Thyroid hormone signaling in the intestinal stem cells and their niche. Cell Mol Life Sci 2022;79:476. [PMID: 35947210 DOI: 10.1007/s00018-022-04503-y] [Reference Citation Analysis]
2 Khan NH, Chen H, Fan Y, Surfaraz M, Ahammad M, Qin Y, Shahid M, Virk R, Jiang E, Wu D, Ji X. Biology of PEST‐Containing Nuclear Protein: A Potential Molecular Target for Cancer Research. Front Oncol 2022;12:784597. [DOI: 10.3389/fonc.2022.784597] [Reference Citation Analysis]
3 Mendoza M, Egervari G, Sidoli S, Donahue G, Alexander DC, Sen P, Garcia BA, Berger SL. Enzymatic transfer of acetate on histones from lysine reservoir sites to lysine activating sites. Sci Adv 2022;8:eabj5688. [DOI: 10.1126/sciadv.abj5688] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
4 Shvedunova M, Akhtar A. Modulation of cellular processes by histone and non-histone protein acetylation. Nat Rev Mol Cell Biol 2022. [PMID: 35042977 DOI: 10.1038/s41580-021-00441-y] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 18.0] [Reference Citation Analysis]
5 Nomiyama T, Setoyama D, Yasukawa T, Kang D. Mitochondria Metabolomics Reveals a Role of β-Nicotinamide Mononucleotide Metabolism in Mitochondrial DNA Replication. J Biochem 2021:mvab136. [PMID: 34865026 DOI: 10.1093/jb/mvab136] [Reference Citation Analysis]
6 Boon R. Metabolic Fuel for Epigenetic: Nuclear Production Meets Local Consumption. Front Genet 2021;12:768996. [PMID: 34804127 DOI: 10.3389/fgene.2021.768996] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
7 Trefely S, Huber K, Liu J, Noji M, Stransky S, Singh J, Doan MT, Lovell CD, von Krusenstiern E, Jiang H, Bostwick A, Pepper HL, Izzo L, Zhao S, Xu JP, Bedi KC Jr, Rame JE, Bogner-Strauss JG, Mesaros C, Sidoli S, Wellen KE, Snyder NW. Quantitative subcellular acyl-CoA analysis reveals distinct nuclear metabolism and isoleucine-dependent histone propionylation. Mol Cell 2021:S1097-2765(21)00956-4. [PMID: 34856123 DOI: 10.1016/j.molcel.2021.11.006] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
8 Isidor MS, Dong W, Servin-Uribe RI, Villarroel J, Altıntaş A, Ayala-Sumuano JT, Varela-Echavarría A, Barrès R, Stephanopoulos G, Macotela Y, Emanuelli B. Insulin resistance rewires the metabolic gene program and glucose utilization in human white adipocytes. Int J Obes (Lond) 2021. [PMID: 34799672 DOI: 10.1038/s41366-021-01021-y] [Reference Citation Analysis]
9 Gong F, Cao D, Qu C, Yin D, Zhao Q, Xiong E. Advances in the elucidation of nuclear proteins in the model plant Arabidopsis thaliana : based on protein interactions and bioinformatics analysis. Journal of Plant Interactions 2021;16:481-93. [DOI: 10.1080/17429145.2021.1998681] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Tokarz VL, Delgado-Olguín P, Klip A. Deprogram and reprogram to solve the riddle of insulin resistance. J Clin Invest 2021;131:e154699. [PMID: 34720091 DOI: 10.1172/JCI154699] [Reference Citation Analysis]
11 Ma C, Zheng K, Jiang K, Zhao Q, Sha N, Wang W, Yan M, Chen T, Zhao Y, Jiang Y. The alternative activity of nuclear PHGDH contributes to tumour growth under nutrient stress. Nat Metab 2021;3:1357-71. [PMID: 34663976 DOI: 10.1038/s42255-021-00456-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
12 Chung H, Parkhurst CN, Magee EM, Phillips D, Habibi E, Chen F, Yeung BZ, Waldman J, Artis D, Regev A. Joint single-cell measurements of nuclear proteins and RNA in vivo. Nat Methods 2021;18:1204-12. [PMID: 34608310 DOI: 10.1038/s41592-021-01278-1] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
13 Beacon TH, Delcuve GP, López C, Nardocci G, Kovalchuk I, van Wijnen AJ, Davie JR. The dynamic broad epigenetic (H3K4me3, H3K27ac) domain as a mark of essential genes. Clin Epigenetics 2021;13:138. [PMID: 34238359 DOI: 10.1186/s13148-021-01126-1] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
14 Iwata R, Vanderhaeghen P. Regulatory roles of mitochondria and metabolism in neurogenesis. Curr Opin Neurobiol 2021;69:231-40. [PMID: 34171617 DOI: 10.1016/j.conb.2021.05.003] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
15 Nitsch S, Zorro Shahidian L, Schneider R. Histone acylations and chromatin dynamics: concepts, challenges, and links to metabolism. EMBO Rep 2021;22:e52774. [PMID: 34159701 DOI: 10.15252/embr.202152774] [Cited by in F6Publishing: 22] [Reference Citation Analysis]
16 Zhang JJ, Fan TT, Mao YZ, Hou JL, Wang M, Zhang M, Lin Y, Zhang L, Yan GQ, An YP, Yao J, Zhang C, Lin PC, Yuan YY, Zhao JY, Xu W, Zhao SM. Nuclear dihydroxyacetone phosphate signals nutrient sufficiency and cell cycle phase to global histone acetylation. Nat Metab 2021;3:859-75. [PMID: 34140692 DOI: 10.1038/s42255-021-00405-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
17 Verdikt R, Allard P. Metabolo-epigenetics: The interplay of metabolism and epigenetics during early germ cells development. Biol Reprod 2021:ioab118. [PMID: 34132770 DOI: 10.1093/biolre/ioab118] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
18 Perez-Ramirez CA, Christofk HR. Challenges in Studying Stem Cell Metabolism. Cell Stem Cell 2021;28:409-23. [PMID: 33667361 DOI: 10.1016/j.stem.2021.02.016] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Martínez de Paz A, Josefowicz SZ. Signaling-to-chromatin pathways in the immune system. Immunol Rev 2021;300:37-53. [PMID: 33644906 DOI: 10.1111/imr.12955] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
20 Cuyàs E, Verdura S, Martin-Castillo B, Menendez JA. Metformin: Targeting the Metabolo-Epigenetic Link in Cancer Biology. Front Oncol 2020;10:620641. [PMID: 33604300 DOI: 10.3389/fonc.2020.620641] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
21 Mews P, Calipari ES, Day J, Lobo MK, Bredy T, Abel T. From Circuits to Chromatin: The Emerging Role of Epigenetics in Mental Health. J Neurosci 2021;41:873-82. [PMID: 33446519 DOI: 10.1523/JNEUROSCI.1649-20.2020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
22 Xu D, Shao F, Bian X, Meng Y, Liang T, Lu Z. The Evolving Landscape of Noncanonical Functions of Metabolic Enzymes in Cancer and Other Pathologies. Cell Metab 2021;33:33-50. [PMID: 33406403 DOI: 10.1016/j.cmet.2020.12.015] [Cited by in Crossref: 12] [Cited by in F6Publishing: 28] [Article Influence: 12.0] [Reference Citation Analysis]
23 [DOI: 10.1101/2020.07.30.229468] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Reference Citation Analysis]